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Abstract

The soil pollution has always been a threat to human health. Improper disposal of 
pollutants will only increase the degree of soil pollution and cause harm to the entire 
ecological environment. In order to solve the soil contamination problem using 
microorganisms for the biodegradation of contaminated soils, it is extremely 
important to understand microbiological community interactions and relationships 
involved in the bacterial degradation within contaminated soils, especially considering 
the organic compounds of polycyclic aromatic hydrocarbons (PAHs). Polycyclic 
aromatic hydrocarbons (PAHs) which can be generated as organic pollutants from 
combustion processes of coal and biomass. It contains carcinogenic or mutagenic 
substances, which endanger the ecological environment and pose a great threat to 
animals and plants. The study of the biodegradation of PAHs that occurs by 
microorganisms is therefore critically influential. 
 
The aim of this project was to perform a cross-sectional comparison of soil microbial 
communities in two contaminated sites, which are COV (United Kingdom) and CH 
(Switzerland). Both sites had 16S rRNA samples and were contaminated with PAHs. 
Genomic DNA sequencing of COV soil samples and CH soil samples by nucleic acid 
sequencing. The sequenced sample data were converted into OTU tables to analyze 
the variances in COV and CH soil samples using R Studio software in the OTU tables. 
The results showed that the COV samples seemed to be significantly contaminated 
with more PAHs than the CH samples. 
 
This research involves the development of an analytical strategy guided by recent 
advances in the microbiological community assemblage mechanisms to elucidate the 
role of the environment and reveal that Pseudomonas is a core member of the 
predominant microbial communities of COV and CH soil samples. 
 
Keywords: 16S rRNA, Biodegrade, Contamination, Diversity, Microbial Community, 
OTU, PAHs, Pseudomonas 
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CHAPTER 1 

1 Introduction 

 
1.1 Environmental Background 

 
Environmental pollution is a remnant of industrialization which has posed a 
significant threat to individuals health and the ecological environment. Governments 
and citizens have long been aware of the problems of water and marine pollution. 
Most developed countries have regulations in place to govern the health and safety of 
human water, so that environmental chemicals in drinking water have never been 
harmful to health (Schlatter, 1994) [1]. Soil and water are inextricably linked in a 
chain, where soil provides the environment for various species of plants to grow and 
where rainfall enables plants to flourish. The plants supply the nutrients that animals 
need, and human beings consume vegetables, fruits, and meat to maintain a balanced 
diet. A lack of attention to the soil environment over the years has resulted in the 
accumulation of toxic substances such as PCBs, inorganic anhydrides and 
polyaromatic hydrocarbons (PAHs) in the soil. As Schlatter (1994) [1] shows that, 
industrial areas have inorganic anhydride substances (𝑆𝑂!, 𝑆𝑂" or 𝑁𝑂#) which affect 
the lung function of susceptible populations. Stading et al. (2021) [2] indicated that 
polyaromatic hydrocarbons (PAHs) increase the incidence of lung cancer and 
mortality in humans. These results demonstrate that soil pollution is posing a major 
threat to human health. The government will need to take this issue seriously, so that 
it may tackle the contamination of the soil. 
 
Landfill disposal is the preferred method of treating contaminated soil, but it does not 
address the root cause of soil contamination. From an environmental sustainability 
point of view, landfills increase soil contamination. For instance, the toxicity of 
leachate from plastic waste deposited in landfills may adversely affect the soil 
microflora and contribute to soil infertility or pollution of groundwater and water 
supplies in figure 1 (Teuten et al., 2007; Chidambarampadmavathy et al., 2017) [3] 
[4]. Contaminated soils are toxic and biologically inert, which results in susceptibility 
to biodegradation and waste persistence (Chidambarampadmavathy et al., 2017) [4]. 
Landfill disposal does not solve the underlying problem of soil contamination, rather 
it can only increase the level of contamination. 
 
The use of microorganisms to biodegrade contaminated soil in order to solve the soil 
contamination problem. The interactions between microbial communities and the 
mechanisms that participate in the biodegradation of contaminated soils have become 
very important to understand, especially considering polyaromatic hydrocarbons 
(PAHs). As Gauchotte-Lindsay et al. (2019) [5] show, Polycyclic aromatic 
hydrocarbons (PAHs), are regarded as remaining organic contaminants of a lipophilic 
nature which are discovered within crude oil. It is generated in the combustion 
process between coal and organic substances. PAHs have been detected as 
carcinogenic or mutagenic substances, for example, naphthalene, phenanthrene or 
benzene (Gauchotte-Lindsay et al., 2019) [5]. As they are currently on the priority list, 
the study of the biodegradation is particularly critical in the case of PAHs by 
microorganisms. 
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Figure 1: The lifetime landfill degradation of plastics and bioplastics 
(Chidambarampadmavathy et al., 2017) [4]. 
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1.2 The environmentally detrimental polycyclic aromatic 
hydrocarbons (PAHs) 

 
Polycyclic aromatic hydrocarbons (PAHs) represent a cluster of biological substances 
consisting of two or more dense aromatic rings (benzene) that are produced via the 
improper combustion of organic substances. It is inherently a chemically inert and 
hydrophobic polymer (Phillips, 1999) [6]. They are often associated with particulate 
matter that is very detrimental to human health, such as benzo(a)pyrene and pyrene, and 
are typically used as indicators of carcinogenic and mutagenic PAHs in total exposure 
(Ohura et al., 2004) [7]. Phillips (1999) [6] indicated that PAHs are metabolically 
activated by cells in mammals after ingestion of food with PAHs. The activated PAHs 
generate epoxides, which combine with intracellular macromolecules such as DNA to 
produce covalent bonds. This chemical transformation can cause errors in DNA 
replication, resulting in carcinogenic mutations. This phenomenon is not only a threat to 
mammals but can lead to the absorption and bioaccumulation of toxicity chemicals 
within the food chain. Under certain circumstances, it can be a significant health 
problem and or genetic deficiency in animals (Samanta et al., 2002) [8]. 
 
The PAHs are a typical environmental pollutant. Many PAHs have penetrated into the 
soil as a result of years of improper handling by humans. These toxic substances block 
the pores of the soil and cause a reduction in soil water infiltration (Singh and 
Haritash, 2019) [9]. Magi et al (2002) [10] reported that PAHs preferentially attach to 
smaller silt and clay soils than to soils with larger particle sizes. Silts and clays have a 
greater surface area due to their smaller pores, which allows PAHs to attach more 
readily to them. Due to the better adhesion, the PAHs content of the soil will be 
higher and the toxicity will be increased. Most of these contaminated soils require 
biodegradation via microorganisms to repair and decontaminate the soil. However, 
PAHs are also harmful to microorganisms. It decreases the activity of microorganisms 
which leads to a reduction in the effectiveness of soil decontamination (Hreniuc et al., 
2015) [11]. The cultivation of crops on these contaminated soils will enhance the crop 
with PAHs. Ingestion of these toxic crops by humans or animals may cause an 
increase in the accumulation of carcinogenic substances in the body, which could lead 
to a higher incidence of cancer. The PAHs have a significant negative impact on 
microbial diversity and populations. 
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1.3 The next generation of sequencing methodology for soil 
degradation analysis 

 
In past studies, microbial community studies have mostly used more traditional 
artificial culture methods to extract samples from microbial communities (Torsvik et 
al., 1998) [12]. These samples from microorganisms are well below 1% of the entire 
microbial community, so that their genes need to be extracted from a large number of 
microorganisms (Samarajeewa et al., 2015) [13]. New sequencing methods, such as 
16S rRNA amplification, Sanger sequencing and DNA microarray, enable high-
resolution characterization of microbial communities and provide greater transparency 
into the relationship between complex microbial communities and ecological 
environments.  
 
