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Abstract

Soil pollution can be understood as the soil containing more harmful components than

the normal level, thus affecting the normal ecology and natural function of the soil.

This problem is still an urgent challenge to global environmental protection and

sustainable development. In addition to affecting soil ecology, the spread of soil

pollution elements may lead to more serious environmental problems due to the

spread of toxins to the air or nearby waters. In recent years, the potential of

biodegradation has made it new technical support to solve soil pollution. Among the

many soil pollutants, polycyclic aromatic hydrocarbons (PAHs) are one of the

lipophilic organic pollutants commonly in areas affected by modern industrial

activities such as industrial chemical industry, urban traffic and garbage incineration.

Because of the universality and harmfulness of PAHs, it is particularly important to

monitor and study PAHs and other organic pollutants to find ways to solve the

problem of soil pollution. In summary, this experiment chose PAHs as the research

goal of soil pollutants to study the temporal dynamics of PAHs and microbial

communities in the soil environment. By tracking the changes in microbial

communities, we can better understand their interaction in the process of

biodegradation and the mechanism of microbial communities so as to provide key

information for soil pollution response and remediation process and optimize soil

remediation strategies in the future.

In this experiment, we will comprehensively use high-resolution analysis and

molecular tool biology methods to process and analyze the biological information of

soil samples of COV and CH collected from the United Kingdom and Switzerland.

According to the composition information obtained from the two samples, both

samples were detected to have different degrees of polycyclic aromatic hydrocarbons

(PAHs) pollution.
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The RStudio software will analyze the 16SrRNA sequencing data and chemical and

molecular metadata obtained from the sample points in this experiment. Draw lessons

from the research progress of biodegradation methods of Gauchotte-Lindsay 's team

(2019), and on this basis, formulate and discover new research strategies to study the

time dynamics of microbial communities, reveal the interaction between

environmental factors and biological communities, and the symbiotic relationship

between microorganisms. This study will use zeta diversity and network analysis as

the main methods to provide valuable insights into the role and mechanism of

microorganisms in the process of biodegradation. This new study will contribute to a

better understanding of the biodegradation processes involving microorganisms and

provide the basis for developing more effective soil pollution control strategies.

Keywords: Soil pollution, Biodegradation, Polycyclic aromatic hydrocarbons, Zeta

diversity, Network, Microbial community
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1 Introduction

1.1 Research Background

Global environmental issues have become the focus of global public attention, with

soil pollution being particularly prominent, which directly affects human health and

the stability of ecosystems (Mirsal, 2008). There is a wide range of pollution sources,

including but not limited to industrial waste, excessive use of pesticides and fertilizers,

leakage of petrochemical products, untreated urban and rural garbage, and mining

activities (Mishra et al., 2016). These activities accumulate heavy metals, organic

matter, radioactive substances, and other harmful compounds in the soil, which may

lead to a decrease in soil fertility, affect crop growth, and potentially enter the human

body through the food chain, posing a threat to human health (Mirsal&Mirsal, 2008).

Although traditional soil remediation methods (including physical, chemical, and

thermal methods) have some effectiveness, there are many problems (Sun et al., 2018).

For example, physical and chemical methods such as pyrolysis and incineration may

generate secondary pollution and pose environmental risks (Ahmad et al., 2020).

Traditional remediation methods, such as soil cover, are expensive and have limited

effectiveness in the remediation of large-scale contaminated sites (Liu et al., 2018).

Chemical restoration methods such as chemical reduction and oxidation require a

large amount of chemical reagents. They are difficult to avoid the generation of side

reactions and other harmful products during the repair process (Lim et al., 2016).

Therefore, more environmentally friendly and economical remediation methods have

become the focus of research, with bioremediation technology demonstrating

enormous potential and advantages as a sustainable and low-cost soil remediation

method (Ayangbenro&Babalola, 2017). By using biological indicators to evaluate soil

quality, interpret microbial population density, or measure basic biological activities,

reference can be provided for the further development of bioremediation technology

(Margesin&Schinner, 2005).
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Currently, many studies have focused on the transformation of typical persistent

organic pollutants (POPs) in soil, such as polychlorinated biphenyls (PCBs),

polychlorinated dibenzo p-dioxins (PCDDs), and organochlorine pesticides (OCPs)

(Abhilash et al., 2013). However, research on polycyclic aromatic hydrocarbons

(PAHs) is relatively limited. PAHs are highly persistent, toxic, and widely present

environmental pollutants, which are by-products of incomplete combustion of various

organic compounds. They can be used as particulate-related air pollutants or directly

emitted as volatile pollutants from various human and natural sources (Kuppusamy et

al., 2017). Once deposited into the soil from the air, PAHs accumulate for a longer

period of time, with half-lives of 83-193 days for phenanthrene and 282-535 days for

benzopyrene, respectively (Wang et al., 2008).

Although biodegradation shows its potential for soil remediation, the current

biodegradation technology is still not perfect as to how to ensure the stability and

sustainability of the key strains of soil remediation in the real soil environment and

how to avoid the potential risks of key species strains to the local environment and

ecology. Therefore, for persistent organic pollutants such as PAHs, the research

should focus on their migration and transformation mechanism in the environment. At

the same time, the study on the interaction and diversity of microorganisms in the

bioremediation process will also provide a basis for us to formulate more targeted and

safe remediation strategies.
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1.2 Lipophilic organic pollutants polycyclic aromatic hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are a special kind of organic compound. It

is unique in that its structure is composed of two or more aromatic rings closely

connected. Typical polycyclic aromatic hydrocarbons include naphthalene, dibenzo

anthrone and so on. In the natural environment, organic compounds such as PAHs can

be broken down and transformed by many microorganisms, especially if appropriate

environmental conditions are present and sufficient nutrients are available. These

microorganisms can use PAHs as a source of carbon and energy for biodegradation.

However, it should be pointed out that not all PAHs are equally easy to be

decomposed by microorganisms. The aromatic ring is a highly conjugated structure,

and its special electron mobility ensures the stability of its chemical structure. PAHs

with simple structures and low molecular weight (such as naphthalene) are relatively

easy to be decomposed. However, PAHs with high molecular weight and complex

structure (such as benzo [a] pyrene) are more difficult to biodegrade.

Natural sources and anthropogenic sources are the main sources generally recognized

in the current research on PAHs.(Mojiri, Zhou, Ohashi, Ozaki, & Kindaichi, 2019).

