
1 
 

Coursework Declaration and Feedback Form 
The Student should complete and sign this part 

Student 
Number: 2721753Z 

Student 
Name: Weichen Zhao 

Programme of Study (e.g. MSc in Electronics and Electrical Engineering): 

MSc in Computer System Engineering 

Course Code: ENG5059P Course Name: MSc Project 

Name of 
First Supervisor: Umer Zeeshan Ijaz 

Name of 
Second Supervisor: Stephen Thoms 

Title of Project 
Comparing effects of natural and chemical biosurfactants on microbiome to explore crude oil 

degradation 

Declaration of Originality and Submission Information 

I affirm that this submission is all my own work 
in accordance with the University of Glasgow 
Regulations and the School of Engineering 
requirements 
Signed (Student) :  

 

 
E N G 5 0 5 9 P 

Date of Submission : 15/08/2023 

 

Feedback from Lecturer to Student – to be completed by Lecturer or Demonstrator 

Grade Awarded: 
Feedback (as appropriate to the coursework which was assessed): 



2 
 

Lecturer/Demonstrator: Date returned to the Teaching Office: 



3 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

Comparing effects of natural and chemical 
biosurfactants on microbiome to explore 

crude oil degradation 
 

 

Weichen Zhao 

2721753Z 

Supervised by Dr Umer Zeeshan Ijaz & Dr Stephen Thoms  

MSc Computer System Engineering 

School of Engineering 
 
  



4 
 

Abstract 
Crude oil spills at sea can have a significant impact on marine ecosystems, trapping seabirds 
and small and medium-sized marine creatures, immobilizing them and eventually killing them 
as they run out of strength. Toxic compounds in crude oil can also enter the entire marine food 
chain, causing toxins to pass through all marine species within a certain range, and these toxins 
can eventually be ingested by us, resulting in incalculable damage. If the spilled crude oil is not 
cleaned up quickly, then surviving marine organisms may also pass on their toxin-induced 
mutations, causing far-reaching effects on the entire planet's ecosystem. 
In the early days, chemical dispersants were used to degrade spilled crude oil, with Span, Tween 
and Finasol among the main ingredients, but there are also natural microorganisms in the ocean 
(such as hydrocarbon-degrading bacteria) that produce surfactants to degrade crude oil. 
Although these chemicals are food-grade, they may still affect marine life and potentially 
diminish the ability of other microorganisms to degrade crude oil. Therefore, more 
environmentally friendly biosurfactants, such as rhamnolipid, trehalose, and sophorolipid, are 
being considered. 
In this project, the effects of Finasol and rhamnolipid on marine microbial communities, 
especially those that release biosurfactants, will be compared. The efficiency and negative 
effects of the two different degradation chemicals will be investigated in group experiments 
with different control variables. This study will use the method of 16S rRNA amplicon 
sequencing, combined with machine learning algorithms for data analysis and diversity study, 
to discover the changes in microbial communities and dominant species under different 
conditions. 
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1. Introduction 

1.1 Background 
Crude oil, a double-edged sword driving rapid industrial progress, has ushered in prosperity 
while simultaneously igniting significant environmental concerns. Its pivotal role in shaping 
industries is undeniable, yet the profound ecological ramifications, particularly in the aftermath 
of offshore oil spills, underscore the urgency for innovative solutions. The cataclysmic Gulf of 
Mexico oil spill in 2010, a watershed moment, disgorged approximately 700,000 tonnes of 
Louisiana light crude oil into the marine ecosystem, laying bare the devastating and enduring 
repercussions (Fredy et al., 2018). The repercussions of oil pollution ripple across avian, aquatic, 
and terrestrial habitats, leaving a trail of disruption, morbidity, and mortality (Sargent et al., 
2011). A historic perspective reveals the devastating impact of oil pollution, with historical 
records documenting the demise of seabird populations attributed to oil pollution in the North 
Atlantic and North Sea regions between 1952 and 1962 (Sargent et al., 2011). Notably, the 
noxious elements in crude oil, particularly aromatic hydrocarbons, inflict dire consequences on 
aquatic life, leading to elevated mortality rates of marine organisms, including shrimp larvae in 
the aftermath of the Venezuelan oil spill (Crude oil spills, 2016). 
Aiding in oil spill mitigation, microbial approaches have gained traction as effective 
interventions. Microorganisms specialized in hydrocarbon degradation facilitate the conversion 
of pollutants into benign byproducts like water and carbon dioxide. Chemical dispersants, 
recognized as the primary agents for expediting petroleum degradation, have undergone an 
evolution since the 1970s, with hundreds of formulations deployed worldwide (Kleindienst et 
al., 2015). The predominance of aromatic hydrocarbons in early oil spills, notorious for their 
recalcitrance, led to their replacement with natural surfactants, such as glycolipids derived from 
vegetable oil, yielding improved ecological compatibility (Crude oil spills, 2016). 
This study explores the intricate interactions between the chemical dispersant Finasol, the 
biosurfactant rhamnolipid, and microbial communities. Using 16S rRNA sequencing, the 
dynamics of microbial communities under the influence of these substances and the dominant 
strains in different environments were elucidated, thus revealing the underlying mechanisms 
driving their dynamics. Of particular interest is the investigation of taxonomic variation within 
the microbial community of the ecologically important Faroe-Shetland Channel, an area that is 
emblematic of a diverse marine ecosystem with a history of oil exploration (Crude Oil Spill, 
2016). 
Furthermore, the study capitalizes on recent advances in ecological modeling, notably the 
application of Phi Network and Zeta Diversity, to dissect microbial community assembly 
processes. These models elucidate the delicate balance between stochastic and deterministic 
mechanisms, providing insights into how chance colonization, ecological drift, and species-
specific traits shape community composition. Of significant import is the evaluation of how 
chemical dispersants and biosurfactants impact microbial diversity, community assembly, and 
the intricate relationships between taxa and their functional roles, bridging the gap between 
taxonomic composition and ecological function (Crude oil spills, 2016). 
 
The emergence of biosurfactants as a natural-based solution to mitigate the ecological toll of 
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oil spill responses reinforces the necessity for empirical validation. While earlier studies hint at 
distinct microbial responses to chemical dispersants and biosurfactants, this study presents a 
pioneering attempt to synergize ecological modeling and microbial community analysis 
(Nikolova et al., 2021; Thomas et al., 2021). By unraveling the intricate nexus between oil spill 
response agents and microbial dynamics, this study contributes a crucial dimension to 
environmental management and preservation. 
 