Microorganisms are microscopic organisms, mainly including eukaryotes and 
prokaryotes. Prokaryotes have the same gene, but different gene sequences within the 
gene. Its 16S rRNA gene similarity is as high as 97-99% and the 16S rRNA gene is 
replicable (Liang et al., 2021) [14]. As Simon and Daniel (2011) [15] show, 16S 
rRNA is being used extensively to research the diversity in microbial communities of 
complex environments. Yarza et al. (2014) [16] demonstrated that 16S rRNA is 
located on the ribosomal Small Subunit (SSU) of prokaryotic cells. In the Figure 2, its 
sequence contains 9 hypervariable regions (V1~V9) and 10 conserved regions. 
Variable regions can be used for the phylogenetic classification of genera or species 
of different microbial communities. The microbial communities in the soil were 
mainly located in the V3 and V4 regions. The Miseq machine was used to sequence 
these gene fragments from forward and reverse, and the read length just spanned the 
V3 and V4 region (Castelino et al., 2017) [17]. This project uses nucleic acid 
sequencing to characterise microbial communities in contaminated soils at high 
resolution to understand the biodegradation of microbial communities in PAH 
contaminated soils. 
 
 

 
 
Figure 2: The 16S rRNA and 16S rRNA Gene (Source: EZBioCloud Help center,2019) [18]. 
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1.4 The new methodology for data analysis 

 
The data from amplicon sequences that are multi-dimensional with high resolution, so 
there are many OTU analysis methods for microbiome studies. These novel OTU 
analysis techniques can be used to infer key members of COV and CH soil microbial 
communities in OTU tables. As Gauchotte-Lindsay et al. (2019) [5] indicated that 
Alpha diversity that is used to give a summary of the community diversity for each 
sample. For example, sparse richness would be applied to estimate population size of 
OTU species; Shannon entropy measures the balance of the communities in each 
OTU. Microbial analyses also compare similarities between two samples via Beta 
diversity (Gauchotte-Lindsay et al., 2019) [5]. According to Vass et al. (2020) [19], a 
null model approach to OTU analysis can help to observe what factors in the 
environment affect community development, such as quantitative process estimate 
(QPE) and normalized stochasticity ratio (NST). In addition, correlations between 
microorganisms and COV and CH soil samples were observed through regression 
models in order to identify key members of COV and CH soil biodegradation 
processes. These new data analysis methods help to improve the efficiency of 
microbial community analysis. 
 
 
1.5 The project objectives and goals 
 
This research has the overall objective which is to solve the soil contamination 
problem by using microorganisms to biodegrade contaminated soils. The project will 
provide a cross-sectional comparison of microbial communities from soils at two 
contaminated sites, COV (UK) and CH (Switzerland). Both sites have 16S rRNA 
samples and are contaminated with PAHs. The datasets with 16S rRNA samples were 
analyzed by R Studio software. It was guided by recent advances in microbial 
community assembly mechanisms to develop an analytical strategy that elucidates the 
role of the environment and reveals key members of the microbial communities 
representative of these sites. 
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CHAPTER 2 

2 Methodology 
 
2.1 Analytical method 

 
A microorganism is a microscopic organism. It requires data collection via DNA 
extraction which is then analyzed to visualize the relationships between microbial 
communities. In this project, a method based on the microbial data flow in Figure 3 is 
used for the analysis of contaminated COV and CH soils. Firstly, contaminated COV 
and CH soil samples were collected from the United Kingdom and Switzerland, 
respectively. These collected samples were analyzed by genomic DNA to capture 
short DNA fragments which only use primers to multiply or to amplify the 16S V3 
and V4 region does not amplify the whole regions. Once the DNA has been amplified, 
it will be sent to the Miseq machine to sequence the DNA. The available sequences 
classified from the Miseq machine are obtained as text files of DNA sequences or 
sample. These text files are run through different bioinformatics software to generate 
OTU tables from them. The OTU table contains additional data, demographics, any 
other parameters that be recorded. The data from the OTU tables were analyzed by R 
studio to identify key members of the COV and CH soil microbial communities. 
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Figure 3: The data flow in microbial data analysis from Dr. ljaz  
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2.2 Data description 
 
This project uses data collected from two different pre-production gas plants provided 
by Caroline Gauchotte-Lindsay and her collaborators. The samples had to be 
preserved in plastic tubes at temperatures 4 °C to prevent them from being disturbed 
by other substances. There were 27 soil samples contaminated with PAHs that were 
collected, 2/3 from the Coventry area (COV) in the UK and 1/3 from a town in 
Switzerland (CH). As Gauchotte-Lindsay et al. (2019) [5] show, COV soil samples 
are typically dark in colour, dense and cohesive in substance. Each sample was 
filtered once via the 10 mm sieve. The CH samples were coloured brown in 
comparison to the COV soil and were relatively dry separated by 1.7, 2.36 and 10 mm 
sieves respectively. The percentage moisture content was monitored for each separate 
sample by keeping the subsamples in an incubator situated at 105 °C during 24 hours 
and the loss on ignition (LOI) by maintaining the subsamples at 550 °C for two hours. 
(Gauchotte-Lindsay et al., 2019) [5]. 
 
From the soil samples collected above, two extractions of genomic DNA were 
performed for COV (UK) and CH (Switzerland) soils. One was used for quantitative 
PCR (qPCR) while the other to sequence 16S rRNA (V3 and V4 regions) to obtain 
analyzable data files. 
 
 
2.3 Taxonomic profiling and OTU construction from 16S rRNA 

sequence 
 
This project used VSEARCH v2.3.4 to process the 16S rRNA (V3 and V4 regions) 
dataset and generate abundance tables via the construction of operational taxonomic 
units (OTUs). Each OTU was considered to be an OTU species, i.e., if 10 OTUs were 
detected in the 16S rRNA dataset, then there were 10 microorganisms there. Barcodes 
are added to each sample to enable real-time tracking of which sample the reads came 
from during processing. In order to classify the samples efficiently, the reads were 
deduplicated which means making everything unique, and also counting how many 
unique terms are there. The reads were sorted in decreasing order of richness and the 
monoclinic state was discarded. Based on the theory that two sequences (16S rRNA 
regions) are >97% similar, they belong to the same species. Matching the original 
barcode reads with OTUs (n=26 samples of a total of 2,234 OTUs) that were 97% 
similar to the summary read statistics of the samples to produce the OTU tables. 
 
For the taxonomy of representative OTUs, QIime workflows were performed in the 
assign_taxonomy.py script16. The classified OTUs were compared to multiple 
sequences using MAFFT v 7.317 and a phylogenetic tree in NEWICK format was 
generated in FastTree v2.1.718. Using the make_otu_table.py script, abundance tables 
were combined with classification information to generate the OTU biom files which 
include classification of each OTU and abundance tables. 
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2.4 The analysis of statistics 
 
This study utilized NEWICK documents and BIOM that contain the taxonomy of 
each OTU. They were calculated as described in method 2.3 and referenced relevant 
metadata, including GCxGC.csv and meta-tables, for the statistical analysis of 16S 
rRNA in RStudio software. The code for all the diversity analysis figures which 
follow is available in the Appendix. 
 
2.4.1 Alpha Diversity 

 
Alpha diversity analysis is an important component of biodiversity in ecology and is 
often used to summaries a single sample. Willis (2019) [20] reports that alpha 
diversity metrics are primarily correlated with abundance and evenness, the latter 
implying richness distribution in the species community. It is a set of functional 
equations that calculate a value to determine whether a sample is more or less diverse. 
The single nature of the equation makes it impossible to fully characterize the 
diversity of a community, so that five indicators have been developed to increase its 
accuracy: Species richness index, Shannon entropy, Pielou's evenness index, fisher 
alpha and Simpson diversity. The species richness index has been developed to 
approximate the population of a taxa. The researcher is usually unable to collect all 
the individuals in a community, so the number of species in the parent can only be 
estimated from the sample and is the most simple measure of diversity (Whittaker, 
1972) [21]. The Pielou evenness index is an indicator used to reflect the evenness of 
distribution of individual species in a community (Pielous,1966) [22]. 
 