Natural sources are mainly due to natural phenomena such as forest fires, volcanic

eruptions and crustal movements (Abdel-Shafy&Mansour,2016). Anthropogenic

sources are mainly from anthropogenic activities such as coal burning, petroleum,

wood burning, and traffic exhaust (Ravindra et al.,2008). At the same time, in modern

industrial production processes caused by waste or metallurgical products, all kinds of

organic matter in the process of incomplete combustion often produce PAHs (Choi et

al., 2010). Human activity is a major driver of increasing PAHs concentrations in the

environment (Patel et al.,2020).

The solubility of PAHs in oily or non-polar environments is much higher than that in

aqueous or polar environments, which depends on their stable aromatic hydrocarbon

composition (Gan et al.,2009). This property makes the distribution and migration
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pattern of PAHs in the environment special. Therefore, aerosol particles in the air are

the main means of atmospheric migration of PAHs, while in soil and water, their

presence changes to adsorption on the surface of organic matter and particles

(Samanta et al.,2002).

In addition, PAHs exist in a variety of forms, including gaseous and granular forms.

Most PAHs exist mainly as particles due to their low volatility. However, some

low-molecular-weight PAHs (such as naphthalene and phenylene) can exist as a gas

because of their small molecular weight. In contrast, high molecular weight PAHs

(such as benzopyrene) exist mainly in granular form due to their large molecular

weight and low volatility.PAHs in granular form can enter soil and water through

atmospheric deposition and persist in them for a long time (Freman &Cattell,1990).

Moreover, in the process of biodegradation of PAHs, some intermediate metabolites

may be generated. These intermediates may, in some cases, be more toxic or more

difficult to break down than the original PAHs.And these toxic intermediate

metabolites, as well as polycyclic aromatic organic compounds that are not

biodegradable, often inhibit microbial development and reduce their ability to break

down pollutants. When microorganisms cannot completely decompose pollutants, the

soil will form permanent pollution, causing great harm to the environment and

organisms.

It should be noted that PAHs have significant biological toxicity and persistence. They

not only have toxicity to aquatic and soil organisms but also undergo bioconcentration

and biomagnification in the food chain. Among them, some PAHs (such as

naphthalene, phenanthrene, or benzene) have been confirmed as human carcinogens

by the International Agency for Research on Cancer (IARC) (Ghost, Ghost,

Dutta,&Ahn, 2016).

However, although the environmental impact and toxicity issues of PAHs have

received widespread attention, there are still many challenges in research on their
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behaviour in the environment, biodegradation mechanisms, and health risk assessment.

Therefore, in-depth research and understanding of PAHs is crucial, which will help us

better understand and manage PAHs pollution issues.
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1.3 Microbial gene sequencing methods

Genome sequencing technology plays a crucial role in environmental and Microbio

-logical research. In the early days, traditional gene sequencing methods mainly relied

on clone library construction and Sanger sequencing technology, which significantly

contributed to studying the genomes of a single species in the environment. However,

their high cost, time consumption, and low coverage of complex microbial

communities limited their application in environmental microbial community analysis

(Fran ç a, Carrilho,&Kist, 2002). However, with the emergence of second-generation

high-throughput sequencing technologies, including Illumina sequencing and Ion

Torrent sequencing, they provide higher sequencing depth and wider coverage,

providing new possibilities for the study of environmental microbial communities

(Park&Kim, 2016).

Among these methods, 16S rRNA gene sequencing is the most commonly used

method for microbial classification and identification. The 16S rRNA gene is a

conserved gene in bacteria and archaea, and the sequence of its mutated region can be

used to distinguish different microbial species (Janda&Abbott, 2007).By conducting

high-throughput sequencing of the 16S rRNA gene, we can obtain detailed

information on the composition of microbial communities in environmental samples.

Specifically, as shown in Figure 1, by designing specific primers for PCR

amplification of the 16S rRNA gene, the obtained amplicons were sequenced, and

then bioinformatics analysis was performed to identify the types and relative

abundance of microorganisms present in the sample (Abellan Schneiyder et al., 2021).

The 16S rRNA sequencing method has extensive applications in environmental and

microbiology. 16S rRNA gene sequencing is commonly used for the identification,

classification, and quantification of microorganisms in complex biological mixtures,

as shown in Figure 2 (Bowman&Kwon, 2016). It can be used to study the

composition and dynamic changes of soil, water, air, and human microbial
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communities, as well as the impact of environmental factors such as pollution,

temperature, humidity, etc., on microbial communities. The advantage of this method

lies in its ability to accurately, quickly, and economically analyze the composition of

microbial communities in complex environmental samples.

We found significant differences in the composition and abundance of microbial

communities among soil samples with different levels of pollution. This difference

may be related to the degradation ability and tolerance of microorganisms to

pollutants. Therefore, 16S rRNA gene sequencing will provide us with the main data

information for understanding the structure and function of microbial communities in

polluted soil, as well as the role of microorganisms in pollutant degradation.
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Figure 1: 16s rRNA gene composition (LC Sciences,2023)

Figure 2: 16S rRNA gene sequencing for human bacterial community
identification (Bowman, B.A., 2016)
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1.4 Data acquisition methods for microbial communities

In order to reveal detailed information on microbial communities in contaminated soil

samples of CH and COV, this study employed the Operational Taxonomy Unit (OTU)

technique. OTU is a population analysis method widely used in the fields of ecology

and microbiology, and its accuracy has significant advantages in showcasing the

composition and diversity of microbial communities (Llad ó Fern á ndez, V ě Trovsk

ý, & Baldrian, 2019).

The working principle of OTU is based on the similarity of 16S rRNA gene sequences.

Usually, if two or more 16S rRNA gene sequences exhibit similarity at a level of 97%

or higher, they are classified as the same OTU (Jackson et al., 2016). This method not

only has the ability to identify species but also has relatively low computational and

storage costs when processing a large number of samples. Therefore, OTU technology

has wide applications in fields such as environmental microbiology, human

microbiome research, and soil microbiology (Nguyen et al., 2016).

In this study, OTU technology was used for high-throughput sequencing of microbial

DNA in CH and COV samples to quickly identify microbial species in soil samples

and obtain their relative abundance. By establishing OTU, the microbial communities

in different soil samples can be compared on the same platform, which is convenient

for diversity analysis and microbial community structure comparison.

Another significant advantage of OTU is that it can quantitatively compare the

differences of microbial communities under different samples or treatment conditions.

This advantage makes it possible to track the temporal dynamics of microbial

communities in contaminated soil samples, and by comparing the differences between

microbial communities in different samples, we can further reveal the interaction of

microbial communities under different soil conditions (Preheim et al.,2013).
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1.5 Purpose and Objectives

This study aimed to investigate the composition of microbial communities in

contaminated soil samples collected from COV in the United Kingdom and CH in

Switzerland by analyzing 16SrRNA sequencing data and its accompanying metadata.