1.2 Case study 
The Faroe-Shetland Channel (FSC), a marine nature reserve spanning the North Atlantic 
between the Shetland Islands and the Faroe Islands, stands as a biodiverse hotspot and a critical 
fishing zone. With an expansive area of 5278 km2, the FSC boasts a unique ecological mix, 
where relatively warm North Atlantic seawater intermingles with subzero deep water from the 
Norwegian Sea, nurturing a complex and thriving ecosystem (Logan et al., 2018; Corvec, 2018). 
Given the FSC's rich biodiversity, history of oil exploitation, and sensitive ecological 
equilibrium, the potential occurrence of oil spill accidents in this region poses a substantial 
threat. The intricate interplay between warm and cold waters, combined with the region's harsh 
and cold weather conditions, further compounds the challenges of managing and mitigating oil 
spills. Notably, an oil spill in the FSC has the potential to disrupt both the ecological community 
and the flourishing fishing industry, necessitating effective and sustainable oil spill response 
strategies. 
To address this pressing concern, our case study focuses on investigating the impact of two 
distinct oil spill response tools, namely the synthetic dispersant Finasol and the microbial 
biosurfactant rhamnolipid, on the microbial community dynamics within the FSC. Building 
upon the pioneering work in the field, particularly in the context of the FSC (Crude oil spills, 
2016), we aim to unveil the potential shifts in microbial community composition and assembly 
processes caused by these response tools. 
Utilizing the power of Phi network and Zeta Diversity, we seek to simulate the intricate 
interplay between the FSC's ecological community and the application of Finasol and 
rhamnolipid. By employing cutting-edge ecological modeling techniques, we aim to elucidate 
the key taxa that drive changes in microbial community structure in response to these oil spill 
response tools. Additionally, we intend to discern the underlying ecological mechanisms, be 
they stochastic or deterministic, that govern the observed shifts in microbial composition. 
Our study site, the FSC, presents a unique opportunity to explore these dynamics. With its 
history of oil exploration, dynamic physical circulation, and intricate mix of water masses, the 
FSC offers a microcosm through which we can analyze the intricate ecological repercussions 
of oil spill response tools ( Faroe-Shetland Channel study, 2022). By discerning the taxonomic 
shifts induced by Finasol and rhamnolipid, we contribute to a deeper understanding of their 
respective ecological impacts and their potential role in shaping the microbial response during 
oil biodegradation. 
Ultimately, this case study endeavors to contribute valuable insights into the selection and 
application of oil spill response tools in sensitive marine ecosystems. By uncovering the 
ecological consequences of these tools and their effects on microbial community dynamics, we 
aim to provide a foundation for informed decision-making in future oil spill response strategies, 
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ensuring the preservation of delicate marine ecosystems and the industries that rely upon them. 
 

1.3 Aims and Objectives 
This study aims to conduct a comprehensive analysis of the effects of chemical dispersants 
(Finasol) and biosurfactants (rhamnolipid) on the microbial community within the Faroe 
Shetland Channel. The primary objectives include: 
1. Comparing the response of microorganisms to Finasol and rhamnolipid treatments, and 
assessing their impact on community diversity. 
2. Investigating the dynamic shifts in microbial community composition under different 
treatment conditions. 
3. Identifying and characterizing the dominant bacterial taxa prevalent in samples subjected to 
dispersant treatments. 
4. Unveiling the intricate interplay between microorganisms and their environment within 
distinct treatment contexts. 
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2. Methodology 

2.1 Sample Acquisition and Preparation 
The sample collection approach involves the preparation of water accommodated fractions 
(WAFs) to study the effects of different dispersants on microbial communities in the Faroe 
Shetland Channel (FSC). Surface seawater from FSC is collected and used as the basis for 
creating distinct treatment groups. The preparation process includes the addition of different 
components such as crude oil, chemical dispersants, and biosurfactants to assess the influence 
on microbial communities over a specified time frame. 
The sample collection procedure encompasses the creation of WAFs through a systematic 
process that examines the response of microbial communities to varying dispersant treatments. 
Initially, FSC surface seawater is gathered to serve as the foundational medium. This seawater 
is utilized to establish different experimental conditions. The process begins with the 
formulation of three key WAFs: WAF, CEWAF, and BEWAF. These fractions are developed by 
combining predetermined quantities of seawater, crude oil, and either biological or chemical 
surfactants. Importantly, the ratios of components are controlled to ensure consistency, with 
seawater and crude oil maintaining a uniform volume (seawater: 1500ml, crude oil: 120ml). 
The composition of the WAFs is strategically adjusted to create distinct treatment groups. WAF 
consists of seawater and crude oil, while CEWAF incorporates the chemical dispersant Finasol, 
seawater, and crude oil. The ratio of chemical surfactant and crude oil is carefully maintained 
at 1:20. In contrast, BEWAF is designed with a biological surfactant – rhamnolipid – in addition 
to seawater and crude oil. To assess the impact of dispersants alone, control groups are 
established: SWD containing seawater and Finasol, and SWBS containing seawater and 
biosurfactant rhamnolipid. 
The prepared treatment groups, including the six treatment samples (WAF, CEWAF, BEWAF, 
SWD, SWBS, SW), are mixed for a minimum of 48 hours. This duration ensures the complete 
dispersion of oil and the establishment of a representative microenvironment. A crucial control 
sample containing only seawater serves as a baseline comparison. The samples are collected on 
specified days (3, 7, 14, and 28) to evaluate the changes in hydrocarbon composition due to 
biodegradation. This systematic approach provides valuable insights into the dynamics of 
microbial communities under the influence of different dispersants in the FSC. 
 

2.2 Amplicon Sequence Variants 
Amplicon Sequence Variants (ASVs) play a pivotal role in marker gene sequencing, such as the 
16S rRNA gene in bacteria, offering insights into the microbial genome and corresponding 
species information (Schlomann et al., 2019). However, the challenges arise when dealing with 
the massive volume of sequencing data, often yielding tens of thousands of sequences per 
sample. This creates a formidable workload and computational burden. Moreover, inherent in 
the process of amplification and sequencing of marker genes, there exists a slight probability 
of sequencing errors, which can undermine the accuracy of subsequent analyses. 
To address these issues effectively, Operational Taxonomic Units (OTUs) have been introduced 
in diversity analysis. Initially, during OTU clustering, the UPARSE algorithm is employed to 
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extract unique sequences, thereby diminishing redundant computational demands (Booth et al., 
2020). Sequences are categorized based on distinct levels of similarity within the OTU 
framework, subsequently forming clusters based on sequence similarity. 
In recent years, the trend has shifted towards adopting Amplicon Sequence Variants (ASVs) to 
mitigate the impact of sequencing errors and supplant OTUs. The default OTU clustering step, 
which utilizes a 97% sequence similarity threshold in the UPARSE algorithm, tends to obscure 
sequences containing errors, consequently leading to inaccurate abundance estimates for certain 
OTUs (Alisa et al., 2022). Additionally, the true variation within sequences can be masked by 
a relatively broad similarity threshold. To enhance accuracy, the DADA2 algorithm has 
emerged, amalgamating sequencing precision and employing a divisive partitioning algorithm 
for final clustering, accompanied by p-value calculations. This refined clustering outcome, 
termed ASV, mirrors the concept of OTU clustering with 100% similarity, thereby elevating the 
precision of clustering (Guckenheimer et al., 2013). 
In the context of our project, millions of sequences procured through 16S rRNA sequencing 
have undergone refinement and filtration through the DADA2 algorithm. The resultant ASV 
samples have been subjected to diverse analyses, including diversity assessment, differential 
analysis, and regression analysis, facilitated by the R-Studio statistical software (Guckenheimer 
et al., 2013). 
In essence, Amplicon Sequence Variants (ASVs) have become an indispensable tool in the 
precise analysis of microbial communities, addressing challenges arising from sequencing 
errors and paving the way for comprehensive exploration of microbial diversity and 
functionality (Schlomann et al., 2019; Guckenheimer et al., 2013). 
 

