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1 Introduction

Wind and marine turbine structures are long slender columns with a ro-

tor and blade assembly placed on the top. These slender structures vibrate

due to dynamic environmental forces and its own dynamics. Analysis of the

dynamic behavior of wind and marine turbines is fundamental to the stabil-

ity, performance, operation and safety of these systems. For the design and

analysis of real-life systems, detailed finite-element models are often used. A

multi-physics model of a modern wind or marine turbine with (non-linear)

structural dynamics, fluid-structure interaction, soil-structure interaction and

rotor dynamics can easily lead to computational model consisting several mil-

lion degrees-of-freedom. While such a detailed analysis can give incredible

resolution of the dynamic behavior of the system, the understanding of basic

physical principles which govern the overall design may be somewhat difficult

to deduce from such a complex analysis. For this reason, in this note we

will focus on a simplified analysis with the aim of understanding fundamen-

tal physics which underpins the overall dynamic behavior of the system. Our

approach involves the following key steps:

 Idealisation of the complex system and related assumptions

 Derivation of the equation of motion

 Derivation of the boundary conditions

 Analytical solution of the eigenvalue problem to obtain natural frequen-

cies of the system
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2 Equation of Motion and Boundary Conditions

2.1 Governing Partial Differential Equation
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Figure 1: Idealisation of a wind turbine (the first picture is taken from http://www.segen.co.uk)
using Euler Bernoulli beam with a top mass. Flexible springs are assumed to model the soil-structure
interaction. The weight of the rotor-hub and blades are assumed to be P . The forcing due to the
rotation of the blades is assumed to be harmonic in nature with frequency ̟.
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The Equation

The equation of motion of the beam is given by (see the book by Géradin

and Rixen [3] for the derivation of this equation):

∂2

∂x2

(
EI(x)

∂2w(x, t)

∂x2

)
+

∂

∂x

(
P (x)

∂w(x, t)

∂x

)
− ∂

∂x

(
mr2(x)

∂ẅ(x, t)

∂x

)

+ m ẅ(x, t) = f(x, t). (1)

Here w(x, t) is the transverse deflection of the beam, t is time, ˙(•) denotes

derivative with respect to time and f(x, t) is the applied time depended load

on the beam. The height of the structure is considered to be L.

The Forcing

The forcing due to the rotation of the blades is assumed to be harmonic

in nature with frequency ̟. This implies that the system is subjected to a

forcing

F (̟) exp[i̟t] (2)

at x = L. We can assume that there is a slight imbalance between the rotor

and the column. Such an imbalance in unavoidable due to construction defects

of such complex systems. Assuming the amount of imbalance is ǫ, we have

F (̟) = (M̟2ǫ) due to the centrifugal force. Therefore, the dynamic loading

on the system at x = L can be idealized as

f(x, t) = (M̟2ǫ) exp[i̟t]δ(x − L) (3)

where δ(•) is the Dirac delta function. This equation shows that the magnitude

of the force acting on the system is proportional to the square of the blade

passing frequency.
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The Assumptions

 The inertial and the elastic properties of the structure are constant along

the height of the structure.

 The effect of soil stiffness is elastic and linear and can be captured by a

translational and a rotational spring at the point of contact. In effect,

the soil-structure interaction can be completely captured by the boundary

condition at the bottom of the structure.

 The end-mass is rigidly attached to the structure.

 The axial force in the structure is constant and remains axial during

vibration.

 Deflections due to shear force are negligible and a plain section in the

structure remains plane during the bending vibration (standard assump-

tions in the Euler-Bernoulli beam theory).

 The flexible dynamics of the rotor and the blades above the top point is

assumed to be uncoupled with the dynamics of the column.

 Forcing to the system is harmonic and arising to due to the imbalance in

the rotor-beam system.

 None of the properties are changing with time. In other words, the system

is time invariant.
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2.2 Boundary Conditions

Noting that the properties are not changing with x, equation (1) can be

simplified as

EI
∂4w(x, t)

∂x4
+P

∂2w(x, t)

∂x2
−mr2∂

2ẅ(x, t)

∂x2
+mẅ(x, t) = (M̟2ǫ) exp[i̟t]δ(x−L).