Data analysis reveals the temporal dynamics of microbial communities under

environmental impact and the interaction between contaminated soil and microbial

communities. It provides a new idea for using biological explanation methods to solve

the soil pollution problem.
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2 Methodology

2.1 Sample Description

The project uses soil samples collected by Professor UmerZ.Ijaz's team and their

collaborators from two different original natural gas plants. This study, 26 soil

samples were collected, of which 17 were collected from COV sites in the United

Kingdom, and nine were collected from CH sites in Switzerland (Gauchotte-Lindsay

et al.,2019).

The soil samples are stored in plastic tubes with a temperature of 4 degrees Celsius to

reduce interference from external conditions. In the records of this study, 17 soil

samples collected from COV sites in the UK typically presented dark colours, dense

textures, and were slightly sticky. Unlike the soil samples from COV sites, the soil

samples from CH sites were brown and relatively dry. According to the different

physical states of the two samples, different filtering methods were selected. 17

samples from the COV site were filtered once through a 10mm sieve, while 9 samples

from the CH site were filtered through 1.7, 2.36, and 10mm sieves, respectively.

For each sample collected in this study, the moisture content and loss on ignition (LOI)

of each sample were monitored by storing the sub-samples in incubators at different

temperatures (Gauchotte Lindsay et al., 2019). Based on the data collected from the

above soil samples, genomic DNA was extracted twice from two sites, one for a

specific DNA sequence using qPCR to quickly detect specific microbial communities

such as alkB12 in the soil and evaluate their biodegradation potential for hydrocarbon

compounds. Afterwards, 16S rRNA sequencing was used again to provide more

comprehensive information on microbial communities, including their diversity and

composition. Fully utilize their respective advantages to better evaluate the

biodegradation potential in soil.
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2.2 Biological Gene Data Extraction

After processing multiple soil samples from different regions, we need to extract

biological gene data from the microorganisms in the soil samples. This study chose

16S rRNA gene sequencing to collect gene data from the samples. This technology is

particularly applicable in bacterial gene sequencing, as 16S rRNA is difficult to

change during the long evolutionary process of bacteria, making it a reliable method

for measuring bacterial evolution. Meanwhile, the gene sequence length can be used

for informatics analysis. The characteristic of this technology is that it achieves

differentiation of different microbial species by amplifying and proliferating

fragments of the V3 and V4 regions of the 16S rRNA gene (Janda&Abbott, 2007).

The entire operation process includes steps such as DNA extraction, PCR

amplification, sequencing, and subsequent data analysis.

Firstly, extract microbial DNA from soil samples. Amplify the 16S rRNA gene using

PCR technology to obtain sufficient DNA material for sequencing. During the

amplification process, 16S rRNA universal primers capable of covering most

microorganisms were used (Yoon et al., 2017). After sequencing on the sequencing

platform, a large amount of sequencing data was obtained. These data were originally

formed into countless DNA fragments, each of which originated from the 16S rRNA

gene of a certain microorganism. Afterwards, these fragments were compared with

known 16S rRNA databases using bioinformatics software and classified into

different operational taxonomic units (OTUs) based on similarity. OTU is a

non-human sequence cluster constructed based on sequence similarity using UCLUST

software and Quantitative Insights Into Microbial Ecology (QIIME) software

specifically designed for high-throughput 16S rRNA sequencing research (Statnikov

et al., 2013) before processing raw DNA sequencing data. Each OTU represents a

possible microbial species.

Finally, an OTU table was generated based on the quantity and abundance of different
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OTUs in each sample. OTU table provides a comprehensive and detailed description

of microbial species and relative abundance and an essential basis for subsequent

biodiversity and functional analysis. In this study, Rstudio was used to analyze the

data and parameters of OTU species to determine the dominant members who played

an essential role in the different microbial communities in the soil samples of the two

sites.
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2.3 Statistical Analysis

In this study, statistical data analysis was mainly completed using R Studio. We have

organized and filtered the required tables and data according to the previously set

preparation method. These data include various variables and parameters required for

the study. Using R studio for analysis, we performed key tasks, including descriptive

statistical analysis, inferential statistical analysis, and data visualization.

In addition, we also analyzed the metadata related to the research. The metadata

analysis helps us have a deeper understanding of the background and structure of the

data, thereby ensuring the accuracy and reliability of the analysis.
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2.3.1 zeta diversity

In the study of microbial diversity in ecosystems, zeta diversity method is a new

multi-sample and multi-time dynamic research method, which is used to describe the

shared number of species among multiple communities. This parameter can be used to

study the transition of microorganisms and distinguish diversity patterns in rare

groups, and infer the deterministic and random drivers of the community structure.

This parameter can be used to predict and analyze biodiversity patterns and their

responses to environmental changes. Therefore, zeta diversity can be understood as a

unified concept and measurement method (Hui&McGeoch,2014) based on diversity

measurement, patterns and relationships of species occurrence.

Zeta order, that is, the number of samples compared together in the process of species

diversity research. With the increase of the number of contrasted samples, the average

number of shared groups among samples decreases, while the contribution of more

and more common groups to zeta diversity increases. The rate and trend changes of

zeta diversity provide information on community structure and inference of the

process of promoting community aggregation. Therefore, the analysis of zeta diversity

is often accompanied by mathematical regression methods such as exponential

regression and power law regression. In this study, we used the degree of fitting

between the two regression analysis methods and the dynamic curve of zeta diversity

to infer the time dynamics and community structure of microbial communities in soil

samples.

When the change of zeta diversity is more in line with the exponential form, it shows

that with the increase of zeta order, the probability of common and rare OTU is

similar, and the main reason for species replacement is random or diffusion limitation

of the community itself. When the dynamic curve is more similar to the power law

form, it shows that with the increase of sample points, the probability of detecting

OTU of common species is higher than that of rare species, and the main reason for
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this community change may be the deterministic process caused by soil, climate and

other environment.

Compared with previous diversity analysis methods and zeta diversity methods, in

microbiology, Alpha diversity analyzes species richness (Thukral,2017) by analyzing

individual samples or biological samples in a local homogeneous environment, while

Beta diversity focuses on measuring species composition differences between

different samples or communities (Legendre,2008). Zeta diversity is on this basis to

do in-depth. The main exploration is the co-occurrence model among species

(Hui&McGeoch,2014).