2.3 High-Throughput Sequencing 
The DNA extracts collected from the samples underwent sequencing using second-generation 
sequencing technology from Illumina. The two-step amplification procedure was employed to 
amplify the 16S rRNA sequence. High-throughput sequencing was carried out on the microbial 
population, enabling comprehensive analysis of gene composition and diversity within the 
environmental microbiome. 
 

2.4 DADA2 algorithm with the bioinformatics pipeline QIIME2 
In the pursuit of intricate biological insights into the microbial community species, the 16S 
rRNA gene sequences obtained through sequencing were subjected to thorough analysis within 
the QIIME2 bioinformatics pipeline. A pivotal role was played by the DADA2 algorithm, 
harnessed as a powerful plugin module, meticulously addressing the intricacies of sequence 
duplication and errors (Schlomann et al., 2019). The Divisive Amplicon Denoising Algorithm 
2, an R package renowned for its adeptness in modeling and rectifying amplicon sequencing 
errors across a multitude of sequencing platforms, was meticulously incorporated (Phadnis et 
al., 2018). This algorithm, integral to amplicon analysis, possesses the remarkable capability to 
accurately discern sample sequences, delving into the minutiae of single nucleotide disparities. 
The core functionality of DADA2 revolves around the construction of an error rate model that 
speculates the origin of an amplicon sequence from its template. It seamlessly factors in the 
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inherent error model of the data at hand, thereby yielding the probabilities of various 
transpositions. Embarking on the sequence preprocessing journey, each sequence is adeptly 
truncated to meet specified length criteria, as determined by approximate sequence length and 
minimum quality score benchmarks. Subsequently, sequences falling below the prescribed 
length threshold are prudently excised from the dataset. Duplication of sequences across all 
samples is diligently eliminated, affording the preservation of a unique sequence set. Herein, 
the algorithm delves into calculating the average quality score of each nucleotide base and the 
prevalence of each distinct sequence. 
Elevating its prowess, DADA2 deftly navigates the intricate landscape of sequencing errors, 
whereby an erroneous OTU sequence may inadvertently encompass a myriad of sequences, 
encompassing both the accurate sequence with considerable abundance and erroneous 
sequences with scant representation (Dizay et al., 2017). Employing a multifaceted approach, 
DADA2 capitalizes on the interplay between sequence abundance, quality scores, and sequence 
relationships, effectively rectifying erroneous base calls and unraveling the veritable sequence 
identity. Notably, the algorithm further administers the crucial task of identifying and removing 
chimeric sequences, expertly discerning sequences with modest abundance that mirror multiple 
distinct sequences (Aubin et al., 2020). The culmination of these intricate steps culminates in 
the construction of an Amplicon Sequence Variant (ASV) table, facilitated by splicing 
sequences with a 20-base pair overlap. 
 

2.5 SparCC and Spec-easi 
Microbiomes embody intricate microbial communities where both their structure and function 
are profoundly governed by an intricate interplay of microbe–microbe and microbe–host 
interactions. These interactions span a gamut of mechanisms, encompassing direct cell-to-cell 
communication and interspecies signaling to more nuanced metabolite sensing. These intricate 
interactions play a pivotal role in shaping disease progression and clinical outcomes (Magalhaes 
et al., 2016). A striking illustration of intricate microbial dynamics exacerbating diseases is the 
phenomenon of polymicrobial synergism, wherein infections involving multiple interdependent 
bacterial species result in greater severity than single-agent infections. Polymicrobial synergism 
is associated with heightened antibiotic resistance, biofilm formation, tissue damage, and 
adaptation to the environment (Dalton et al., 2011; Murray et al., 2014). Hence, comprehending 
the microbiome in its entirety, including the intricate choreography between microbial taxa and 
their interactions with host organisms, is paramount in understanding the diverse roles 
microbiomes play in host health, development, dysbiosis, and the intricate realm of 
polymicrobial infections. 
Despite the profound expansion in microbiome studies catalyzed by next-generation 
sequencing technologies, the methodological panorama for unraveling microbe–microbe and 
host–microbe interactions remains surprisingly limited (Legendre et al., 2012). Enter network 
theory, especially manifested through system-oriented, graph-theoretical approaches. This 
framework offers a promising avenue for holistic microbiome analysis, facilitating a deeper 
understanding of the intricate ecological and evolutionary dynamics at play. Network theory 
empowers the modeling and analysis of a microbiome and its intricate interactions within an 
integrated network. Importantly, the architectural features of networks seem to exhibit 
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universality across a spectrum of complex systems, transcending domains from microbiomes 
and molecular interaction networks to computer networks, microcircuits, and social networks 
(Barabasi et al., 2004). This universality provides a conduit for harnessing insights garnered 
from well-studied non-biological systems to untangle the interwoven relationships shaping 
microbial interactions. 
An array of techniques, varying in efficacy and accuracy, have been harnessed to construct 
networks grounded in microbiome data. The simplest techniques draw upon (dis)similarity- or 
distance-based methodologies. However, the preponderant methods are correlation-based 
techniques, wherein meaningful pairwise associations among operational taxonomic units 
(OTUs) are unveiled using correlation coefficients such as Pearson's or Spearman's coefficients. 
Nonetheless, reliance on correlation coefficients for uncovering dependencies among members 
of a microbiome is fraught with inherent limitations. These encompass the potential to detect 
spurious correlations due to compositional bias and the challenge of statistical underpowering 
due to modest sample sizes. 
Amid burgeoning concerns surrounding correlation-based analyses, a cohort of methodologies 
resilient to compositional bias has emerged. A prime illustration is SparCC (Sparse Correlations 
for Compositional data). This technique leverages linear Pearson's correlations between log-
transformed components to discern associations within compositional data (Friedman et al., 
2012). Another intriguing approach is SPIEC-EASI (SParse InversE Covariance Estimation for 
Ecological Association Inference), a statistical methodology marrying data transformations 
tailored for compositional data analysis with a graphical model inference framework, 
predicated on the notion of a sparse underlying ecological association network (Kurtz et al., 
2015). 
SparCC networks crystallize by introducing the OTU table—comprising absolute abundance 
values—to the sparcc function nestled within the SpiecEasi package. Subsequently, the 
correlation matrix metamorphoses into an adjacency matrix through an aptly chosen threshold. 
Likewise, SPIEC-EASI networks spring to life through the utilization of the spiec.easi function 
inherent in the SpiecEasi package. The resultant entity encapsulates a matrix christened "refit," 
akin to a sparse adjacency matrix that seamlessly facilitates the construction of the microbiome 
network. 
 