The diversity index consists of abundance and evenness. For example, Fisher alpha 
was the one used to contrast the diversity index of the community with the different 
number of individuals. According to Shannon (1948) [23], Shannon entropy diversity 
based on the concept of information entropy, biodiversity is represented by the 
uncertainty in the sampling process regarding the species to which the sampled 
individuals belong. In considering the richness and evenness of a community 
combined, an indicator with a higher value is more diverse (Shannon, 1948) [23]. 
Simpson (1949) [24] proposed that Simpson diversity is a method used in ecology to 
quantify the diversity of biological communities in a region. As the Simpson Index 
value increases, the more diverse the community is. The Simpson's Diversity Indicator 
is equal to 1 minus the proportion of a random sample of two individuals belonging to 
different species (Simpson, 1949) [24]. The value is between zero and one and is a 
valid approach to assessment the diversity index of the microbial community for a 
sample. 
 
In this research, using the R package Vegan to analyze data from COV and CH soils, 
and to generate an analytical figure of alpha diversity to compare the differences 
between COV and CH soils. 
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2.4.2 NRI and NTI 
 
Environmental factors have been an influential issue in understanding the processes 
that control the composition of ecological communities. Many scientists have argued 
that community assemblages have been impacted through both comparatively 
deterministic factors as well as more stochastic ones. (Dumbrell et al., 2010; Stegen et 
al., 2012) [25] [26]. Chase and Myers (2011) [27] demonstrated that deterministic 
factors consist of abiotic environmentally imposed selection, which is called 
environmental filtering, as well as the interaction of antagonistic and synergistic 
species. Stochastic factors, by contrast, are more likely to be unpredictable and to be 
dispersed by probability. 
 
The COV and CH soil samples were environmentally filtered by the nearest taxon 
index (NTI) and net relatedness index (NRI) methods to observe variation in 
phylogeny for each sample group. Cooper et al. (2008) [28] demonstrated that the NRI 
is derived from the mean phylogenetic diversity (MDP), which is measured as the 
total of phylogenetic distances in pairs among all the taxonomic pairs in the 
communities. If the MDP value is low, then all OTUs are very close to each other. 
Whereas when the value becomes lower, it will be more clustered. The obtained MDP 
value was calculated by bringing it into the NRI formula, where a positive NRI 
represents the clustering community, which means the chances are more nearly 
correlated than expected, with a negative NRI represents the evenly distribution of the 
community; NTI is an analysis of the tendency of the closest associated species in a 
community to co-occur based on the mean nearest taxon distance (MNTD). (Cooper 
et al., 2008) [28]. In contrast, NTI is more focus on over dispersion or over clustering 
at the apex of the phylogeny than NRI. The positive relationship for NTI indicates that 
the species co-occurred with a larger number of strongly related ones than predicted; 
the negative value shows that highly interrelated species do not co-occur. 
 
For data analysis, mntd() and mpd() Instructions from the picante package were 
applied to the NTI and NRI respectively. The quantification is accomplished at 
ses.mntd() and ses.mpd() instructions using null.model, which is a quantity of normal 
variance that separates the observations in relation to the average value in the null 
distribution. Output the last calculation of the ses.mntd() and ses.mpd() functions at 
the end. It is deterministic when the NRI is greater than zero or the NTI is greater than 
two. On the contrary, when NRI is less than zero or NTI is less than two, it is 
classified as random or competitively excluded. 
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2.4.3 Beta Diversity 
 
Beta diversity analysis was used to compare two samples to see if they are similar in 
composition. In order to precisely identify the material differences between COV soils 
and CH soils, the Beta diversity between the two samples is calculated by the distance 
metric function. It usually returns a value between 0 (absolutely similar) and 1 
(absolutely dissimilar). It is mainly divided into several measurement methods. Bray 
& Curtis (1957) [29] showed a method where the Bray-Curtis distance uses OTU table 
data to calculate whether OTU abundances are different or similar. The value is 
somewhere from 0 to 1, in which 0 means exactly similar and 1 is totally different. 
Bray-Curtis Contribution provides a % contribution based on a subset of 
OTUs/features, making the data more accurate. The second method is the UniFrac 
distance, which involves comparing a sample of environments with a phylogenetic 
tree rather than an OTU table (Lozupone et al., 2011) [30]. As Lozupone et al. (2011) 
[30] show, UniFrac is combined with basic multi-variate statistical skills, which 
include Principal Coordinate Analysis (PCoA), that are standard to determine the 
factors that explain microbial community variability. The UniFrac distance was 
calculated to be the proportion of the length in branches shared phylogenetically 
between the two samples, which should again give a value in the range of 0 and 1, 
with 0 meaning similarity and 1 being dissimilarity. Lozupone and Knight (2015) [31] 
reported that shared branches are OTU branches that are generated jointly in CH soil 
and COV soil samples, or non-shared branches if one of the samples is missing. 
UniFrac distances are divided into weighted and unweighted. Unweighted UniFrac 
(whether OTUs are present or not) is a measure of the developmental relevance of a 
system and is computed as the ratio of branch lengths shared by two samples which is 
the sum of all unshared root sizes divided by the sum total for the lengths of all shared 
roots. (Lozupone and Knight, 2015) [31]. If the abundance of OTUs is added, it is a 
weighted UniFrac. In the R software analysis, the Phyloseq package has a function to 
calculate unweighted and weighted Unifrac distance measures.  
 
The Vegan package has a function called vegdist() that calculates the Bray-Curtis 
distance. Pairs of β-diversity values (N*N-1/2) are taken from and these are assigned 
to ORDINATION plots (NMDS non-metric distance scaling, PCoA principle 
coordinate analysis), so that obtain visualization of the beta diversity values. 
 
 
2.4.4 The top 25 most abundant taxa 

 
Taxonomic Analysis was used to classify species and to analyze which species are 
present in each community. The top 25 most abundant groups were selected to 
compare the richness of the taxa in COV and CH soils. 
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2.4.5 Identifying deterministic and stochastic in COV and CH soil 
community environments: The calculation of Quantitative 
Process Estimate (QPE) and incidence-based (Raup-Crick) beta 
diversity via null modelling 

 
As Vass et al. (2020) [19] proposed, the community assembly processes is non-static 
that may vary in relative significance from one assembly process to another under 
different circumstances and between distinct microbial populations. The community 
assembly process gives rise to minor and substantial temporal variability under 
environmental changes. It can trigger distinct responses and choices by bacterial and 
micro eukaryotic metacommunities. In this experiment, the dynamics of COV and CH 
soils community assembly were assessed by methods of a null model. There are two 
methods to analyze the dynamic community change of COV and CH. First, the 
method will calculate a quantitative process estimate (QPE), which surveys the 
relative significance of each assembled process, i.e., whether a microbial sample has 
underlying characteristics of a single environment or multiple environments. The 
quantitative processes are divided into five variables: Dispersal limitation, 
Homogenizing dispersal, Ecological drift (Undominated), Homogenizing selection 
and Variable selection. Stegen et al. (2015) [32] indicated that selection refers to 
differences in performance for taxa between homogeneous and variable selection; 
dispersal limitation is a limited biological exchange between communities caused by 
the movement of organisms, whereas homogeneous dispersal is a high level of 
biological exchange; ecological drift (undominated) is generated by population size at 
random changes. These factors are the main variables in ecological community 
assembly, and these five interval variables were used to compare COV and CH soil 
samples with regard to their comparative importance in the community. 
 