Zeta diversity stems from the need for a finer and deeper understanding of

biodiversity, and its core concept is to consider the co-occurrence model among

species. Therefore, Zeta diversity has a unique sensitivity to the interaction and

organizational structure of biological communities. This more in-depth exploration

provides a new quantifiable method for soil remediation. Through the dynamic curve

changes of diversity, we can capture the microchanges of biological communities,

which can be used for multi-scale and cross-scale ecological research.

Combined with the study of Zeta diversity in practical application, some Simons

studies have indicated that Zeta diversity, a new diversity research strategy, shows

potential in exploring biodiversity, ecological stability and functional research. It can

be used to reveal the interrelationships between species and help understand the

organizational and functional properties of ecosystems (Simons, A.L.,2023).

Mcgeoch's team applied Zeta diversity to areas such as environmental change,

biological invasion and ecological restoration to study the effects of human activities

and ecosystems (Mcgeoch, M.A.,2017).
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2.3.2 Application of exponential regression and power-law regression

Exponential regression and power-law regression are two commonly used nonlinear

regression analysis methods used to describe specific relationships between variables.

Exponential regression is a nonlinear regression analysis method commonly used to

describe the exponential relationship between two variables, and its mathematical

model is represented as:

(1)

Among them, y and x are variables, and a and b are parameters for fitting the model.

When the data we obtain follows an exponential growth or decay pattern, it can help

us better understand the trends in species composition and diversity patterns and

reveal their relationship with environmental factors (Rohim et al., 2020).

(2)

Power law regression is an effective analytical method that helps us better understand

the structure and dynamic characteristics of complex systems and reveal their inherent

laws and mechanisms when the relationship between data conforms to the power law,

that is when the change in one variable is proportional to the change in another

variable to a fixed power. In ecological and biodiversity research, these two regression

analysis methods have been widely applied to analyze data on species diversity,

population distribution, species-area relationships, and other aspects. They are

powerful tools and methods for in-depth exploration of the complexity and diversity

of ecosystems (Packard et al. 2014).

Using exponential regression and power law regression to help analyze Zeta diversity

can reflect much information and influence us. For example, for the attenuation model

of shared species, the results of the regression curve will reveal the change in the
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number of shared species (zeta diversity) with the increase of the number of samples

compared together (zeta order). This change could help researchers understand the

decay patterns of shared species in microbial communities in contaminated soils.

At the same time, it can also be used to analyze the similarity and differences of

microbial communities, and the change of the exponential regression curve can be

used to reveal the ecological differences between different samples or the

heterogeneity of contaminated soil. The change of power law regression curve can be

used to study whether the microbial community maintains some consistency or

common ecological characteristics in contaminated soil (Tettelin et al.,2008).

The comparison results of regression curves can be directly used to reveal the specific

effects of pollution on microbial community diversity, sample connectivity and

ecological stability. For example, suppose the Zeta diversity regression curve of

samples collected from a site decreases faster. In that case, it may indicate that

pollution reduces the similarity between microbial communities and the number of

shared species, leading to lower connectivity and stability.
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2.3.3 Network Analysis

In this study, the IVI influence of microbial communities is used to evaluate the

impact of species on the ecological environment. The main factors affecting the

intensity of IVI influence are microbial competition, symbiosis and other interactions

(Chow, C.E.T.,2014). The interaction and influence between samples will affect the

composition region and connection density of network images. Each microbial

species in the biological metadata table sampled from the sample is transformed into

nodes in the network view, and phi statistics evaluates the intensity of the proportional

relationship between different biological groups.

The images formed by Network visualization can directly show the complex structure

of the microbial ecosystem, which can be used to help understand the organization

and diversity of microbial communities and the influence of different strains in the

ecological environment. DeMenezes's team has used network analysis to impact

human health monitoring and medical applications (DeMenezes, A.B.,2015).

Through this method, the microbial interactions in the samples were visually

presented as a network diagram, showing the patterns of dependence and competition

among related species (Barber á n, A.Gen 2012). At the same time, it is also used to

speculate the complexity and dynamic changes of microbial communities in the two

sample sites. In the same experiment, the biological data collected from two sample

sites were classified and summarized, and the relative abundance of microorganisms

was calculated according to the metadata. Phi statistics were introduced to measure

the relative abundance ratio of two kinds of microorganisms in different samples.

Based on these data, each species' importance value index (IVI) is calculated, which

mainly depends on the central influence and spread influence of microorganisms.

Based on the value of IVI, the microbial network was successfully visualized in the

experiment.
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2.3.4 Relative abundance

Relative abundance is a fundamental and important measurement indicator in

microbial ecology. It describes the proportion of a specific microbial species in the

entire microbial community, reflecting its position in the community structure

(O'Brien et al. (2011).). The relative abundance can usually be calculated using this

formula:

Relative abundance=(number of individuals in a specific substance/total number of

microorganisms in the entire sample) × 100%

This experiment used relative abundance to analyze community structure and

environmental impact assessment (Santoro et al.,2008). The analysis of the relative

abundance of each species in the collected samples can be used to summarize and

reveal the composition structure of the microbial community, that is, to identify the

dominant species and rare species in the ecological environment. The relative

abundance change can reflect the environmental conditions of contaminated soil.

Analyzing the changes in relative abundance data of species in different samples can

help study how microorganisms respond to and adapt to different degrees of soil

pollution.

Meanwhile, the analysis and calculation of relative abundance can reveal the

functional species in the ecosystem, namely the microbial species that can interact

with PAHs, which is the key to the interaction between microbial communities and

the environment and the biodegradation methods in this study. Moreover, the

numerical value of relative abundance is also an important perspective for us to

evaluate the ecological interference of pollutants on samples. In polluted

environments, changes in relative abundance may reveal the impact of interference on

microbial communities.
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2.3.5 Statistics phi

The statistic phi is a statistic proposed by David Lovell et al. in 2014 to describe the

strength of the proportional relationship between two variables (Lovell, D., 2015).

The reason for proposing this new statistic is that traditional correlation analysis

methods have some limitations when analyzing constituent data. Composition data

refers to the overall data composed of several parts, such as relative abundance data in

gene expression data. In the composition data, the relative abundance of each

component is interdependent, so traditional correlation analysis methods cannot

accurately describe the relationship between them.

In contrast, the proportional relationship can provide a more accurate measure of

association, so new statistics need to be proposed to describe the strength of the

proportional relationship. The statistic phi can more accurately describe the

proportional relationship between the constituent data, thereby improving the

accuracy and reliability of data analysis. Compared with the traditional correlation

analysis method, applying the statistic phi includes gene expression data analysis,

microbial composition data analysis, etc. In these applications, the statistic phi can

describe the proportional relationship between different genes or microorganisms to

understand better their interaction (Paliy & Shankar, 2016). In addition, the statistic

phi can also be used to evaluate the fitting degree of different models, thus helping

researchers choose the most suitable model.