(4)

The four boundary conditions associated with this equation are

 Bending moment at x = 0:

EI
∂2w(x, t)

∂x2
− kr

∂w(x, t)

∂x
= 0

∣∣∣∣
x=0

or EIw′′(0, t)−krw
′(0, t) = 0. (5)

 Shear force at x = 0:

EI
∂3w(x, t)

∂x3
+ P

∂w(x, t)

∂x
+ ktw(x, t)− mr2∂ẅ(x, t)

∂x
= 0

∣∣∣∣
x=0

or EIw′′′(0, t) + Pw′(0, t) + ktw(0, t) − mr2∂ẅ(0, t)

∂x
= 0.

(6)

 Bending moment at x = L:

EI
∂2w(x, t)

∂x2
+ J

∂ẅ(x, t)

∂x
= 0

∣∣∣∣
x=L

or EIw′′(L, t) + J
∂ẅ(L, t)

∂x
= 0.

(7)
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 Shear force at x = L:

EI
∂3w(x, t)

∂x3
+ P

∂w(x, t)

∂x
− Mẅ(x, t) − mr2∂ẅ(x, t)

∂x
= 0

∣∣∣∣
x=L

or EIw′′′(L, t) + Pw′(L, t) − Mẅ(L, t) − mr2∂ẅ(L, t)

∂x
= 0.

(8)

Assuming harmonic solution (the separation of variable) we have

w(x, t) = W (ξ)exp{iωt} , ξ = x/L. (9)

Substituting this in the equation of motion and the boundary conditions, Eqs.

(4) – (8), results

EI

L4

∂4W (ξ)

∂ξ4
+

P

L2

∂2W (ξ)

∂ξ2
(10)

− mω2W (ξ) +
mr2ω2

L2

∂2W (ξ)

∂ξ2
= (M̟2ǫ) exp[i̟t]δ(ξL − L)

EI

L2
W ′′(0) − kr

L
W ′(0) = 0 (11)

EI

L3
W ′′′(0) +

P

L
W ′(0) + ktW (0) +

mr2ω2

L
W ′(0) = 0 (12)

EI

L2
W ′′(1) − ω2J

L
W ′(1) = 0 (13)

EI

L3
W ′′′(1) +

P

L
W ′(1) + ω2M W (1) +

mr2ω2

L
W ′(1) = 0. (14)
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It is convenient to express these equations in terms of non-dimensional param-

eters by elementary rearrangements as

∂4W (ξ)

∂ξ4
+ ν̃

∂2W (ξ)

∂ξ2
− Ω2W (ξ) = pL exp[i̟t]δ(ξL − L) (15)

W ′′(0) − ηrW
′(0) = 0 (16)

W ′′′(0) + ν̃W ′(0) + ηtW (0) = 0 (17)

W ′′(1) − βΩ2W ′(1) = 0 (18)

W ′′′(1) + ν̃W ′(1) + αΩ2W (1) = 0 (19)

where

ν̃ = ν + µ2Ω2 (20)

ν =
PL2

EI
(nondimensional axial force) (21)

ηr =
krL

EI
(nondimensional rotational end stiffness) (22)

ηt =
ktL

3

EI
(nondimensional translational end stiffness) (23)

Ω2 = ω2mL4

EI
(nondimensional frequency parameter) (24)

α =
M

mL
(mass ratio) (25)

β =
J

mL3
(nondimensional rotary inertia) (26)

µ =
r

L
(nondimensional radius of gyration) (27)

pL = ǫ
ML4

EI
̟2 (normalized forcing amplitude at the top end) (28)

f0 =

√
EI

mL4
(natural frequency scaling parameter). (29)
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The natural frequencies of the system can be obtained as

ωj = Ωjf0; j = 1, 2, 3, · · · (30)

3 Equation of the Natural Frequencies

3.1 General Derivation

Natural frequencies of the system can be obtained from the ‘free vibration

problem’ by considering no force on the system. Therefore, we consider pL = 0

in the subsequent analysis. Assuming a solution of the form

W (ξ) = exp {λξ} (31)

and substituting in the equation of motion (15) results

λ4 + ν̃λ2 − Ω2 = 0. (32)

This equation is often know as the dispersion relationship. This is the equation

governing the natural frequencies of the beam. Solving this equation for λ2 we

have

λ2 = − ν̃

2
±

√(
ν̃

2

)2

+ Ω2

= −




√(

ν̃

2

)2

+ Ω2 +
ν̃

2



 ,




√(

ν̃

2

)2

+ Ω2 − ν̃

2



 .