The QPE, unlike the previous NRI/NTI, was calculated based on using Beta MNTD 
and Beta NNTD. The average of the two samples is taken to see whether the 
microbial sample has potential characteristics of a single environment or multiple 
environments and whether the environment is affecting the microbial community 
structure. When BNTI>2, it is classified as variable selection. Conversely, if it is less 
than 2, it is homogeneous selection. 
 
The second is incidence-based β diversity, which means that deterministic and 
stochastically findings in the sample are distinguished by the presence or non-
presence of OTU tables (ignoring phylogeny) (Vass et al., 2020) [19]. The project 
uses picante, ape and ecodistance packages to construct incidence-based β RC values. 
When the incidence-based β RC value does not deviate significantly from 0, it means 
that the community is classified as a stochastically assembled; while if the β RC value 
deviates from 0 and gradually approaches 1 or -1, it indicates a deterministic 
clustering of communities, where similarity between communities is stronger than 
what would be predicted at random.. (Vass et al., 2020) [19]. 
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2.4.6 Identifying deterministic and stochastic in COV and CH soil 
community environments: Normalized stochasticity ratio (NST) 
via null modelling 

 
It is a core issue in ecological science to identify the community assembly 
mechanisms that drive biodiversity patterns (Ning et al., 2019) [33]. The calculation 
of QPE via a null-model framework gives results regarding the relevance that 
deterministic and stochastic processes in microbial communities have in community 
assembly. As Ning et al. (2019) [33] show, the normalized stochasticity ratio (NST) is 
a tool for quantifying ecological stochasticity based on the null model framework. It 
makes it possible to observe more clearly the relative relationship between ecological 
stochasticity in different situations. The NST is based on 50%, when the calculated 
value is less than 50%, the community is more deterministic, and conversely, if the 
calculated value is over 50%, the randomness of the community is greater. 
 
According to Ning et al. (2019) [33], the precision of the NST calculation is higher 
than that of the previous method of calculating ecological stochasticity. The null 
model and community similarity metrics therefore have an influence on ecological 
stochasticity. 
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2.4.7 The differential analysis: Core microbiome 
 
The core microbiome is a differential analysis of biological communities. The 
microbiome package in R studio is used to carry out core microbiome analysis to find 
out which microorganisms are present in which communities. The classification 
results are used to calculate what percentage of the sample is microbial and to 
determine whether the community is a high or low abundance core microbiome. 
Setting the minimum prevalence equal to 85%, which means 85% of the species were 
present in the sample at an abundance of 1. In the visualization of the core 
microbiome, the horizontal axis represents how many samples the species are present 
in. The vertical axis indicates how abundant these species are in different samples. 
When the species with an abundance is two that is present in 80% of the samples with 
an abundance of. If the abundance is up to nineteen, it is present approximately in 
30% of the sample. According to the data on the vertical and horizontal axes, it is 
evident that the red area on the bottom right of Figure 4 indicates high abundance, 
while the blue area on the top left means low abundance. As can be seen from Figure 
4, this species is present in almost 100% of the samples with a maximum abundance 
threshold of 1098. 
 
 

 
 

Figure 4: The visualization paradigm for the core microbiome 
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2.4.8 The differential analysis: MA plot 
 
The DESeq2 is a method for computing data differential analysis. Love et al. (2014) [34] 
demonstrated that it is the use of dispersion and multiplicative variation of shrinkage 
estimates to enhance the stability and interpretation of estimates. This method 
contributes significantly to finding genes that differ among sample groups in RNA-
sequencing (RNA-seq) data. The DESeq2 package is installed in the R studio 
environment, so that it is possible to take any two conditions in a type and find out what 
the "differentially expressed" feature/microbe is. Based on the Bland-Altman plot in 
Figure 5a, the average of the two measures is taken and plotted against the X-axis. In 
the Y-axis, the differences are plotted. For example, the composition of microorganism 
a and microorganism b are compared. By taking the average of two microbes and 
placing it along the X-axis, then the variation of these microorganisms on the Y-axis. If 
they are significantly different, e.g., more than 1.96 (standard deviation), this means that 
the microorganisms or the two main values are statistically significant or statistically 
different in Figure 5b. 
 
For the analysis of microbiome data, the Bland-Altman plot was used as the basis for its 
logarithmic transformation. After logarithmic transformation of these parameters, it is 
converted into a ma plot in Figure 5b. The mean values for each microorganism were 
significantly different if they fell over +2 logfold or under -2 logfold. If a microbe is too 
logfold different, then the microbe is significant between condition a and condition b. 
This plot is also known as a Volcano plot. 
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(a) Bland-Altman Plot 

 
(b) MA Plot 

 
 

Figure 5: a) The example of Bland-Altman plot (Source: Wikipedia) [35]. b) The 
example of MA plot (Source: Wikipedia) [36]. 
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2.4.9 Regression modelling: Subset regression 

 
Microbial regression analysis is the fitting of a microbiome dataset to a linear 
equation, the purpose of which is to relate the microbiome to external parameters to 
better understand the behavioural patterns of the microbiome. In order to try to 
understand whether any environmental parameters play a role in the microbiome, 
these variables from the metadata tables were categorized. The categories are 
converted to presence/absence tables through a domification procedure, and typically 
the closest power of 2 is used to encode them as binary numbers. For instance, if the 
metadata table have six categories, then the nearest power of two is eight. The 
regression model fits a linear equation to the dataset with a dependent variable and 
several independent variables, such as PH value or temperature, this is done by 
assigning weights to each variable, known as "beta coefficients" (𝛽$, 𝛽%, … 𝛽&). 
 

𝛽$ + 𝛽%𝑥'% +⋯+ 𝛽&𝑥'& + 𝜀'            (1) 
 

According to the formula (1) of linear regression, when beta coefficients are positive, 
it implies that a rise in this parameter would also cause a rise in this one; if they are 
negative, then this means that there will be a decline in this parameter as a result of 
increased variance. The beta coefficient acts as an essential part of the linear 
regression equation that combines the two datasets with each other. 
 
To avoid the constant of the meta table becoming another variable, since the linear 
regression equation has a linear dependence on the independent variable X. All these 
variables are regressed against each other by the VIF (variance inflation factor) 
method, which removes the linear dependent variable. 
 

	𝑉𝐼𝐹' =
%

%()!
"                                         (2) 

 
There are hundreds of columns of data in the COV and CH samples meta table, but 
not all the recorded data will be related to each other. Therefore, it is necessary to find 
the best variable available via subset regression which will have a minimal subset 
related to y. Subset regression can fit multiple equations, so there are at most 2* − 1 
equations. Another strategy, Lasso strategy (L1 constraint), is to fit only one equation 
but force some beta coefficients to zero. The overall goal of the strategy is to find the 
beta coefficient, which may be positive or negative, and is directional. The accuracy 
of the beta coefficients is ensured by two types of cross-validation, Leave-one-out 
cross-validation (LOOCV) and MFOLD cross-validation. In general, subset 
regression models do not fit all data to a given model. It fits the model multiple times 
and removes duplicate data. The remaining data were averaged (root mean squared 
error) to further improve our analysis. 
 