In practice, the calculation formula for the statistic phi can be expressed as:

(3)

It can also be expressed as:

(4)
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Where β is an estimate of the slope used to describe the relationship between the

random variables logs and logy, the magnitude of r estimates the strength of the linear

relationship between logx and logy. When the value of Phi is closer to zero, the

proportional relationship between the variables x and y is stronger. In this study, the

variables x and y represent two genes or OTUs in the relative abundance data

(Operational et al.).

In this study, the statistic phi was introduced as a more effective analytical tool in

network analysis to describe the proportional relationship between genes and to help

researchers better understand the interaction between genes. Moreover, others pointed

out that the new statistic phi can be used to calculate the weight of edges to better

describe the proportional relationship between genes and improve the accuracy of

co-expression network analysis (Lovell et al., 2015).
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2.3.6 IVI

Integrated Value of Influence (IVI) is an algorithm Abbas Salavaty et al. proposed in

2020 for identifying the most influential nodes in the network. The reason for

proposing this algorithm is that existing network centrality measurement methods

have some inherent biases and limitations and cannot completely and accurately

identify the most influential nodes in the network. Abbas Salavaty's team statistically

evaluated 200 real-world and simulated networks, considering multiple network

dimensions and integrating the most important and commonly used network centrality

measures unbiasedly. The algorithm is a synergistic product of Hubness and spreading

values, which can capture all topological dimensions of the network and improve the

performance of current tools, so it can deal with the multi-dimensionality and inherent

bias of the network, and accurately calculate the influence of each individual in the

network (Salavaty et al., 2020).

The IVI algorithm can be expressed as the formula:

(5)

Among them, I represents each node in the network, and the Hubness score is the

power index of a node in its surrounding environment, which is calculated by

combining the degree centrality and H index centrality of the nodes. Degree centrality

refers to the degree of a node, which is the number of edges directly connected to that

node. The centrality of the H index considers the degree distribution of neighbouring

nodes of a node, that is, the connectivity of the nodes around the node. The hubness

score can be used to measure the influence and control of a node in surrounding

nodes.

The spreading score is the potential index of a node to spread information in a

network, which is calculated by combining four indicators: neighbour connectivity,
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clustering coefficient, betweenness centrality, and collective influence. Neighbour

connectivity refers to the number of connections between neighbouring nodes of a

node, and clustering coefficient refers to the connection density between neighbouring

nodes of a node, betweenness centrality refers to the degree to which a node serves as

a bridge in the network, and collective influence refers to the overall influence of a

node in the network. Therefore, the value of the Spreading score represents the

potential of a node to propagate information in the network.

The value of IVI is the product of the Spreading score and Hubness score, which

comprehensively considers the propagation potential and power of a node in the

network, and is the influence index of a node in the entire network. The higher the IVI,

the greater the node's influence in the entire network, that is, the key species that

interact with the ecological environment in contaminated soil samples.
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3 Results

3.1 Data statistical analysis

3.1.1 Zeta Diversity

This study conducted Zeta diversity analysis on multiple samples collected from two

sample points, CH and COV. The obtained images are shown in Figures 3a and 3b. In

Figure 3a, the abscissa represents zeta order (number of samples for common

comparison), and the ordinate represents zeta diversity (microbial species diversity).

The zeta diversity curve of CH sample points is always higher than that of COV

sample points. This result indicates that under the same zeta order, there are more

shared species in the microbial community of CH sample points, indicating higher

microbial diversity. This may suggest that the soil environment of the CH sample site

has a more stable microbial community structure.

The curves of both sample points show a clear downward trend. This is because as the

number of zeta orders increases, i.e. the number of samples being compared together,

the likelihood of finding shared species that all samples exist decreases, leading to a

decrease in zeta diversity. This downward trend also reflects the differences and

dynamics in species composition within the microbial community. Although the curve

of COV sample points is always lower than that of CH sample points, there is a

difference in the descent speed between the two. This may indicate a significant

difference in species composition between the microbial communities of the two

sample sites. This may mean that there may be simpler or more susceptible microbial

community composition in the soil of COV sample sites.

It is worth noting that the Zeta diversity values of COV sample points gradually tend

to stabilize after the Zeta order is greater than 10, indicating that the microbial

community at the location has reached a relatively stable state, and comparing more

samples may not significantly increase the number of new species. The PAHs content

in soil samples from COV sites is higher than that from CH sites, indicating a stable



34

trend that may indicate a lower species richness of the microbial community at COV

sites.

In contrast, the curve of the CH site still maintained a downward trend in the

comparison of 9 samples, indicating that there may still be unsampled species; that is,

the species richness of the microbial community at this site may be high. Of course,

the CH site’s number of samples taken is less than that of the COV site, and the

insufficient number of samples taken may also cause this result. At the same time, this

difference may also reflect the difference in the interaction and stability of the

microbial community between the two sites. Microbial communities at COV sites

interact more closely or are more stable, whereas those at CH sites may be more

complex and dynamic.

As shown in Figure 4b, the Zeta Ratio curves of the two sample points both showed

an upward trend, which indicated that as the number of comparison samples increased,

the proportion of shared species to the total number of species also increased. This is

because more samples provide more opportunities to discover new shared species.

However, the curves of COV sites and CH sites gradually levelled off, the slope of

Zeta Ratio gradually decreased, and the diversity of microbial communities became

saturated.

Meanwhile, it can be observed that the growth rate of the Zeta Ratio is gradually

decreasing. This may indicate that as the number of samples increases, the

contribution of new samples to the addition of new shared species gradually decreases.

It is worth noting that the Zeta Ratio curve of the CH site is always above the curve of

the COV site. This may mean that in the same number of samples, the proportion of

shared species in the microbial community of the CH site is higher than that of the

COV site. This means that the microbial community of CH sites with less pollution

may have higher stability or uniformity compared to heavily polluted areas.
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b



36

c

d

Figure 3: a) Zeta Diversity Table

b) Zeta Ratio Table

c) Zeta Diversity comparison image of COV and CH sample points
d) Zeta Ratio comparison image of COV and CH sample points
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3.1.2 Exponential regression and power-law Regression

The biological data collected from soil samples at two sampling points, COV (UK)

and CH (Switzerland), were processed and analyzed. The Zeta diversity method of

microbial communities was used for evaluation through exponential and power-law

regression, and the following results were obtained.