(33)

Because ν̃2 and Ω2 are always positive quantities, both roots are real with one

negative and one positive root. Therefore, the four roots can be expressed as

λ = ±iλ1, ±λ2 (34)
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where

λ1 =




√(
ν̃

2

)2

+ Ω2 +
ν̃

2




1/2

(35)

and λ2 =




√(

ν̃

2

)2

+ Ω2 − ν̃

2




1/2

. (36)

From Eqs. (35) and (36) also note that

λ2
1 − λ2

2 = ν̃. (37)

In view of the roots in equation (34) the solution W (ξ) can be expressed as

W (ξ) = a1 sin λ1ξ + a2 cos λ1ξ + a3 sinhλ2ξ + a4 cosh λ2ξ

or W (ξ) = sT (ξ)a
(38)

where the vectors

s(ξ) = {sin λ1ξ, cosλ1ξ, sinhλ2ξ, coshλ2ξ}T (39)

and a = {a1, a2, a3, a4}T . (40)

Applying the boundary conditions in Eqs. (16) – (19) on the expression

of W (ξ) in (38) we have

Ra = 0 (41)
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where the matrix

R =




s′′1(0) − ηrs
′
1(0) s′′2(0) − ηrs

′
2(0)

s′′′1 (0) + ν̃s′1(0) + ηts1(0) s′′′2 (0) + ν̃s′2(0) + ηts2(0)
s′′1(1) − βΩ2s′1(1) s′′2(1) − βΩ2s′2(1)

s′′′1 (1) + ν̃s′1(1) + αΩ2s1(1) s′′′2 (1) + ν̃s′2(1) + αΩ2s2(1)

s′′3(0) − ηrs
′
3(0) s′′4(0) − ηrs

′
4(0)

s′′′3 (0) + ν̃s′3(0) + ηts3(0) s′′′4 (0) + ν̃s′4(0) + ηts4(0)
s′′3(1) − βΩ2s′3(1) s′′4(1) − βΩ2s′4(1)

s′′′3 (1) + ν̃s′3(1) + αΩ2s3(1) s′′′3 (1) + ν̃s′3(1) + αΩ2s3(1)


 .

(42)

Substituting functions sj(ξ), j = 1, · · · , 4 from equation (39) and simplifying
we obtain

R =




−λ1ηr −λ2
1

λ3
1 + νλ1 ηt

− sin (λ1)λ1
2 − Ω2β cos (λ1)λ1 − cos (λ1)λ1

2 + Ω2β sin (λ1) λ1

− cos (λ1)λ1
3 + ν̃ cos (λ1)λ1 + Ω2α sin (λ1) sin (λ1) λ1

3 − ν̃ sin (λ1)λ1 + Ω2α cos (λ1)

−λ2ηr λ2
2

λ3
2 + νλ2 ηt

sinh (λ2)λ2
2 − Ω2β cosh (λ2) λ2 cosh (λ2) λ2

2 − Ω2β sinh (λ2) λ2

cosh (λ2) λ2
3 + ν̃ cosh (λ2) λ2 + Ω2α sinh (λ2) sinh (λ2)λ2

3 + ν̃ sinh (λ2) λ2 + Ω2α cosh (λ2)


 .

(43)

The constant vector in equation (41) cannot be zero. Therefore, the equation

governing the natural frequencies is given by

|R| = 0. (44)

This, upon simplification (aMapler code developed for this purpose) reduces
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to