2.6 Statist 
For the analytical phase, statistical computations and data processing were executed using the 
R-Studio software version 4.3.0. To explore the genetic landscape within the collected samples, 
the DADA2 algorithm was harnessed, allowing for a meticulous dissection of gene sequences. 
This endeavor encompassed a comprehensive assessment, addressing factors of diversity, 
environmental context, and temporal dynamics. To facilitate these intricate analyses, the 
microbiome package was employed, acting as the conduit for multifaceted tasks, including 
diversity quantification, subset examination, and core microbiome analysis. 
 
2.6.1 Phi Network and IVI 
Unlocking the intricate tapestry of network connections holds significant potential for 
effectively managing intricate systems. An overarching challenge in this endeavor is the 
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identification of pivotal nodes capable of exerting the most substantial influence on the entire 
network. This pursuit is instrumental in enhancing network efficiency and mitigating costs. This 
article introduces a groundbreaking algorithm termed the Integrated Value of Influence (IVI), 
which amalgamates key topological attributes of the network to pinpoint its central nodes. The 
IVI algorithm is a versatile tool applicable across diverse domains, including sociology, 
economics, transportation, biology, and medicine. For instance, within biomedical research, 
accurately discerning influential nodes within a disease-associated network could catalyze the 
revelation of novel biomarkers and therapeutic targets, thereby significantly impacting society. 
The realm of computational complex systems theory aims to furnish a panoramic, macroscopic 
view of network interactions, unveiling critical properties often elusive to reductionist 
methodologies. Network science has permeated numerous scientific spheres, encompassing 
social networks, traffic systems, telecommunications, cartography, chemistry, biochemistry, 
and biology at large (Frainay et al., 2017; Hochberg et al., 2018) . As we navigate the era of 
high-throughput biological assays, systems biology techniques have gained momentum in 
analyzing diverse biological networks, including gene regulatory networks, protein-protein 
interactions (PPIs), and neural transmissions (Tieri et al., 2019). These approaches hinge on 
network topology analysis and computation of centrality metrics, thereby elucidating deeper 
biological significance and spotlighting pivotal regulatory molecules. While hub nodes boast 
numerous connections, the role of spreader nodes in fostering information dissemination 
throughout the network is crucial (Kitsak., 2010). Notably, both these aspects, hubness and 
spreading potential, are often employed independently to identify influential nodes. 
Remarkably, nodes possessing simultaneously high connection frequency and expansive 
spreading potential emerge as the most pivotal constituents within a network. 
The concurrent integration of an array of centrality metrics has been employed as a strategy to 
pinpoint the most influential nodes within a network. For instance, researchers (del Rio et al., 
2009) demonstrated that while individual centrality metrics might not robustly predict network 
vital nodes, combining two metrics that encompass local and global network features yield more 
accurate prognostications. In the realm of systems biology, nodes exhibiting high degree and 
betweenness centrality are often recognized as influential nodes, encapsulating both local 
significance and global network flow. However, newer algorithms for identifying influential 
nodes, such as collective influence, local H index, and ClusterRank, have surfaced but are yet 
to be widely embraced, especially within biological contexts. Furthermore, no existing 
algorithm harmoniously integrates these centrality metrics to synergistically harness their 
efficacy. Moreover, in several networks, certain nodes occupy central positions and exhibit high 
degree centrality, yet possess low betweenness centrality due to limited connections beyond the 
main module (Oldham et la., 2019). Consequently, these nodes might boast high local centrality 
but subdued global centrality or vice versa, contingent on their network position (Guimera et 
al., 2005). The measurement of betweenness centrality is consequently influenced by a node’s 
network position and warrants cautious application in identifying network spreaders or 
developing innovative influential node identification algorithms. Intriguingly, addressing the 
positional bias of betweenness centrality has remained largely uncharted territory, and no 
computational solution has been devised to rectify this bias. 
To surmount these challenges, researchers devised the Integrated Value of Influence (IVI) 
formula, a pioneering approach that harmonizes key network centrality metrics to concurrently 
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neutralize their biases and discern pivotal regulatory molecules within the network. The IVI 
algorithm represents a revolutionary advancement, seamlessly amalgamating six pivotal 
network centrality metrics. To counterbalance the positional bias inherent in betweenness 
centrality, we harnessed an alternative metric called neighborhood connectivity. Rigorous 
evaluation of the interplay between each pair of selected centrality metrics facilitated the 
formulation of appropriate integration functions. After meticulous scrutiny of the centrality 
metrics presented in the literature, six pivotal metrics—degree centrality, ClusterRank, 
neighborhood connectivity, local H index, betweenness centrality, and collective influence—
were identified as paramount for discerning a network’s influential nodes. Each of these 
centrality metrics captures distinct topological dimensions of the graph, encompassing local, 
semi-local, and global topology. An additional advantage of these metrics is their independence 
from the requirement for a fully connected graph or module for calculation. 
The Integrated Value of Influence (IVI) algorithm epitomizes a remarkable breakthrough in 
understanding and harnessing the dynamics of complex networks. By synergizing various 
centrality metrics and addressing the limitations inherent in traditional approaches, the IVI 
algorithm enhances our capacity to identify pivotal nodes in intricate networks across diverse 
domains. This innovation promises transformative implications for disciplines ranging from 
sociology to medicine, empowering us to navigate the intricate web of interconnected nodes 
with unprecedented precision and efficacy. 
Quantifying the influence of individual nodes in complex networks is a fundamental pursuit 
with applications spanning diverse domains, from social networks to biological systems. In this 
study, we introduce the Integrated Vertex Influence (IVI) metric, which seamlessly integrates 
the Spreading Score and Hubness Score to provide a comprehensive assessment of node 
importance, considering both information dissemination and local prominence. 
The Spreading Score, a measure of a node's potential to propagate information within a network, 
is tailored to address the challenge of varying scales across centrality metrics. By applying the 
Min-Max feature scaling method, we normalize centrality measures, preserving their relative 
weight ratios (Han et al., 2011). Building on the basis of four crucial measurements - normalized 
neighborhood connectivity (NC), ClusterRank (CR), betweenness centrality (BC), and 
collective influence (CI) - we introduce the Spreading Score as the amalgamation of these 
metrics. This composite score aptly captures the nodes' capacity for information diffusion. 
 