As shown in Figure 4a, in the exponential regression image of the CH sample points,

the regression line has a low degree of agreement with the Zeta diversity Zeta

sequence data points. However, power-law regression showed a more consistent

relationship with Zeta diversity Zeta sequence data, indicating that power-law

relationships may be a more suitable model for describing the temporal dynamics of

microbial communities at CH sites.

As shown in Figure 4b, in the exponential regression image of COV sample points,

the regression line is closely aligned with the Zeta diversity Zeta sequence data points,

showing a consistent relationship between all sample points. The fit between the

regression line and the Zeta diversity Zeta sequence data points is also relatively high

for power-law regression. It can be seen that the microbial community interaction and

diversity of COV sites may be affected by higher concentrations of PAHs pollution,

which is reflected in both regression models.

The degree of agreement with two different regression curves can provide different

information based on their biological functions. A close exponential regression fit may

indicate that the species in the microbial community are relatively stable and less

susceptible to external disturbances. If exponential regression no longer fits the data,

it means there may be ecological interference or other nonlinear processes.

The power law distribution usually reflects a large number of rare species and a small

number of dominant species. This pattern may reveal the structure of microbial
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communities, some of which may dominate the community. When the data points

closely match the power law regression line, it may indicate that the microbial

community has a complex network of interactions.

Based on the analysis of pollutants in the sample, the COV site was significantly

affected by PAH pollution, which may limit the diversity and interaction of microbial

communities, resulting in both exponential regression and power-law regression

closely fitting the data points. The power law regression of the CH site is relatively

consistent, which may mean that the microbial community structure of the site

contains a large number of rare species and a few dominant species, and the

interactions within the community may be more complex.

a
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Figure 4: a)Zeta diversity image, Zeta ratio image, exponential regression image, and

power-law regression image of CH sample points

b) Zeta diversity image, zeta ratio image, exponential regression image, and

power-law regression image of COV sample points
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3.1.3 Network Analysis

After calculating the relative abundance and Phi statistics of microbial data in soil

samples collected from COV sites in the UK and CH sites in Switzerland, this study

used network analysis methods to visualize the microbial network of the two sample

points to help analyze the interaction and diversity between microorganisms. As

shown in Figure 5, the image shows the key species in the network images of COV

and CH sample points. The indicator for evaluating species criticality is based on the

Integrated Value of Influence (IVI), which is an indicator used to comprehensively

evaluate the importance of species in ecosystems. In this study, it was used as a visual

measurement tool. The larger the IVI value of its nodes, the darker the corresponding

node colour, indicating a higher evaluation of the importance of this microorganism in

soil. In a network graph, a node represents a species, and species of the same category

have the same colour. The connections between nodes represent interactions or

associations between microorganisms, and the more connections, the more frequent

interactions between microorganisms.

As shown in Figure 5a, the node network image of CH sample points presents a

well-structured microbial interaction network. In the entire network, the

darkest-colored microbial node group represents two major categories of

microorganisms, Planctomycota and Firmicutes. Impressively, they exhibited the

highest IVI value in this specific soil environment, reaching 100. This not only

signifies their dominant position in the entire microbial community but also implies

their potential key role in maintaining soil ecological stability and function (Salavaty,

A., 2020). At the same time, the three categories of microorganisms, Acidobacterota,

Chloroflexi, and Proteobacteria, also show relatively high importance in the figure.

Although their IVI values have not reached the highest point, their role in the soil

ecosystem cannot be ignored. These microbial categories may be closely related to the

nutrient cycling, material transformation, and soil health maintenance functions of the

soil, and their presence and activity provide vitality and stability for the ecosystem.
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The sample network image of the COV site presents a complex pattern of microbial

interaction. In this network, many microbial communities with an IVI value of 100

gather together, and the number of connections between them is enormous. This not

only demonstrates their close interaction but also may imply the synergistic effect of

these microorganisms in environmental adaptability and resource utilization.

Especially the Proteobacteria class, its dominant position in this environment, is

particularly evident, occupying over half of the key species positions. Proteobacteria

is an extremely diverse phylum of bacteria, particularly important in soil

contaminated with polycyclic aromatic hydrocarbons. Many bacteria belonging to

Proteobacteria are known to have the ability to decompose polycyclic aromatic

hydrocarbons and other complex organic pollutants, such as in Marc Vin In the team

research of As, α- Proteobacterium group (Sphingolipids genus) β- Proteobacteria,

belonging to the Proteobacterium and Chromobacterium genera, are the dominant

species in the degradation of polycyclic aromatic hydrocarbons (Marchand, C., 2017).

They can biotransform or completely mineralize these harmful compounds through

specific enzyme systems and metabolic pathways, thereby reducing the burden of

pollutants in the soil. In addition, some Proteobacteria bacteria form a symbiotic

relationship with plant roots, assisting plants in absorbing and transforming harmful

substances in the soil, further enhancing the soil's self-cleaning ability. These

functions enable Proteobacteria to play a crucial role in contaminated soil, as they not

only participate in direct pollutant degradation but may also participate in soil

remediation processes together with other microorganisms or plants. Therefore, the

dominant position of Proteobacteria in COV site samples may imply the ability of this

type of microorganism to respond to high pollution environmental pressures, as well

as its potentially important role in bioremediation.

Behind these two images lies the profound impact of polycyclic aromatic hydrocarbon

pollution on soil microbial communities. The soil of the COV site selected during the

previous sampling process was severely contaminated with polycyclic aromatic

hydrocarbons, which may have led to the aggregation of a large number of key



42

species. Polycyclic aromatic hydrocarbons, as persistent organic pollutants, may cause

significant changes in microbial community structure in soil. Some microorganisms,

such as Proteobacteria and Acidobacterota, which possess the ability to degrade

polycyclic aromatic hydrocarbons, may dominate this environment. On the contrary,

the pollution of polycyclic aromatic hydrocarbons in the soil of the CH site is

relatively light. However, the significant importance of the Planctomycota and

Firmicutes classes still suggests that they may have some association with polycyclic

aromatic hydrocarbons. These species may have adapted to this polluted environment

and developed mechanisms for interacting with polycyclic aromatic hydrocarbons.

In summary, these two network analysis images not only reveal the soil microbial

community structure of the two locations but also provide us with valuable

information on the impact of polycyclic aromatic hydrocarbon pollution on soil

microorganisms. These findings have important reference value for understanding the

role of soil microorganisms in environmental pollution and providing guidance for

future soil remediation strategies.

a
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c

d

Figure 5: a) Key species in the network image of CH sample points based on IVI

values.

b) CH sample points are based on the IVI value table.
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c) The key species in the network image of Cov sample points based on IVI values.

d) The COV sample points are based on the IVI numerical table. The depth of the

color represents the size of the IVI value, and nodes of the same color represent

species of the same category.