− λ1
6s1 λ2

4sh2 + 2 ν2λ1
3c1 λ2

3ch2 + 2λ1
3Ω4α c1 λ2

3β ch2 + 2 ν λ1
3c1 λ2

5ch2 − ν λ1
3Ω4β λ2α

+λ1
5Ω4β λ2α−2λ1

5c1 λ2
5ch2−2 ν2λ1

3λ2
3−2 ν λ1

3λ2
5+2λ1

5λ2
3ν−λ1

5c1 λ2
2Ω2α sh2+λ1

4Ω2β s1 λ2
5ch2

+λ1
4Ω4β s1 λ2

2α sh2 +λ1
6s1 λ2

3Ω2β ch2−λ1
3Ω2α c1 λ2

4sh2 +ν λ1
3c1 λ2

2Ω2α sh2−ν λ1
2Ω2β s1 λ2

5ch2

− ν λ1
4s1 λ2

3Ω2β ch2 − ν2λ1
2s1 λ2

4sh2 + ν λ1Ω
2α c1 λ2

4sh2 − ν λ1Ω
4α c1 λ2

3β ch2

+ s1 λ1
4λ2

3Ω2α ch2 + s1 λ1
4ν2λ2

2sh2 + Ω2α s1 λ1
2λ2

5ch2 − Ω4α s1 λ1
2λ2

4β sh2

+c1 λ1
5λ2

4Ω2β sh2+c1 λ1
5ν λ2

2Ω2β sh2+Ω2β c1 λ1
3λ2

4ν sh2+Ω4β c1 λ1
3ν λ2α ch2+s1 λ1

4ν λ2Ω
2α ch2

+ Ω2β c1 λ1
3λ2

6sh2 + Ω2α s1 λ1
2ν λ2

3ch2 + 2λ1
5λ2

5 +
((

λ1Ω
2α c1 sh2 λ2

2 − 2λ1
2ν s1 sh2 λ2

2

+ λ1
3c1 ν ch2 λ2 + λ1

5λ2 − λ1
4s1 Ω2β ch2 λ2 + 2λ1

3c1 ch2 λ2
3 − 2λ1Ω

4α c1 β ch2 λ2 − λ1
2Ω4β s1 α sh2

− s1 λ2
3Ω2α ch2 + 2λ1Ω

4β λ2α + Ω4β s1 λ2
2α sh2 − s1 λ1

2λ2
4sh2 + λ1

3c1 Ω2α sh2 − s1 λ1
2λ2Ω

2α ch2

− λ1
3ν λ2 − c1 λ1

3λ2
2Ω2β sh2 −Ω2β c1 λ1λ2

4sh2 + λ1λ2
3ν + λ1

4s1 sh2 λ2
2 + λ1λ2

5 − λ1
2Ω2β s1 ch2 λ2

3

−ν c1 λ1λ2
3ch2

)
ηt + λ1Ω

4α c1 λ2
4β sh2 − λ1

3c1 λ2
4ν sh2 − λ1Ω

2α c1 λ2
5ch2 − λ1

5c1 λ2
2ν sh2

− 2λ1
3c1 λ2

3Ω2α ch2 − λ1
3c1 λ2

6sh2 + 2λ1
4s1 λ2

4Ω2β sh2 + λ1
2ν s1 λ2

5ch2 + λ1
6s1 λ2

2Ω2β sh2

+ λ1
3Ω4α c1 λ2

2β sh2 + λ1
2Ω4β s1 λ2

3α ch2 + λ1
4s1 ν λ2

3ch2 − λ1
4s1 λ2

5ch2 + λ1
4Ω4β s1 λ2α ch2

−λ1
5c1 λ2

4sh2 + λ1
2Ω2β s1 λ2

6sh2 − λ1
6s1 λ2

3ch2 − λ1
5c1 λ2Ω

2α ch2

)
ηr+Ω4αβ λ1λ2

5+Ω4α β λ1λ2
3ν

+
(
−s1 λ1

2λ2
5ch2 − Ω4β c1 λ1

3α sh2 + Ω4α s1 λ1
2β ch2 λ2 − s1 λ1

4ch2 λ2
3 − s1 λ1

2ν λ2
3ch2

− Ω2β c1 λ1λ2
5ch2 − Ω4β c1 λ1λ2

2α sh2 + Ω4α s1 λ2
3β ch2 − Ω2α s1 λ2

4sh2 − ν c1 λ1λ2
4sh2

−2 s1 λ1
2λ2

2Ω2α sh2−s1 λ1
4ν ch2 λ2−ν c1 λ1

3sh2 λ2
2+c1 λ1

3λ2
4sh2+c1 λ1

5sh2 λ2
2−c1 λ1

5Ω2β ch2 λ2

−s1 λ1
4Ω2α sh2 − 2Ω2β c1 λ1

3ch2 λ2
3
)
ηt + s1 λ1

4λ2
6sh2 − 2 ν λ1

2Ω4β s1 λ2
2α sh2

+ 4λ1
4ν s1 λ2

4sh2 − 2λ1
5c1 ν λ2

3ch2 = 0. (45)

where

s1 = sin(λ1), c1 = cos(λ1), sh2 = sinh(λ2), ch2 = cosh(λ2). (46)

The natural frequencies can be obtained by solving equation (45) for Ω. Due to

the complexity of this transcendental equation it should be solved numerically.