Formula 1: Spreading Score formula 
 

Likewise, the Hubness Score illuminates nodes' local prominence within their immediate 
surroundings. By combining local H index (LH index) and degree centrality (DC), this score 
encapsulates nodes' dominance in local territories. The Hubness Score (HS) for node i is 
computed as: 
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Formula 2: Hubness Score formula 
 

The IVI metric emerges as a pivotal contribution by synergizing Spreading and Hubness Scores 
to offer a comprehensive estimation of node influence. Leveraging the Multiplication function, 
we integrate these scores, considering their multiplicatively enhanced impact. IVI encapsulates 
the most vital aspects of local, semi-local, and global centrality measures - degree centrality, 
ClusterRank, neighborhood connectivity, local H index, betweenness centrality, and collective 
influence. Crucially, IVI simultaneously addresses positional biases inherent in network 
analysis. 
 

Formula 3: IVI Score formula 
 
The IVI metric stands as a testament to the evolving landscape of network analysis, fostering a 
holistic understanding of node influence. By integrating Spreading and Hubness Scores, IVI 
provides a nuanced appraisal of nodes' roles in information dissemination and local prominence. 
This novel approach advances our capacity to comprehend the intricate dynamics of complex 
networks across various disciplines, significantly enhancing our ability to discern key players 
and their impact. 
 
2.6.2 Zeta Diversity 
In the realm of biodiversity research, unraveling the intricate tapestry of patterns and drivers is 
a fundamental pursuit. Researchers have embarked on this journey, proposing a groundbreaking 
concept known as zeta (z) diversity—a metric designed not only to harmonize incidence-based 
diversity measures but also to unveil the underlying intricacies within patterns and relationships. 
Unlike conventional methods focused on species compositional turnover, zeta diversity 
introduces a comprehensive framework by quantifying the entire spectrum of diversity 
components across multiple assemblages, thereby providing a panoramic view of the spatial 
arrangements governing multispecies distributions. 
Researchers unveiled the versatility and ecological significance of zeta diversity through its 
application across various contexts. Scaling with sample size, spatial granularity, and 
geographical extent, zeta diversity emerged as a versatile tool that reconciled diverse 
biodiversity patterns. It masterfully elucidated species accumulation curves, the species-area 
relationship, multispecies occupancy patterns, and the influence of species endemism—offering 
profound insights that reverberate across the ecological landscape. 
Distinct forms of zeta diversity, such as the exponential and power-law relationships, unearthed 
invaluable insights into the assembly processes. By distinguishing between stochastic and niche 
assembly processes, zeta diversity facilitated a deeper understanding of the intricate 



16 
 

mechanisms steering biodiversity patterns. This understanding transcended the realms of 
species composition, turnover dynamics, co-occurrence patterns, community assembly 
processes, and the subsequent repercussions of environmental change on biodiversity. 
The significance of zeta diversity was further underscored by its inherent versatility in 
addressing multiple facets of species incidence and compositional turnover. Serving as a bridge 
between these descriptors, zeta diversity illuminated the dynamics of species diversity across 
diverse scenarios, encompassing a multitude of biodiversity patterns. By orchestrating a 
synthesis of these facets, zeta diversity emerged as a unifying force that provided a holistic 
comprehension of ecological relationships, coexistence dynamics, and the broader ecological 
tapestry. 
In summation, the pioneering concept of zeta diversity, championed by researchers, marked a 
significant stride in the area of biodiversity pattern elucidation. Its holistic framework 
transcended traditional measures, offering a nuanced understanding of the intricate drivers 
shaping biodiversity and their intricate interplay with changing environmental dynamics. 
Zeta diversity, a concept pivotal to the study of biodiversity, encompasses several 
interconnected aspects that shed light on species distribution patterns and their underlying 
dynamics. Researchers have identified crucial concepts within the field of zeta diversity, each 
serving a distinct analytical or ecological purpose. 
Zeta Diversity Decline: Researchers employed the Min-Max feature scaling technique to 
normalize various centrality measures, while simultaneously preserving their relative weight 
ratios. The essence of this concept encompasses the alteration in the number of shared species 
as the count of included sites in the comparison, or the zeta order, increases. Ecologically, it 
encompasses the contribution of species with varying ranges, spanning from narrow to wide, to 
compositional changes. This contribution operates implicitly over spatial, temporal, or even 
categorical aspects such as samples, sites, or hosts. It's imperative to recognize that Zeta 
diversity is rooted in incidence-based calculations, capturing the rarity and commonness of 
species, as reflected by their range, occurrence, or area of occupancy. 
Zeta Ratio: In the analytical sphere, the Zeta ratio emerges as a vital metric for understanding 
the retention of species within additional cases. Specifically, the Zeta ratio outlines the 
probability of preserving, or rediscovering, a species belonging to the same order of 
commonness as the zeta order. As for its application, this metric proves valuable in constructing 
the species retention rate, offering insights into the stability of species presence across different 
cases. 
Retention Rate (Based on Zeta Ratio): The Retention rate, a product of the Zeta ratio, captures 
the degree to which common species exhibit a higher likelihood of persisting across sites 
compared to their rare counterparts, as the zeta order increases. This ecological concept 
embodies the pace at which species endure in a community over various sites or landscapes, 
reflecting the tenacity of widespread or commonly occurring species. The Retention rate holds 
multifaceted applications: it is instrumental in visually depicting turnover at high orders where 
absolute changes might appear minimal. Additionally, it serves to evaluate the spatial extent of 
a community or metacommunity concerning the extent of sampling. Furthermore, the Retention 
rate serves as a tool to discern differences in species retention rates across taxonomic groups, 
habitats, conditions of interest, or in contrast to the null expectation. It is also adept at unveiling 
ecotones or abrupt shifts in composition. 
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Zeta Diversity Decay (Linked to Distance Decay): The concept of Zeta diversity decay 
encapsulates the fluctuation in shared species concerning the increasing distance between sites 
or temporal gaps between surveys, across different zeta orders. This phenomenon intertwines 
spatial and temporal aspects. From a spatial perspective, it unveils the transformation in 
compositional similarity between communities with expanding distances. Temporally, it unveils 
the variation in compositional similarity over different periods. This concept's implications 
encompass selecting appropriate spatial and temporal dimensions when designing survey and 
monitoring schemes. It also quantifies the distances over which community compositions alter, 
enabling comparisons between the turnover rates of rare and common components across 
various conditions and circumstances. 
The elucidation of these concepts within Zeta diversity provides an enriched framework for 
unraveling species distribution patterns and their dynamic variations across space and time. 
These interconnected concepts, addressing aspects like commonness, persistence, turnover, and 
distance, offer a nuanced comprehension of ecosystem dynamics and the factors influencing 
biodiversity patterns. 
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3. Results 