In this project, pollution, and PAHs substances in the COV and CH sample meta-
tables were used as variables. Using a subset regression approach to observe their 
relationship in the soils with Shannon diversity. 
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2.4.10 Regression modelling: CODA GLMNET 
 
In the previous equation for subset regression, 𝑦' is a property of the microbiome and  
𝑥' is an extrinsic parameter. There have some problems are that the equation cannot 
perform subset regression because there is often a large amount of microbial data. The 
second problem is that a simple regression model cannot be applied. Especially count 
data, since the data does not preserve Euclidean space, transformation is required. The 
third problem is that the subset regression is only run once due to the Lasso strategy. 
However, some substances that have a positive or negative relationship with a 
parameter of naphthalene may have recorded a performance parameter, for example, 
what is the smallest subset of species that is related to the species that degrades it. It 
needs to be deleted, turning its beta coefficient to zero. Therefore, the two variable 
attributes are flipped, 𝑦' is an extrinsic parameter, which can be binary and continuous, 
and 𝑥' is all microorganisms. 
 
In mathematics, there is a function called logarithmic contrast function. It can find 
two subsets in balanced form. The two subsets are in an absolute equilibrium state, 
and the positive and negative values can cancel each other out. The sums of the two 
subsets are 1 and -1, respectively, and the two add up to zero to form a complete 
complement, which is called close composition. X is a scalar vector, where some of 
all those values equal to one. According to the logarithmic contrast function, the linear 
combination of the logarithms of the components of this formula (3) is subject to the 
condition that the coefficients are summed to zero. Therefore, the function needs to 
find two subsets of the top subset and the bottom subset, a positive subset, and a 
negative subset, as shown in Figure 15. These two subsets eventually become locking 
and trust functions. 
 

𝑓(𝑥) = ∑ 𝑎'+
',% log(𝑥') , 𝑤𝑖𝑡ℎ	∑ 𝑎'+

',% = 0	                      (3) 
 
As Lu et al. (2019) proposed, change the X variable in the previous linear regression 
equation (1) to 𝑙𝑜𝑔𝑥%' 	to get the Coda-lasso equation (4). The reason is that it ends up 
being an invariant. Therefore, this project uses the Coda-lasso regression model 
instead of the general linear regression model. 
 

𝑦' = 𝛽$ + 𝛽%(𝑙𝑜𝑔𝑥%') + ⋯+ 𝛽+(𝑙𝑜𝑔+') + 𝜀'                   (4) 
 
After changing the beta coefficient to zero, there is no relationship between them. If 
there is no relationship between the beta coefficients, it ends up leaving only two 
subsets, those with positive beta coefficients and those with negative beta coefficients, 
perfectly balanced with each other. No matter which variable is entered, the result will 
always be positively correlated microbes and negatively correlated microbes. It won't 
just show the positives because it will find a perfect balance there, with positive 
microbes in balance with negative microbes. It can be seen from equation (5) that the 
zero-sum constraint makes it a weighted balance between positive and negative 
coefficients. 
 

𝛽$ + ∑ 𝛽''-./ 𝑙𝑜𝑔𝑋' − ∑ 𝛼''-.( 𝑙𝑜𝑔𝑋' = 𝛽$ + 𝑠0log	(
1#(#)
1$(#)

)       (5) 
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This project uses CODA GLMNET regression analysis to observe the relationship 
between substances in COV soil and CH soil, soil PH and Pseudomonas. The key 
members of the microbial communities that represent these sites are ultimately 
identified. 
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CHAPTER 3  

3 Results 
 
3.1 Comparative taxonomic identification 

 
The COV and CH soil samples used Qiime2 and DADA2 workflows to generate 
abundance tables containing 2234 OTUs from 26 samples. The main raw data were as 
follows, 1st quartile: 45,116, median: 49,398, mean: 52,557, 3rd quartile: 65,156, 
maximum: 95,350. According to the generated NEWICK and OTU biom files, the 
data were analyzed biometrically as follows. 
 
3.2 The Analysis of Diversity 

 
3.2.1 Alpha Diversity 

 
Alpha diversity measurements were measured to demonstrate how the diversity of 
constituents in the COV and CH soil communities varied. As shown in Figure 6a, the 
species richness index of CH samples mostly falls between 250 and 300, and the 
estimated number of taxa is five times higher than that of COV samples; In terms of 
Shannon entropy diversity, the higher the value, the more species diversity there is. 
CH samples, with values mostly close to 4, are more diverse within the sample than 
COV samples; The Simpson's index was found that the Simpson Index value grows, 
the more diverse the community is. It is clearly that the CH samples index is also 
slightly higher than the COV ones. It is clear from the five measurements of alpha 
diversity that the CH sample is much richer in species than the COV sample. The 
higher the value of diversity within the sample, the more diverse the community. The 
higher the value of CH compared to COV, the more diverse the CH community. 
 
3.2.2 NRI and NTI 

 
Investigating environmental influences on microbial community assembly using NRI 
and NTI to explore local and global phylogenetic clustering. For COV and CH 
samples, when the NRI is greater than 0, this indicates that the species of the 
environment are co-occurring to those that are more nearly relevant. Simultaneously, 
the NTI is greater than 2, indicating that the local phylogeny of the phylogenetic tree 
driven by environmental filtering has strong environmental pressure in the whole 
environmental system. The OTU between each community is closer than would be 
expected by chance. In contrast, if the NRI is less than zero and the NTI is below 2, 
this means that the community is evenly distributed, and closely related species do not 
occur together. 
 
As illustrated in Figure 6a, the NTI values for the COV and CH samples were in the 
range of 1 to 2, with the COV samples being more dispersed than the CH samples. 
The NRI of both samples was greater than zero, and the CH sample was slightly 
higher than the COV sample. These suggest that the communities in the CH soil 
samples may be more intensely impacted by the environment. The COV ones is 
dominated under the principle of competitive exclusion, in which species that perform 
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better than each other in particular ecological position dominated, resulting in a more 
dispersed phylogenetic tree. 
 
3.2.3 Beta Diversity 

 
The Beta diversity was computed for both samples using a distance metric function to 
identify differences between COV and CH soil communities. The value is usually 
between 0 and 1, with a distance metric of 0 indicating absolute species similarity 
between communities. The distance metric is 1, which means that the species are very 
different from each other. In terms of Bray-Curtis distance measures, it shows a 
separation between COV and CH samples in the upper left corner of Figure5b. The 
distribution of COV samples is more dispersed than that of CH soils, representing 
greater variability. 
 
In terms of environmental samples and phylogenetic trees, the UniFrac distance 
measure shows in the upper right corner of Figure 6b that the sequences of the COV 
and CH communities are mostly concentrated in the upper and lower values of 0 and 
mostly overlap. The weighted UniFrac distance measures accounting for phylogenetic 
and abundance factors indicated a high similarity between COV and CH communities 
below in Figure 6b. 
 
When compared to the Taxonomy Difference plot in Fig. 5b, the PAH concentrations 
in the COV soil samples were on average twice as high as those obtained from the CH 
ones. The COV soil samples were also more variable. It can be concluded that the 
average PAH concentration is the main factor causing the higher variability of COV 
soil samples compared to CH ones. The COV samples were highly contaminated by 
PAHs to the extent that their beta diversity is spatially dispersed. 
 
3.2.4 The most abundant top 25 taxa identified per community 

 
The heatmap in Figure 6b shows the top 25% most abundant species in each 
community. From the classification key in the lower left corner of Fig. 5b, it can be 
known that the composition ratio of Pseudomonas, Pseudoxanthomonas and 
Rhodospirillales in the COV sample community is particularly high. The composition 
ratio of each community in the CH samples was relatively average relative to the 
COV samples. The comparison against the overall contamination concentrations of 
the 14 PAHs showed that there may be a relationship between the pollution levels of 
COV and CH soils by PAHs and the abundance of the main species in the soil 
samples. 
 