Equation (45) is shown not to scare you, but to show the complicated nature

of the frequency equation even under the simplifying assumptions discussed

before. If we aim to relax any of the assumptions (e.g., variable bending stiff-

ness), this equation is likely to be even more complicated. Luckily, equation

(45) can be translated to Matlabr automatically and can be solved numeri-
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cally.

4 Numerical Example

Turbine Structure Properties Numerical values
Length (L) 81 m
Average diameter (D) 3.5m
Thickness (th) 0.075 mm
Mass density (ρ) 7800 kg/m3

Young’s modulus (E) 2.1 × 1011 Pa
Mass density (ρl) 7800 kg/m3

Rotational speed (̟) 22 r.p.m = 0.37 Hz
Top mass (M) 130,000 kg
Rated power 3 MW

Table 1: Material and geometric properties of the turbine structure [4]

S.Adhikari@swansea.ac.uk
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 The non-dimensional mass ratio can be obtained as

α =
M

mL
=

P

gmL
=

PL2

EI

(
EI

gmL3

)
= ν

(
EI

mL4

)
L/g = νf 2

0L/g (47)

 We consider the rotary inertia of the blade assembly J = 0. This is not

a very bad assumption because the ‘point of contact’ is very close to the

center of gravity of the rotor-blade assembly.

 The moment of inertia of the circular cross section can be obtained as

I =
π

64
D4 − π

64
(D − th)

4 ≈ 1

16
πD3th = 0.6314m4 (48)

 The mass density per unit length of the system can be obtained as

m = ρA ≈ ρπDth/2 = 3.1817× 103kg/m (49)

 Using these, the mass ratio α = 0.2495 and the nondimensional axial

force ν = 0.0652. We also obtain the natural frequency scaling parameter

can be obtained as

f0 =
EI

mL4
= 0.9682 s−1. (50)

 The radius of gyration of the wind turbine is given by

r =

√
I

A
=

1

4

√
D2 + (D − th)2 ≈ D

2
√

2
= 1.2374m (51)

 Therefore, the nondimensional radius of gyration µ = r/L = 0.0151.

From equation (20) we therefore have

ν̃ = ν + 2.2844× 10−4Ω2 ≈ ν (52)

We use ηr and ηt as variable parameters and try to understand how they affect

the overall behavior of the system.
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Figure 2: The variation of the first natural frequency of the wind turbine with respect to the
nondimensional axial load ν for different values of nondimensional rotational soil stiffness ηr. Four
fixed values of the nondimensional translational stiffness ηt are considered in the four subplots. The
data from the example (̟ = 0.37Hz and ν = 0.0315) is shown by a ’*’ in the diagram.
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Figure 3: The variation of the first natural frequency of the wind turbine with respect to the
nondimensional axial load ν for different values of nondimensional translational soil stiffness ηt.
Four fixed values of the nondimensional rotational stiffness ηr are considered in the four subplots.
The data from the example (̟ = 0.37Hz and ν = 0.0315) is shown by a ’*’ in the diagram.
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Figure 4: The variation of the first natural frequency of the wind turbine with respect to the
nondimensional rotational soil stiffness ηr for different values of nondimensional axial load ν. Four
fixed values of the nondimensional translational stiffness ηt are considered in the four subplots. The
bade passing frequency ̟ = 0.37Hz is shown by a dashed line in the diagram.
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Figure 5: The variation of the first natural frequency of the wind turbine with respect to the
nondimensional translational stiffness ηt for different values of nondimensional axial load ν. Four
fixed values of the nondimensional rotational soil stiffness ηr are considered in the four subplots. The
bade passing frequency ̟ = 0.37Hz is shown by a dashed line in the diagram.
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Figure 6: The variation of the first natural frequency of the wind turbine with respect to the
nondimensional axial load ν and nondimensional rotational soil stiffness ηr. Four fixed values of the
nondimensional translational stiffness ηt are considered in the four subplots.
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Figure 7: The variation of the first natural frequency of the wind turbine with respect to the
nondimensional translational stiffness ηt and nondimensional rotational soil stiffness ηr. Four fixed
values of the nondimensional axial load ν are considered in the four subplots.
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5 Approximate Natural Frequency Based on SDOF

Assumption

In the first mode, we can replace the distributed system by a single-degree-

of-freedom (SDOF) system with equivalent stiffness ke and equivalent mass Me:

The first natural frequency is given by

k


M


e


e


Figure 8: Equivalent single-degree-of-freedom system for the first bending mode of the
turbine structure.