3.1 Network 
In the domain of Network studies, the Hubness score signifies the potency of individual vertices 
within their respective contexts, while the Spreading score offers insights into their capacity for 
information propagation. When combined, these scores yield the IVI score, providing a 
comprehensive indicator of a vertex's impact across the entire Network. If the IVI score is 
higher, it signifies a greater impact of the respective vertex on the entire Network, and it also 
means that the microbial species corresponding to the vertex is the dominant species in this 
environment. Thus, the objective of this experiment is to generate the IVI Network graph for 
each sample along with its corresponding IVI score table. In the IVI Network graph, the darker 
the color of a node means that it has a higher IVI score, and the lighter the color, the lower the 
IVI score. Subsequently, the objective is to extract the top microbial species with elevated IVI 
scores for further analysis. 

Figure 1 
 

Table 1 
 

spreading_score hubness_score ivi Phylum Genus
100 73.98314607 100 Cyanobacteria Synechococcus CC9902

64.28739271 81.15168539 70.4307071 Marinimicrobia (SAR406 clade) Marinimicrobia bacterium SCGC AAA160-I06
42.54558493 100 57.1776015 Proteobacteria OM75 clade
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Figure 1 and Table 1 show the IVI Network and IVI score for the WAF group. The three 
microorganisms shown in the table, Synechococcus CC9902, Marinimicrobia bacterium 
SCGC AAA160-I06 and OM75 clade are exactly the three dominant microorganisms in the 

WAF environment. 
 

Figure 2 
 

 
Table 2 

 
Figure 2 and Table 2 show the IVI Network and IVI score for the CEWAF group. The two 
microorganisms shown in the table, unidentified bacterioplankton and Peredibacter are 
exactly the two dominant microorganisms in the CEWAF environment. 

spreading_score hubness_score ivi Phylum Genus
98.57772901 65.23137255 100 Proteobacteria unidentified marine bacterioplankton
98.57772901 65.23137255 100 Proteobacteria Peredibacter
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Figure 3 
 

Table 3 
 

Figure 3 and Table 3 show the IVI Network and IVI score for the BEWAF group. The two 
microorganisms shown in the table, OM75 clade and Marinimicrobia bacterium SCGC 
AAA160-I06 are exactly the two dominant microorganisms in the BEWAF environment. 

spreading_score hubness_score ivi Phylum Genus
100 90.62158055 100 Proteobacteria OM75 clade

73.64882216 65.44528875 53.479099 Marinimicrobia (SAR406 clade) Marinimicrobia bacterium SCGC AAA160-I06
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Figure 4 
 

Table 4 
 

Figure 4 and Table 4 show the IVI Network and IVI score for the SW group. The three 
microorganisms shown in the table, Arenibacter, Erythrobacter and Nitrospina are exactly the 
three dominant microorganisms in the SW environment. 
 

spreading_score hubness_score ivi Phylum Genus
69.71622109 65.125 100 Bacteroidetes Arenibacter

100 29.6875 66.006211 Proteobacteria Erythrobacter
100 29.6875 66.006211 Nitrospinae Nitrospina
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Figure 5 
 

Table 5 
 

Figure 5 and Table 5 show the IVI Network and IVI score for the SWD group. The two 
microorganisms shown in the table, SAR92 clade and NS5 marine group are exactly the two 
dominant microorganisms in the SWD environment. 

spreading_score hubness_score ivi Phylum Genus
99.20793425 84.32758621 100 Proteobacteria SAR92 clade
62.64039539 85.49137931 64.0073853 Bacteroidetes NS5 marine group
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Figure 6 
 

Table 6 
 

Figure 4 and Table 4 show the IVI Network and IVI score for the SWBS group. The three 
microorganisms shown in the table, Fluviicola, endosymbiont of Vannella sp. A1 and 
Cryomorpha are exactly the three dominant microorganisms in the SWBS environment. 

 

3.2 Zeta Diversity 
This study focuses on four metrics when discussing Zeta Diversity, which are Zeta Diversity 
Decline, Ratio of Zeta Diversity Decline, Exponential Regression and Power Law Regression. 
When we move from examining species shared between two communities (ζ2) and gradually 
increase the number of communities under consideration, we typically find that the number of 
shared species declines. This decline is termed the Zeta Diversity Decline. It provides a 
deeper understanding of species sharedness among biological communities. The Ratio of Zeta 
Diversity Decline is another representation of the Zeta Diversity Decline, typically calculated 
between successive ζ values. Specifically, it's the ratio between ζn and ζ(n+1), which is 
ζ(n+1)/ ζn. In other words, this is the probability that an already discovered species remains 
after adding samples or sites. This ratio offers a quantitative insight into the rate of decline in 
species sharedness when adding a new community to the mix. Exponential regression and 
power law regression are two regression methods in statistics used to fit data points to an 
exponential or power function. Using regression can help us better understand and predict the 
pattern of Zeta Diversity Decline as the number of biomes increases. When the decline is 

spreading_score hubness_score ivi Phylum Genus
68.12658145 91.59651163 100 Bacteroidetes Fluviicola
58.26939553 100 93.2183324 Proteobacteria endosymbiont of Vannella sp. A1

100 57.17674419 92.1285086 Bacteroidetes Cryomorpha
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more random it will fit an exponential regression, and conversely when the decline is 
deterministic it will fit a power law regression. There are also two metrics, Zeta Diversity, 
which indicates the number of species that are common to multiple biomes, and Zeta Order, 
which indicates the number of biomes examined. 
 

Figure 7: Four graphs related to zeta diversity from the WAF group 
 

Figure 8: Four graphs related to zeta diversity from the CEWAF group 
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Figure 9: Four graphs related to zeta diversity from the BEWAF group 
 

Figure 10: Four graphs related to zeta diversity from the SW group 
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Figure 11: Four graphs related to zeta diversity from the SWD group 
 

Figure 12: Four graphs related to zeta diversity from the SWBS group 
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4. Discussion 

4.1 Network 
4.1.1 Comparison of WAF, CEWAF and BEWAF results in Network 
Based on the results of the charts in the previous chapter, it is clear that in the three groups of 
samples, WAF and BEWAF have extremely similar dominant species, and the dominant 
species even have the same genus. This suggests that the use of the biodispersant rhamnolipid 
has very little effect on the overall species structure of the microorganisms in the case of an 
oil spill. In contrast, all dominant species were altered in the CEWAF group using the 
chemical dispersant finasol. Colwellia was the dominant species in all three groups in the 
results of previous similar experiments, but this result was not observed in the present study, 
possibly because Colwellia was one of the dominant species in the original community in the 
FSC waters, leading to its higher initial abundance measured in previous similar experiments. 
 