Bugg et al. (2000) pointed out that Pseudomonas, Pseudoxanthomonas and 
Rhodospirillales are PAH-degrading bacteria that are common inhabitants in soil and 
marine environments. Pseudomonas accounted for 71% of the degradation of PAHs 
and was the main decomposing species of PAHs (Medina et al. 2017) [37]. It takes up 
polycyclic aromatic hydrocarbons, such as phenanthrene, using passive transport and 
modulates the concentration of the cell associated polycyclic aromatic hydrocarbons 
by utilizing a chromosomal encoded active efflux system. Alexander (1999) [38] 
demonstrated that the Pseudomonas has implications for the metabolic pathways and 
biodegradation kinetics of PAHs and the role of these pollutants in environmental and 
bioremediation systems. It is inferred that the COV samples have higher 
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concentrations of PAHs, which means that the soil is more seriously polluted. COV 
samples require a high amount of biodegradation of PAHs, so the composition ratio of 
Pseudomonas in the COV community is high. 
 
 

 
 
Figure 6:  a) The result of alpha diversity and NRI/NTI measures for the COV and 
CH soils populations. b) The beta diversity measured by (a)Bray-curtis, (b) Unifrac  
and (c) Weight Unifrac distances is displayed by PCoA plots, in which coloured 
ellipses indicate normative errors. The first 25 most abundant genera in each species 
group in the PCoA diagram are also illustrated surrounding the key to the (d) taxa 
table 
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3.3 Identifying deterministic and stochastic in COV and CH soil 
community environments 

 
3.3.1 Null modelling: Calculating Quantitative Process Estimate 

and incidence-based (Raup-Crick) beta-diversity 
 
The dynamics of COV and CH community assembly were assessed by calculating 
QPE via a null model. According to Figure 7a, the main ecological driving factors of 
COV soil and CH soil are affected by ecological drift (undominated). This means 
that the dynamics of community assembly fluctuate randomly due to environmental 
changes. The dispersal limitation represents the highest number of assembly 
processes between communities caused by the movement of organisms. Figure 7a 
shows that the dispersal limitation of CH soil is 40%, which is seven times that of 
COV soil. The proportions of homogeneous dispersal, homogeneous selection and 
variable selection in COV and CH soils are all less than 10%. The above 
observations show that the higher variation of COV soil is related to the 
phenomenon of low environmental dispersal rate. 
 
Incidence-based beta diversity is used to identify whether the community assembly 
in the sample is deterministic or stochasticity. In Figure 7b, the beta RC values for 
CH soils and COV soils both tend to deviate gradually from 0. The beta RC value for 
CH soils falls at approximately -0.4, and for COV soils it drops to -0.5, which is 
closer to -1 than for CH soils. In terms of variation, however, the β RC values of CH 
soils vary more dramatically than those of COV soils. This suggests that the CH soils 
are more community-assembled than the COV soils and that there is a higher 
similarity between communities. 

 
 
3.3.2 Null modelling: Normalized stochasticity ratio (NST) 
 
To clearly observe the relative relationship between the ecological stochasticity of 
COV soil and CH soil under different conditions, NST was used to quantify the 
results of each assembly process. According to the results in Figure 7c, both COV 
soil and CH soil are less than or equal to 0.5. The assembly process is more 
deterministic overall, and the CH soil is in turn more deterministic than the COV soil 
community. 
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Figure 7: a) The results of QPE. The contribution percentages for each assembly 
process are displayed, where Dispersal limitation, Homogenizing dispersal, 
Ecological drift (Undominated) belong to stochastic, whereas homogeneous selection 
and variable selection are categorized as deterministic.  b) The results of the beta RC 
for COV and CH soil samples. When the β RC value does not deviate appreciably 
from 0, the community is attributed to the random assemblage; if the β RC value 
deviates from 0 and gradually approaches 1 or -1, it indicates a definite clustering of 
the community. c) The results of the NST. Quantified results for each assembly 
process. Stochasticity ratios are based on 0.5. When the value is less than 0.5, the 
community is more deterministic. 
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3.4 The Differential analysis 
 
3.4.1 Core microbiome heatmap 

 
The percentages of microorganisms in COV soil and CH soil communities were 
analyzed by the core microbiome and identified whether the communities belonged to 
the high or low abundance core microbiome. According to Figure 8, the COV and CH 
heatmap genus has at least 85% prevalence, which is represented at least 85% of 
species present in COV samples and CH samples. OTUs are ordered by their 
abundance in the heatmap. The blue area at the top of the heatmap means the low 
abundance core microbiome, while the red area at the bottom represents the high 
abundance core microbiome. 
 
The heat map of the CH genus shows that the proportion of species is evenly 
distributed. The distributions of the low-abundance core microbiome and the high-
abundance core microbes were consistent. It is consistent with the results of the CH 
top 25 most abundant taxa in Figure 6b. 
 
From the COV genus heatmap, it can be seen that the maximum abundance threshold 
for Pseudomonas is 5862, which means that this species is almost 100% present in the 
sample. According to the taxonomic table of Figure 6b, Pseudomonas accounted for 
the highest percentage in the top 25 richest taxa associated with each species category 
identified. From these two points, it can be proved that Pseudomonas is the core 
microbiome with high abundance in COV soil, that is, the main biodegrading and 
repairing microorganisms in PAHs. 
 
Bacillus has the second highest proportion in the heat map of COV genus. As Saeed et 
al. (2022) [39] indicated, Bacillus is a superior genus for bacteria for which petroleum 
hydrocarbon degraders and vegetation development accelerators are identified. It has 
the potential to degrade hydrocarbons, especially from strains isolated from 
contaminated soils. Bacillus can decompose PAHs pollutants, such as phenol, cresol, 
polychlorinated biphenyls (Christova et al., 2019) [40]. It also occupies a fairly high 
proportion among the top 25 most abundant taxa in Figure 6b. Overall, the 
biodegradation of COV soil and environmental remediation are closely related to 
Pseudomonas and Bacillus. 
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Figure 8: Core microbiome heatmap persisted in >85% of samples used to compare 
all populations separately and both COV and CH communities were compared 
simultaneously. OTUs are sequenced according to their abundance, the upper part of 
the heat map indicating the low abundance prevalent OTUs and the bottom showing 
the high abundance prevalent OTUs. 
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3.4.2 MA plot 
 
The differences between the COV and CH sample communities were compared using 
the DESeq2 method. As shown in Figure 9, the parameters in the COV and CH 
samples were logarithmically transformed to form an MA plot based on the Bland-
Altman plot. It is used to compare the microbial communities that differ between 
COV and CH soil samples. The x-axis of the MA plot represents the mean value, and 
the y-axis represents the log difference value. The red dots refer to the significant 
differences in microbial communities in these two samples. 
 
The difference between the COV and CH samples in genus and phylum is shown in 
Figure 10. The log-relative normalized for CH samples is higher than the log-relative 
normalized for COV, which represents a significant difference between the two 
communities. The genus differences in Figure 10a are more diverse than the phylum 
species in Figure 10b and compare to the MA plots in Figure 9 reveals that the log-
relative points of difference in genus are more numerous and denser than those in 
phylum. From the MA diagram of phylum to OTUs, it can be found that the 
difference points are clustered from the dispersion to the center line of logfold=0. The 
MA diagram of OTUs finally forms a clear curve showing the exact difference 
distribution. 
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Figure 9: The results of the MA plot. The x-axis of the MA plot represents the mean 
value, and the y-axis represents the log difference value. The baseline is 
approximately logfold=0. When the log difference for each microorganism is between 
plus and minus 2 logfold, it shows a black dot indicating that the difference is not 
excessive. The red dots indicate a significant difference when the difference exceeds 
+2 logfold or falls below -2 logfold. 
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Genes                                                      Phylum 

 
 
Figure 10: a) The significant different of genus. b) The significant different of phylum. 
The graph shows which microorganisms are significantly differentiated from each 
other. The more types of microbial variation, the more significant the distribution of 
red dots on Figure 9. 
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3.5 Regression Modelling: Determine key members of 
representative microbial communities of COV and CH soils 

 
3.5.1 Subset regression 

 
The contaminant data from Figure 11 and the data from the meta table for aromatics 
in Figure 12 were combined into subset regression for analysis to observe their 
relationship to Shannon diversity. As shown in Figure 13, the minimum cross-
validation error in the model is 0.37932. It represents the best analytical effect of the 
analytical model. The main variables in this model are the pollutants: Cadmium, 
Copper, and Cobalt; the substances in aromatic hydrocarbons: Indeno_123_cd_pyrene, 
Dibenzo Ah Anthracene; LOI percentage. By referring to the consequences of the 
regression analysis on a subset of Figure 14. When the variable has a negative 
estimate, it implies that the higher the amount of the variable in the soil, the lower the 
Shannon diversity. On the contrary, a positive estimate of the variable means that the 
greater the content of the variable in the soil, the higher the Shannon diversity. 
 
