Click here to open a Java window and run the GA_Demo...  

Evolutionary Computer-Automated Design (CAutoD) and Virtual Prototyping for Industry 4.0

Click left on the CAutoD animation - This opens a Java window to run the GA / EA Demo, an interactive courseware to show you step by step how a genetic algorithm works.  You can also watch global convergence in a batch mode, change the population size, crossover rates, mutation rates, selection mechanisms, and/or add a constraint. 

Since 1991, Yun Li has been teaching at University of Glasgow and researching into transforming the passive Computer-Aided Design (CAD) to the pro-active Computer-Automated Design (CAutoD) and machine invention He is Professor of Systems Engineering, specialised in Intelligent Systems (which offer data-driven prospects of computation akin to the human being).  Currently, he and his colleagues are working on cloud computing and big data oriented intelligent CAutoD for "Industry 4.0", with predictive data analytics to extract emerging trends in societal needs and wants and thus to enhance conceptual designs for smart manufacture. Cloud models with a CAutoD server can offer automation functions as services for seamless cyber-physical integration globally.  Application areas include electronic, electrical, mechanical, control, and biomedical engineering, operations management, financial and economic system modelling and optimisation.

Some of the CAutoD principles are discussed in papers
Downloadable below or from Enlighten here):

  1. Design of sophisticated fuzzy logic controllers using genetic algorithms, First IEEE World Congress Computational Intelligence, 1994

  2. Genetic algorithm automated approach to the design of sliding mode control systems, Int J Control, 1996, Li, Y. et al (University of Glasgow)

  3. GA automated design and synthesis of analog circuits with practical constraints, IEEE CEC Evolutionary Computation, 2001, Goh, C. (UoG Singapore) and Li, Y.

  4. CAutoCSD - Evolutionary search and optimisation enabled computer automated control system design, Int J Automation and Computing, 2004

Related evolutionary computing and control publications
(Downloadable below or from Enlighten here):

  1. Structural system identification using Genetic Programming and a block diagram tool, Electronics Letters, 1996

  2. Nonlinear model structure identification using Genetic Programming, IFAC J Control Engineering Practice, 1998

    YL image

  3. Evolutionary linearisation in the frequency domain, Electronics Letters, 1996, Tan, K.C. (National University of Singapore), et al

  4. Evolutionary system identification in the time domain, IMechE J of Systems & Control Engineering, 1997

  5. Evolutionary Computation Meets Machine Learning: A Survey, IEEE Computational Intelligence Magazine, 2011

  6. Artificial Evolution of neural networks and its application to feedback control, Artificial Intelligence in Engineering, 1996

  7. Grey-box model identification via Evolutionary computing, IFAC J Control Engineering Practice, 2002

  8. Differential Evolution with an Evolution Path: A DEEP Evolutionary Algorithm, IEEE Trans Cybernetics, 2015


  9. Particle Swarm Optimization with an aging leader and challengers, IEEE Trans Evolutionary Computation, 2013

  10. Bi-velocity discrete Particle Swarm Optimization and application..., IEEE Trans Industrial Electronics, 2014

  11. Orthogonal Learning Particle Swarm Optimization, IEEE Trans Evolutionary Computation, 2010

  12. Adaptive Particle Swarm Optimization, IEEE Trans Cybernetics, 2009, Zhang, J. (Sun Yat-sen University), et al

    YL image

  13. Ant Colony Optimization for Wireless Sensor Networks..., IEEE Trans Systems, Man, and Cybernetics, 2011

  14. An efficient Ant Colony system based on receding horizon..., IEEE Trans Intelligent Transportation Systems, 2010

  15. Orthogonal methods based Ant Colony search for solving continuous optimization..., J Computer Science & Technology, 2008

  16. SamACO: variable sampling Ant Colony algorithm for continuous optimization..., IEEE Trans Systems, Man, and Cybernetics, 2010

  17. Protein folding in hydrophobic-polar lattice model: flexible Ant Colony optimization..., Protein and Peptide Letters, 2008


  18. PIDeasy: Patents, software and hardware for PID control: the current art, IEEE Control Systems Magazine, 2006

  19. PID control system analysis, design, and technology, the most popular paper in IEEE Trans Control Systems Tech every month since 2005

    YL image

  20. Book 1: Parallel Processing in a Control Systems Environment, E Rogers & Y Li, Prentice Hall Series on Systems and Control Engineering, 1993, 364 pp, ISBN 0-13-651530-4.

  21. Book 2: Real-World Applications of Evolutionary Computing, S Cagnoni, R Poli, & Y Li, et al, Springer-Verlag Lecture Notes in Computer Science, 2000, 396 pp, Volume 1803/2000, Berlin, ISSN 0302-9743, ISBN 978-3-540-67353-8, DOI 10.1007/3-540-45561-2.

Google Scholar


Web of SciencePapers cited on SCI

     Yun Li's citations

More on the CAutoD principles

PhD opportunities and scholarships

"Computer-Automated Design", "Design of Simulations", "A-Posteriori Learning", "Systems Economics", "Systems Finance", "Systems Marketing" and "Model-free Predictive Control" are terminology that I have proposed and used to summarise my past, present and future work. You are welcome to use it freely, and acknowledgement is more than welcome.  - Yun Li (李耘