4.1.2 Comparison of SW, SWD and SWBS results in Network 
The results for the three control groups were slightly more unexpected, with all three samples 
having different genus of dominant species, suggesting that when the oil is fully degraded, the 
residual finasol or rhamnolipid dispersants will still have an impact on the microbial 
community in the water. But this does not necessarily mean that the impact is negative; after 
all, the ecological functions of these microorganisms, the ecological balance of the 
environment and the food chain are not necessarily seriously affected. Therefore, the 
comparison of the three control groups with each other does not lead to a large number of 
meaningful conclusions. 
 
4.1.3 WAF and BEWAF dominant species, OM75 clade and Marinimicrobia bacterium 
SCGC AAA160-I06 
In the WAF and BEWAF samples, two dominant microbial taxa emerged prominently: 
members of the order Thalassobaculales (with special emphasis on the OM75 clade) and the 
relatively newly identified Marinimicrobia bacterium SCGC AAA160-I06. 
The Thalassobaculales, notably the OM75 clade, are part of the Alphaproteobacteria class, 
which has been shown to have versatility in hydrocarbon degradation, especially in marine 
environments. The significant dominance of OM75 clade in the WAF and BEWAF samples 
suggests their potential role in processing petroleum or its derivatives, possibly indicating 
their capability to adapt and thrive in oil-contaminated environments. 
On the other hand, Marinimicrobia bacterium SCGC AAA160-I06 represents a more 
mysterious aspect of marine microbial ecology. Being relatively new to scientific literature, its 
exact ecological role remains to be elucidated. However, its dominance in both WAF and 
BEWAF samples emphasizes the need to understand its potential interactions with 
hydrocarbons and the broader implications for marine ecosystems. 
 
4.1.4 The predominant taxa in both SW and SWD: Flavobacteriaceae 
The family Flavobacteriaceae consistently featured as a dominant player in both the SW and 
SWD treatments. Originating from the phylum Bacteroidetes, this family is ubiquitously 
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found in diverse environments, especially in aquatic habitats. Many of its members have been 
recognized for their adeptness at degrading organic compounds, from complex molecules to 
polysaccharides and proteins. Notably, while the addition of Finasol in the SWD treatment did 
not significantly alter the dominance of Flavobacteriaceae, suggesting a level of resilience or 
compatibility with this dispersant, it's vital to consider the broader ecological impacts of 
dispersants beyond just microbial community structures. 
4.1.5 Pervasive Dominance of Thalassobaculales in Various Treatments 
A remarkable consistency was observed in our experiments: members of the 
Thalassobaculales order were dominant in five out of the six treatments, with only CEWAF 
being the exception. This prevalent dominance of Thalassobaculales, irrespective of variations 
in environmental conditions brought about by the presence of oil and two distinct dispersants, 
speaks to their robustness and adaptability in marine ecosystems. 
Several aspects might shed light on the ubiquitous presence of Thalassobaculales: 
Environmental Fitness: Thalassobaculales could have metabolic pathways that favor them in 
oil-affected habitats, potentially utilizing hydrocarbon components for energy. 
Competitive Edge: The dominance of this order might suggest they have a competitive 
advantage in accessing resources under the given experimental conditions. 
Generalist Nature: Being generalists, they might be equipped to thrive in diverse conditions, 
explaining their consistent presence across treatments. 
The resilience of Thalassobaculales underscores their potential significance in marine 
environments, especially when subjected to variations in conditions. 
 
4.1.6 Difference in Core Taxa in WAF Treatments: Alcanivorax 
Historically, Alcanivorax is characterized as a crucial marine bacterium for oil degradation, 
often found in low concentrations in uncontaminated upper ocean areas (Emmanuel et al., 2016). 
Remarkably, in certain saline conditions, it's believed that Alcanivorax can represent up to 80% 
of oil-degrading microorganisms. While this bacterium primarily depends on alkanes and 
possesses strong degradation capabilities, its presence was not detected in any of our 
experimental groups. Generally, populations of this microbe surge upon the introduction of oil 
to the environment. The stark difference in our observations may suggest unique environmental 
or experimental factors that prevented its proliferation. The colder conditions of the FSC in the 
North Atlantic could potentially play a role in hindering the growth of Alcanivorax. 
 
4.1.7 Divergence from Previous Studies on Dominant Taxa in Finasol Environments 
In prior investigations, members of Rhodobacteracaea emerged as a significant presence in 
Finasol-treated environments. Vibrionaceae was also notably observed predominantly in 
environments treated with Finasol, with a distinct enrichment in SWD. 
However, our current findings present a contrast. Neither Rhodobacteracaea nor Vibrionaceae 
were dominant in our study's primary taxa. This discrepancy might arise from multiple 
factors. Environmental variations, for instance, can influence microbial responses, as changes 
in experimental conditions, such as temperature, salinity, or nutrient availability, may yield 
different results. The source and historical background of the microbial communities studied 
might also play a role in their varied reactions. Moreover, the precise composition or batch of 
Finasol used in different studies could be another determinant, potentially influencing the 
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microbial responses. Additionally, microbial communities are known for their evolutionary 
adaptability, which could reflect in the different dominant taxa in separate studies. 
While Rhodobacteracaea and Vibrionaceae have demonstrated capabilities to metabolize 
hydrocarbons and surfactant by-products, other microbial taxa may have taken on this role 
under our study's specific conditions. A more in-depth exploration is necessary to truly 
understand these microbial shifts and their implications in Finasol-treated marine 
environments. 
 
4.1.8 Variation in the Core Taxa of BEWAF: Cycloclasticus 
In past research, Cycloclasticus presented as a prominently enriched taxa in early 
experimental stages, particularly in treatments with rhamnolipid and pure oil. These 
observations revealed that Cycloclasticus levels surged within the initial week and remained 
consistent throughout the experimental period. However, my investigations did not note the 
presence of Cycloclasticus in any Finasol treatments. This absence is quite significant. Within 
the context of oil spill research concerning the Gulf of Mexico, Cycloclasticus has been 
identified as a pivotal bacterium involved in the chemical processing of polycyclic aromatic 
hydrocarbons in such environments(Xuemei et al., 2016). The lack of Cycloclasticus in this 
study's chemical treatments suggests that Finasol might exert a detrimental effect on this taxa. 
Given Cycloclasticus's critical role in degrading aromatic hydrocarbons, its absence could 
potentially impact the biodegradation rate of aromatics during chemical treatment. This 
finding underscores the need to reconsider the composition of Finasol for future applications. 
 