The value of Dibenzo Ah Anthracene in the Figure 14 is -50.57043, which is the 
lowest estimated value of all variables. Dibenzo ah anthracene is a polycyclic 
aromatic hydrocarbon consisting of multiple benzene rings and is a common oil 
contaminant (Rizzo et al., 2020) [41]. When it is present in higher proportions in the 
soil, the Shannon diversity of the community decreases. Richardson et al. (2007) [42] 
demonstrated that it is stable and highly genotoxic in bacterial and mammalian cell 
systems and tends to be embedded in DNA inducing mutations. Dibenzo Ah 
Anthracene is a threat to both microorganisms and humans. 
 
The estimated value of the Indeno_123_cd_pyrene variable falls at approximately 5, 
the highest of all variables. Indan_123_cd_pyrene has mutagenic and carcinogenic 
properties as a chemical generated by the improper ignition of organic compositions. 
(Ribeiro et al., 2014) [43]. Although the predicted values are positive, the results are 
not significant. The overall results for the whole regression variables are mostly 
negative, implying a negative impact on community diversity. 
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Figure 11: The meta table of pollutants in COV and CH soils such as lead, iron, 

cadmium, chromium, zinc, copper, nickel and cobalt, loss on ignition (LOI) 
percentage. The LOI percentage is the lab test to see how much is lost when a soil 
sample is heated to a certain temperature, and moisture percentage. 
 

 
 
Figure 12: The meta table of the aromatic hydrocarbons in COV and CH soils, the 

parameters in the graph are related to the biodegradation of PAHs. 
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Figure 13: The Cross-validation errors of models, to determine the error value of 
the 20 models. The lower the value of Cross-validation errors, the better the results of 
subset regression. 
 
 

 
 
Figure 14: The result of subset regression. The distribution corresponds to the 
estimate values in the table. Negative values indicate that the more the substance is 
present, the lower the Ｓhannon diversity will be. The higher the value of * shows the 
more significant. 
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3.5.2 CODA GLMNET 

 
Using CODA GLMNET regression analysis to observe which substances are 
associated with soil PH and pseudomonas. As with the subset regression, the material 
parameters in the meta table in Figure 11 and Figure 12 are used as regression 
variables for analysis. According to the results, Naphthalene, Cadmium, Cobalt and 
Dibenzo Ah Anthracene was all related to Pseudomonas to some extent. 
 
The coefficient value of Pseudomonas is 0.31 in the Naphthalene substances in Figure 
15(a), which is the microorganism with the highest coefficient value in the substance. 
This indicates that Naphthalene and Pseudomonas are highly related. Naphthalene is 
an organic compound of polycyclic aromatic hydrocarbons. According to 
Falahatpisheh et al. (2001) [44], Intermediate products of naphthalene covalently 
associate with DNA which is prevalent in liver, kidney and lung tissue and inhibit 
mitochondrial respiration, resulting in an increased incidence of cancer in animals. 
Cerniglia (1993) [45] indicated that Pseudomonas has the ability to completely 
degrade Naphthalene. It is inferred that the two are highly correlated, so it is inferred 
that Pseudomonas is the main microorganism that degrades Naphthalene. Since the 
two are highly correlated, it is inferred that Pseudomonas is the main microorganism 
that degrades Naphthalene. 
 
In Figure 15(b), the Dibenzo Ah Anthracene material is found to have a correlation 
coefficient of 0.1 for pseudomonas. It is the third highest positive correlation 
microorganism in the Dibenzo Ah Anthracene. Pseudomonas can biodegrade Dibenzo 
Ah Anthracene and decompose it into a carbon source or energy source (Juhasz et al., 
1997) [46]. The correlation coefficient for Pseudomonas in Figure 15(c) is 0.01 for the 
Cadmium contaminant. The correlation with Cadmium is relatively low compared to 
that of Dibenzo Ah Anthracene and Naphthalene. 
 
The Positive and negative correlations are in contrast to each other. When the content 
of this substance is more, the growth of microorganisms negatively related to it will 
be inhibited. The Figure 15(d) shows a negative correlation between Cobalt and 
pseudomonas with a correlation coefficient of -0.02. This means that Cobalt inhibits 
the degradation ability of pseudomonas in this pollutant. pseudomonas grow 
unfavorably in Cobalt to the extent that this metal contaminant cannot be effectively 
degraded (Oyetibo et al., 2013) [47]. 
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          (a)Naphthalene 

     (b) Dibenzo Ah Anthracene 

 
(c) Cadmium 

 
(d) Cobalt 

 
 

Figure 15: The CODA GLMNET result of (a) Naphthalene (b) Dibenzo Ah 
Anthracene (c) Cadmium (d) Cobalt. When the coefficient is greater than zero, which 
is the green area on the figure, it means that the growth of this substance has a 
positive correlation with those microorganisms. Conversely, if the coefficient is less 
than zero, it is shown by the red bar graph, which means that microorganisms 
exhibiting a negative coefficient are negatively correlated with the substance. 
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CHAPTER 4 

4 Discussion 

 
4.1 The Biological Informatics Approach to Biodegradation 

Analysis of Contaminants 
 
The taxonomic matching method of nucleic acid sequencing is one of the main goals 
of analyzing ecological microbial communities. This project uses genomic DNA 
analysis methods to extract DNA fragments from samples. The DNA fragments are 
sequenced, so that the amplified and sequenced OTU or ASV can be generated. 
Amplicon sequencing is a type of Target Sequencing, which aims to distinguish 
different species by amplifying and sequencing the 16S rRNA region of bacteria. 
(Chakravorty et al., 2007) [48]. The amplification sequencing of this project is to use 
the OTU method to detect the relationship between samples by clustering with 97% or 
99% similarity. According to this study, this method is helpful for studying the 
degradation relationship between microorganisms and soil. However, the sample data 
available for this study were limited, so it difficult to perform comparisons on genetic 
and field data as each method retrieved a variable number of taxa. Sample collection 
and extraction methods still need to be improved. In the future, there is an opportunity 
to try to use the amplicon sequencing variant (ASV) to detect samples by fitting a 
distribution (Poisson distribution), that is rarely available for the analysis of microbial 
degradation data. 
 
The regression model is essential for observing the relationship between soil and its 
microbial degradation. As far as I know, the model has rarely been used to analyse 
soil biodegradation in the past. In addition to using the generally available Alpha 
diversity and Beta diversity to study cross-sections of soil microbial communities at 
two contaminated sites, COV (UK) and CH (Switzerland), this project also focuses on 
regression modeling to identify key members of biodegradation in COV and CH soil 
samples. The regression modeling can clearly show the correlation between individual 
substances in contaminated soil and microorganisms. Therefore, regression analysis 
may be incorporated into the main part of microbial community data analysis to be 
able to identify key species and their effect on the environment. 
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4.2 Overlaps and differences between COV and CH soils 
 
This project uses nucleic acid sequencing to identify contaminants in COV and CH 
soils. Gauchotte-Lindsay et al. (2019) [5] classified soil samples collected using trnL 
in the UK and Switzerland, respectively. Pseudomonas were found from taxa as the 
main microorganisms in COV and CH soils species. 
 