ω2
1 =

ke

Me
(53)

Following Blevins [Table 8-8, case 1, page 158, 2] for a perfectly cantilever

column one has

Me = M + 0.24Mb = (α + 0.24)mL (54)

For our case the column is standing on elastic springs and also have an axial

force. Therefore the coefficient 0.24 needs to be modified to take these effects

into account. We suppose that the equivalent mass can be represented by

Me = (α + γm)mL (55)

where γm is the mass correction factor.

It is useful to express ke normalized by the stiffness term, kCL = EI/L3.
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Therefore, the first natural frequency can be expressed as

ω2
1 ≈ ke

Me
=

ke

kCL

EI/L3

(α + γm)mL
=

EI

mL4

γk

(α + γm)
(56)

or ω1 ≈f0

√
γk

α + γm
(57)

where the stiffness correction factor γk is defined as

γk =
ke

kCL
. (58)

We only need to obtain γk and γm in order to apply the expression of the first

natural frequency in equation (56).

These correction factors can be obtained (using the procedure developed

in reference [1]) as:

γk =
λ3ηt (ηr cos (λ) − λ sin (λ))

ηrηt (sin (λ) − λ cos (λ)) + λ2 (ηt sin (λ) + ηr cos (λ) − λ2 sin (λ))

and γm =
3

140

11 ηr
2ηt

2 + 77 ηt
2ηr + 105 ηr

2ηt + 140 ηt
2 + 420 ηrηt + 420 ηr

2

9 ηr
2 + 6 ηr

2ηt + 18 ηrηt + ηr
2ηt

2 + 6 ηt
2ηr + 9 ηt

2

(59)

where

λ =
√

ν (60)

Substituting these expressions in the approximate formula (57) gives the com-

plete parametric variation of the first-natural frequency in terms of ν, α, ηr

and ηt.
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Figure 9: Approximation of the first natural frequency of the wind turbine with respect to the
nondimensional axial load ν for different values of nondimensional translational soil stiffness ηt. Four
fixed values of the nondimensional rotational stiffness ηr are considered in the four subplots.
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Figure 10: Approximation of the first natural frequency of the wind turbine with respect to the
nondimensional translational stiffness ηt for different values of nondimensional axial load ν. Four
fixed values of the nondimensional rotational soil stiffness ηr are considered in the four subplots.

Both these plots show that the results from this simple closed-form expres-

sion is in excellent agreement with the exact results. Therefore, the formula

shown in equation (57) should be used for all practical purposes.
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6 Summary & Conclusions

 Dynamics of flexible (marine and wind) turbine structures on elastic end

supports has been investigated using the Euler Bernoulli beam theory

with axial load, elastic support stiffness and top mass with rotary inertia.

 The physical assumptions behind the simplified model have been ex-

plained in details.

 The non-dimensional parameters necessary to understand the dynamic

behavior are: nondimensional axial force (ν), nondimensional rotational

soil stiffness, (ηr), nondimensional translational soil stiffness, (ηt), mass

ratio between the building and the turbine (α), nondimensional radius of

gyration of the turbine (µ).

 The characteristic equation governing the natural frequency of the system

is obtained by solving the associated eigenvalue problem.

 One of the key conclusion is that the first natural frequency of the turbine

structure will decrease with the decrease in the stiffness properties of the

(soil) support and increase in the axial load in the column. This means

that one needs to check the condition of the underlying soil and weight

of the rotor-blade assembly. The first natural frequency of the system

should be well separated from the the blade passing frequency.

 Based on an equivalent single-degree-of-freedom system assumption, a

simple approximate expression of the first natural frequency is given.
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 Numerical verifications confirm that the results from this simple closed-

form expression is in excellent agreement from the results obtained via

numerical solution of the complex transcendental frequency equation over

a wide range of parameter values.

 Using this expression, designers could estimate the first natural frequency

for various parameter values and design the turbine structure such that

the resulting natural frequency does not come close to the blade passing

frequency.
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