In addition to analyzing the IVI values of each species, the interaction patterns of

microbial communities at these two sites also reveal in-depth information about soil

health and function. As shown in Figures 6, a, and b, the close interactions between a

large number of key species at the COV site may imply a highly collaborative

ecological network. For example, Proteobacteria, Desulfobacterota, and Dependencies

may be involved in the initial decomposition of polycyclic aromatic hydrocarbons,

converting them into simpler organic compounds. Firmicutes and Actinobacteriota

may further transform these organic compounds, ultimately mineralizing them into

harmless substances such as carbon dioxide and water. In addition, Acidobacterota

and Chloroflexi may produce certain bioactive substances, such as enzymes and

biosurfactants, to enhance the degradation ability of other microorganisms, thereby

accelerating the degradation process of pollutants.

Bacteroidota and Myxococota may form a symbiotic relationship with plant roots,

helping plants obtain essential nutrients while also obtaining organic carbon from

plants. This symbiotic relationship can enhance the structural stability of the soil,

promote the retention of water and nutrients, and provide a more stable living

environment for microorganisms. In polluted soil, this interdependence may be more

pronounced because, in such environments, resources may be more limited, and there

may be more ecological pressure.

In contrast, the microbial interaction mode of the CH site is relatively simple. The IVI

values of Planctomycota and Firmicutes in this environment are both 100, indicating

their significant importance in this soil environment. In addition, the Acidobacterota,

Chloroflexi, and Proteobacteria classes also show relatively high importance. Except
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for key species, there are fewer interactions between certain species, possibly because

they have sufficient resources to support their growth in low-polluting soil without

needing to form a close interaction network with other microorganisms. For example,

Actinobacteriota and Thermoplasmatota may have independent functions in

decomposing organic matter without relying on the help of other microorganisms.

However, this simplified network may also mean that the functionality and stability of

the soil are limited, as the lack of diversity and interaction may lead to a decrease in

the soil's resistance to external pressure.

a
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Figure 6: a) Overall network image of CH sample points based on IVI values

b) Overall network image of COV sample points based on IVI values
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b

Figure 7: a) Composition of bacterial phylum at CH sampling point

b) Composition of bacterial phylum at COV sampling point

As shown in Figure 7a, the proportion of Proteobacteria bacteria is 48%, which is the

highest proportion of bacteria in the CH sample point. Actinobacteriota and
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Firmicutes bacteria are second, accounting for 10% and 9%, respectively. However,

according to the IVI values of this sample point in Figure 6b, the species that play a

crucial role in this soil sample are not Proteobacteria, but Planctomycota,

Actinobacteriota, and Chloroflexi. This indicates that relying solely on species

richness or proportion may mislead our judgment of the importance of a particular

species in the ecosystem.

As shown in Figure 7b, in the COV (heavily polluted) sample points, the proportion

of Proteobacteria bacteria is 46%, which is the highest proportion of bacteria in the

COV sample points. Actinobacteriota and Bacteroidota bacteria are second,

accounting for 14% and 8%, respectively. Meanwhile, according to the IVI values of

the sample point in Figure 6d, the species that play a key role in the soil sample are

still Proteobacteria, Actinobacteriota, and Bacteroidota categories of bacteria. This

may mean that certain bacterial species can better adapt and survive under heavier

pollution conditions and may play a more critical role in ecological processes.
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4 Discussion

4.1 Temporal dynamics of microbial communities in soil samples

from COV and CH sample points

The image results of zeta diversity obtained from experiments can be used to analyze

and study the temporal dynamics of microbial communities. The results showed that

with the increase of the number of samples for common comparison, i.e. the increase

of zeta order, the zeta diversity of both sample points showed a significant downward

trend. This is because as the number of samples increases, the likelihood of finding

shared species that all samples exist decreases, leading to a decrease in zeta diversity.

The different downward trends of the two curves also reflect the differences and

dynamics in the species composition within the microbial communities in the two soil

samples. Even though the zeta diversity of COV sample points is always lower than

that of CH sample points, there is a difference in the rate of decline between the two.

This means that the microbial communities of the two sample points may have

significant differences in species composition due to the influence of pollutants such

as polycyclic aromatic hydrocarbons. This means that in areas with severe polycyclic

aromatic hydrocarbon pollution, the number of species is relatively small, and most

species are rare. The diversity curve of COV sample points gradually shows a stable

trend, indicating that in this sample, most species are rare, with only a few species

widely distributed. This minority species may play important ecological functions

under polluted environmental conditions, and the species composition of the

community tends to be stable.

Secondly, based on the comparison of zeta ratios between the two sample points, it

can be seen that the proportion of shared species in the microbial community of the

CH site is higher than that of the COV site within a limited zeta order. However, when

the zeta order is greater than 8, the proportion of shared species in the two sample

points is close, and the zeta ratio curve of the CH site tends to stabilize from an
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upward trend. This means that when continuing to increase the comparison of sample

numbers, The proportion of shared species in the microbial community of the CH site

may be surpassed by the COV site, which suggests that this COV site may already

have higher stability and uniformity while the composition and interaction

relationship of CH site's biological community is relatively dynamic. At the same time,

both power law regression curves are in a declining state, which means that both

samples are under environmental pressure from pollutants.
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4.2 Changes in driving factors and interactions within communities

Based on the analysis of Zeta diversity, it is possible to explore the changes in driving

factors and interactions within microbial communities as soil pollution increases the

pressure on microbial communities.

At the time of sample collection, it was detected that the soil of the COV site had a

high content of polycyclic aromatic hydrocarbons and other pollutants, while the soil

pollution of the CH site was relatively light. Therefore, we can believe that the data

from the CH site can represent the ecological environment when soil pollution has a

weak impact on microbial communities, while the data from the COV site can

represent the ecological environment when soil pollution has a strong impact on

microbial communities. As soil pollution intensifies, the driving factors of microbial

communities have shifted. At the CH site, the driving factors of microbial

communities are mainly environmental factors such as soil pH and organic matter

content, while at the COV site, the driving factors of microbial communities are

mainly the presence of pollutants such as polycyclic aromatic hydrocarbons. This

indicates that the driving factor of microbial communities has shifted from

environmental resource factors to pollutant factors (Alexander et al., 1999).