According to the analysis of R studio, some similarities, and differences between 
COV and CH soil samples were obtained. In terms of diversity, the CH region has a 
greater species richness than the COV one. The diversity within the sample is also 
relatively rich. Obviously, the CH community is more diverse. Through 
environmental filtering analysis, it can be found that the soil communities in the CH 
area are more likely to be affected by the environment. There is a higher capacity for 
species to interact with each other and a higher degree of community similarity than 
in COV communities. The COV community is dominated by the principle of 
competitive exclusion, so that the differences between soil communities are large. Its 
phylogenetic tree distribution is also more dispersion. 
 
There are two main reasons for the differences between communities. The first reason 
is that ecological drivers are affected by ecological drift, and the dynamics of 
community assembly will change with environmental changes. The environmental 
dispersal rate of CH soil was higher than that of COV soil. The areas with high 
environmental dispersal rate are conducive to the mutual influence between species, 
so that the similarity between communities will increase. Due to the low rate of 
environmental diffusion, COV soils are highly variable between species. The second 
reason is the concentration of PAHs. The PAHs concentration in the COV samples 
was on average twice that of the CH samples, which represented a higher degree of 
PAH contamination in the COV samples. The PAHs may affect community richness. 
The high level of PAHs contamination will lead to the spatial dispersion of β diversity. 
The variability among COV communities is therefore greater. 
 
The correlation of PAHs and microbial Pseudomonas was observed to be significant 
positively. When the concentration of PAHs increased, it was beneficial to the growth 
of Pseudomonas. Pseudomonas have the ability to help soil degradation and repair. 
COV soil samples were so polluted with PAHs that the percentage of Pseudomonas in 
the microbial composition of the soil was extremely high. 
 
The COV and CH soil samples were collected only from soils from specific areas in 
the UK and Switzerland, therefore analysis of soil PAH contaminated concentrations 
and key microbial results for soil degradation in that area was limited to that specific 
area of the sample. The results are not representative of all soils in the two countries, 
but this analysis can give a clear understanding of how the soil environment in the 
region is effectively biodegraded and soil remediation. In the future, soil samples 
from more regions will be collected to understand the key microorganisms in soil 
degradation in more regions, so that more PAHs contaminated communities can be 
rehabilitated. 
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4.3 The critical microorganism for biodegradation 
 
The PAHs are a cluster of organic mixtures, such as naphthalene, dibenzo-anthracene 
phenols, cresols, and polychlorinated biphenyls. These different contaminations are 
decomposed by different microorganisms. However, microorganisms cannot 
completely decompose any pollutants, such like iron, cobalt and other metal pollutants. 
They typically depress the development of microorganisms and reduce their capacity 
to decompose pollutants. When microorganisms cannot completely decompose the 
contaminations, the soil will form permanent pollution, which will cause great harm 
to the environment and organisms. This project analyses the main core 
microorganisms of soil degradation by the number of collected samples, so as to 
improve the degradation ability of contaminated soil. 
 
The project was based on taxon and core microbiome analysis via a null model, which 
revealed that Pseudomonas, Pseudoxanthomonas. and Rhodobacter accounted for a 
certain proportion of the microbial composition in COV and CH soils. The regression 
analysis revealed that Pseudomonas are the most important microorganisms for the 
biodegradation and repair of PAHs, especially for Naphthalene. Because COV soil is 
seriously polluted by PAHs, more microorganisms are needed to biodegrade the soil. 
Pseudomonas is also positively associated with PAHs contaminants such as 
naphthalene and dibenz an thracene. As the soil becomes more contaminated with 
PAHs, Pseudomonas aeruginosa is able to grow in the soil with higher efficiency and 
biodegradation. Pseudomonas has a certain influence on the metabolic pathways and 
biodegradability of PAHs and their ability to remediate soil damaged by pollutants 
(Alexander, 1999) [38]. 
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CHAPTER 5 

5 Conclusions and Future work 
 
This project investigates the use of microorganisms to biodegrade contaminated soils 
to solve soil contamination problems. It is guided by recent advances in microbial 
community assembly mechanisms and develops an analytical strategy to elucidate the 
role of the environment and reveal the key members of the microbial community 
representing these sites. The Alpha diversity analysis showed that the lower the value 
of COV compared to CH, the less diverse the COV community. Simultaneously, Beta 
diversity showed that PAH concentrations in COV were on average higher and more 
variable than PAH concentrations in CH samples, resulting in a spatial dispersion of 
their beta diversity. The COV soil samples seem to be polluted with more PAHs than 
CH ones. 
 
The quantitative results from QPE and NST show that the CH soil samples in which 
the community is more deterministic and environmentally influential. In contrast, 
COV is motivated by the principle of competitive exclusion, in which the species that 
outperforms other species in a particular ecological niche dominates. It leads to a 
more fragmented phylogenetic tree. It is inferred that the determinism of the microbial 
community correlates strongly with the presence or absence of chemical contaminants, 
especially PAHs. 
 
The difference analysis showed that the COV and CH soil samples were very different. 
It was concluded from the analysis that COV soils contaminated with PAHs may 
contain higher levels of Dibenzo Ah Anthracene and Naphthalene organic compounds. 
Both species are mostly biodegraded by Pseudomonas, which has remediated the 
contaminated soil. In the present analysis, Pseudomonas was the main microorganism 
responsible for the degradation of PAHs. 
 
This project samples only studied sites with space variability (COV and CH), and the 
models detected were mainly inter-site distinctions. This method of analysis is 
therefore not representative of the entire biosphere. However, microbial community 
survey data using 16S rRNA in association with GC × GC MS have been shown to be 
valid. 
 
Regarding this project, the soil samples were only selected from specific areas in the 
United Kingdom and Switzerland, so that the results are not representative of all 
microbial communities exposed to PAHs. The ecological environment that surrounds 
each region also varies. The level of contamination from heavily contaminated 
industries in the developed or developing countries is more severe than in the 
backward countries, and the biodegradable microorganisms corresponding to these 
different contaminants also differ. In the future, it is hoped to expand the number of 
areas from which soil samples are collected in order to better identify the key 
contributors to the microbial community in each area. The increased number of 
samples will allow for more accurate statistics on the evolution and changes of 
microbial communities in the ecosphere. 
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CHAPTER 7 

7 Appendix 

 
7.1 The data analysis architecture 

 
These are divided into four main points of analysis: diversity analysis, null model 
analysis, differential analysis and regression analysis. Diversity analysis is divided 
into Alpha diversity to summarize the community diversity of COV and CH soil 
samples in terms of Beta diversity to compare the similarity between the two samples. 
Null model analysis is used to calculate QPE and NST to determine whether the COV 
and CH soil samples have the basic characteristics of a single environment and to 
quantify the microbial community. The analysis of differences is separated into a core 
microbiome heat map to identify which microorganisms are present in each of the 
COV and CH soil samples, and an MA plot to provide a comparison of the differences 
between the two samples' communities. The subset of regression analysis is used to 
observe the correlation between contaminants and the soil. The CODA GLMNET is a 
way to detect which substances in a sample are associated with soil PH and 
Pseudomonas. 
 

 
 

Figure 16: The data analysis architecture 
  



 
45 

7.2 The Result of the OTU table in data analysis 
 

 
 

Figure 17: The OTU table of alpha diversity 
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Figure 18: The OTU table of NRI and NTI in environmental filtering processing 
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Figure 19: The Partial OTU table of significant differences between CO and CH soil 
samples 
 