Secondly, the interactions within the microbial community have also changed with the

aggravation of soil pollution. In the environment of CH sites, there is relatively less

competition for resources among microorganisms, and the symbiotic relationship and

mutual promotion between species are more significant. Therefore, the interactions

within the microbial community are mainly positive; that is, the symbiotic

relationship and mutual promotion are more significant. At COV sites, the interactions

within the microbial community are more complex, with both positive and negative

interactions. For example, Proteobacterium is an important degrading bacterium for

polycyclic aromatic hydrocarbons, and they are numerous in COV samples, most of

which are key functional species. However, there are also some competitive and
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antagonistic relationships between degrading bacteria. In addition, multiple pollutants

are present in the soil of COV sites, and different microorganisms may have different

degradation capabilities and adaptability to different pollutants. This indicates that as

soil pollution intensifies, the interactions within microbial communities become more

complex and diverse, and there may be some competitive and antagonistic

relationships, leading to more complex and diverse interactions within microbial

communities.
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4.3 Key species involved in the biodegradation process of soil

pollution

This project is focused on an examination of natural ecosystems and core microbiota

under various levels of pollution. The results of zeta diversity and network analysis

can be used to investigate the composition and interaction relationships of microbial

communities, showing the role and mechanism of microorganisms in the

biodegradation process.

The Zeta diversity of bacterial taxa such as Plantomycetota, Firmicutes, and

Actinobacteriota in the microbial community at the CH site is relatively high,

according to the chart results based on IVI values. The Plantomycetota genus, on the

other hand, is a crucial participant in the nitrification and denitrification processes and

plays an important role in the CH sample points. However, proof for its specific role

in PAH breakdown is currently lacking.

Firmicutes and Actinobacteria, among other bacterial genera, have multiple members

capable of producing a series of enzymes to catalyze the oxidation of polycyclic

aromatic hydrocarbons. These bacterial genera may play an important role in the

degradation process of polycyclic aromatic hydrocarbon (Huesemann et al., 1995). At

the COV site, the Zeta diversity of Proteobacteria and Acidobacteriota genera in the

microbial community is relatively high. Proteobacteria genera have multiple species

of bacteria, such as Pseudobacteria, Alcaliginaceae, and Desulfatiguans, which have

been proven to be able to utilize PAHs as carbon and energy sources. These bacterial

genera play an important role in the degradation process of polycyclic aromatic

hydrocarbons.

Through the network analysis of the image, it can be concluded that the interaction

between Proteus, Bacillus and other genera in the microbial community at CH site is

relatively loose, and these genera may play a relatively independent role in the
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degradation of PAHs. There is a close interaction among other genera of bacteria,

which may play a synergistic role in the degradation of PAHs. In the COV site, there

is a close interaction between Proteus and actinomycetes in the microbial community,

which may play a synergistic effect on the degradation of PAHs.

Based on the above analysis results, it can be preliminarily speculated that

Proteobacteria and Acidobacteriota may be one of the key degrading bacterial

communities in the biodegradation process of soil pollution caused by polycyclic

aromatic hydrocarbon lipophilic organic pollutants. At the same time, Firmicutes and

Actinobacteriota may also play an important role in the degradation process. These

bacterial genera may participate in the degradation process of polycyclic aromatic

hydrocarbons through synergistic or relatively independent effects, playing a key role.
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4.4 The richness of species and their crucial role in ecosystems

After studying soil samples with different levels of CH and COV pollution, we

conducted a statistical comparison of the structure and richness of microbial

communities in the soil. Firstly, we found that the richness of species is not always

consistent with their critical role in the ecosystem. For example, although the

proportion of Proteobacteria bacteria in the CH sample point is 48%, which is the

highest proportion of bacteria in the CH sample point, according to the IVI values in

Figure 6b, they are not the dominant species in the soil sample. Therefore, speculating

solely on the richness or proportion of species may mislead our judgment of the

importance of a particular species in the ecosystem.

In addition, in COV sample points (heavily contaminated with PAHs), bacterial

categories such as Proteobacteria, Actinobacteriota, and Bacteroidota have not only

abundant numbers but also play key core roles in the ecosystem. This means that

under heavier pollution conditions, certain bacterial species can better adapt and

survive, which may depend on the interactions in the ecological network. Some

bacterial categories that dominate in quantity may interact less with other organisms,

so their influence in ecological networks is relatively small. Other bacterial categories

with smaller numbers may have a more central position in the ecological network due

to their interactions with more organisms.
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5 Conclusions and Future work

This study utilizes zeta diversity and network analysis methods to explore the

composition, interaction relationships, and temporal dynamics of microbial

communities, revealing the interactions and mechanisms of microorganisms in the

biodegradation process of organic pollutants such as polycyclic aromatic

hydrocarbons.

Through zeta diversity analysis, we found differences in the composition of microbial

communities in different sites, in which bacteria such as Planctomycetota, Firmicutes

and Actinobacteria played an essential role in the microbial community in CH sites. In

contrast, bacteria such as Proteobacteria and Acidobacteriota played an essential role

in the microbial community in COV sites. Most of these bacteria have metabolic

mechanisms for dealing with PAHs and other pollutants. Therefore, Proteobacteria

and Acidobacteriota are potential species to study the future biodegradation methods

of contaminated soils.

Through network analysis, we found that there was a loose interaction between

bacteria and other genera in the CH site, Planctomycetota, Firmicutes and

Actinobacteria, while in the COV site, the interaction between Proteobacteria and

other genera was closer, and there was a more complex interaction.

In addition, we also found that microbial communities diversity and temporal

dynamics were related to the concentration and distribution of organic pollutants such

as polycyclic aromatic hydrocarbons. In the COV site, the diversity of the microbial

community is low. However, the composition and interaction of microbial

communities tend to be stable gradually, which may be related to the adaptability of

microbial species caused by the concentration of PAHs in the site. In the CH site, the

diversity of the microbial community is higher. However, the composition and

interaction of the microbial community are more dynamic, and the composition of the
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microbial community could be more stable in the limited samples, which may be

related to the uneven concentration and distribution of PAHs in the site.

Based on the above analysis results, microbial communities' composition, interaction

and diversity are closely related to the existence and distribution of PAHs and other

organic pollutants. Future research can further explore the time-dynamic changes of

microbial communities and the relationship between microbial communities and

environmental factors to understand better the role and mechanism of microorganisms

in the biodegradation of organic pollutants. In-depth study of the function and

metabolic pathway of the microbial community in order to improve the

biodegradation efficiency of organic pollutants. The research focus can also be

extended to the biodegradation process of other organic pollutants, such as pesticides,

petroleum hydrocarbons, etc., to expand the research field and provide more

comprehensive and effective solutions for environmental pollution control.
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Appendix

Appendix I

Network images of CH sample points based on hubness and spreading values
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Appendix II

Network images of COV sample points based on hubness and spreading values
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