4.2 Zeta Diversity  
4.2.1 Summary of the six sample groups in terms of zeta diversity decline 
All six groups showed very similar trends in zeta diversity decline curves. This suggests that 
there is consistency between the groups in the pattern of change in the species composition of 
the samples. Specifically, if the trends in the curves for zeta diversity decline are the same, 
this indicates that species composition is changing or being lost in a similar manner across the 
groups. This situation may result from the presence of some mechanism, which may be 
related to ecological processes such as microbial interactions, resource competition, and 
species substitution inherent in the environment. The similarity in trends could offer valuable 
insights into how microbial communities respond to environmental changes or perturbations. 
However, it might also limit understanding the subtle differences in microbial responses 
between different treatments. 
But there is also a very clear difference in these six curves. When ζ = 1, the two groups with 
Finasol added (SWD and CEWAF) have significantly lower values of Zeta Diversity 
compared to the other four groups, which means that the number of species in the samples is 
significantly reduced after the addition of Finasol. This means that Finasol is unfavorable to 
the survival of certain species, but rhamnolipid does not have this problem, suggesting that 
rhamnolipid is better than Finasol in maintaining the diversity of marine microorganisms. 
Although the different sample treatments may have affected the absolute number of species or 
their co-occurrence, their effects on the overall pattern of change in species composition were 
similar, meaning that no significant treatment effects were captured here. 
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4.2.2 Stochastic and deterministic situations of samples obtained from regression models 
Unexpectedly, all six groups followed the power law regression, even for the SW blank 
control group. We can therefore infer that all treatment and control groups seem to have a 
similar way of responding to environmental changes or perturbations. This might suggest that 
these microbial communities have an inherent and relatively stable pattern of response, 
regardless of their initial conditions or specific treatments. This could be dictated by specific 
environmental conditions of that region, niche competition, predator-prey dynamics, etc. 
This result may imply that the microbial community in this marine region has a strong 
robustness and resilience, capable of resisting external disturbances and striving to maintain 
its original ecological dynamics and structure. Or it may be that although the external factors 
introduce new substances and pressures, they might not be strong enough to entirely change 
or reshape the basic dynamics of this ecological system. This could explain why all the 
groups, including those treated, follow the same power law pattern. 
The microbial community decline in this marine region seems to be governed by an inherent, 
non-random ecological mechanism, which demonstrates significant stability and robustness 
across different disturbances. 
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5. Conclusion 
The intricate web of interactions that form the basis of microbial community structures 
remains a subject of immense fascination and importance, particularly within the context of 
marine environments. Through a comprehensive analysis of the effects of the biodispersant 
rhamnolipid and the chemical dispersant Finasol on microbial communities during oil spills, 
this research delves deep into the ecological ramifications of using these compounds. 
The SWBS and SWD groups were not only used as control groups for BEWAF and CEWAF, 
but also as experimental groups for SW to simulate the effects of the residual dispersant on 
the biotic community after all the crude oil has been degraded. Although this part of the 
Network study did not produce valid results, the Zeta Diversity study concluded that 
rhamnolipid had a lower impact on marine microorganisms than Finasol in a situation where 
there is no oil to be degraded.  
While both the BEWAF and CEWAF groups obtained similar results in both the Network 
study and the Zeta Diversity study, rhamnolipid does not cause more changes in the original 
community structure, which means that the rhamnolipid environments are closer to the natural 
circumstances compared to the Finasol environments. 
By comparing the regression models of the six samples, we have another surprise gain, which 
is that the resilience and robust nature of marine microbial communities in the Faroe-Shetland 
Channels (FSC) have been made evident. Our research shows that while external disturbances 
can temporarily affect the marine microbiome, its inherent stability allows it to resist drastic 
changes. 
Generally speaking, rhamnolipid, as a biodispersant, has been observed not to significantly 
alter dominant species within microbial communities, preserving essential species and 
promoting biodegradation, presenting it as a potentially effective alternative in addressing oil 
spills. In contrast, Finasol, a chemical dispersant, can introduce considerable selective 
pressures, leading to significant disruptions in microbial diversity. 
This study underscores the pivotal role marine microbial communities play in responding to oil 
spills. Our findings advocate for further research into sustainable and efficient measures like 
rhamnolipid to combat the challenges of oil spills. 
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6. Future work 
Oil spills present grave environmental challenges, necessitating the investigation into 
microbial species that can proficiently degrade oil. In our research, we meticulously sourced 
microbial specimens from the Faroe-Shetland Channel, aiming to identify bacteria that 
demonstrate heightened adaptability when exposed to two specific dispersants. This model of 
simulation is versatile and can be adapted to other regions susceptible to oil spills, allowing 
for proactive identification and deployment of appropriate dispersants tailored to the local 
microbial populace. As we advance, there are still areas in our study that require refinement 
and emerging challenges we anticipate confronting in the future. Here are my three 
summarized points of greatest need for improvement, or possible future difficulties: 
 
1. The samples contain a large number of microorganisms that have not yet been fully 
investigated, and some of the newly discovered microorganisms are in a completely new field, 
even from phylum level. More problematically, these newly discovered microorganisms are 
often the dominant species in the samples, which makes it difficult to analyze the dominant 
species once we have found it. And we can't conclude why it is the dominant species, but we 
can only make simple comparisons between different samples. While this isn't too much of an 
obstacle to drawing the conclusions we want, it does prevent us from digging deeper for more 
valuable information.  
 
2. The zeta diversity and regression models for all six sets of samples have almost identical 
trends, with only the minor difference of initial Zeta Diversity values. The almost no 
difference in the results makes it difficult to find more profound conclusions, possibly because 
Zeta Diversity itself is not suitable for this kind of research, or more likely, the sample quality 
is not stable due to too many interfering factors in the sampling. This is also reflected in the 
Network analysis, where the IVI Networks for the SW, SWD and SWBS groups are almost 
worthless, and although they are not the primary subjects of the study, it is still expected that 
all the data I have processed will provide useful results.  
 
3. Since the dangers of crude oil spills are extremely high, modern protective measures have 
tried to minimize the possibility of a spill, making dispersants the last line of defense that is 
better left unused. This is coupled with the fact that Finasol is cheaper to produce, is available 
in larger quantities, has a more complete product chain, and is itself food-grade. Therefore, 
there is still a long way to go before Finasol is replaced by Rhamnolipid. After all, it is always 
the economics of use that take precedence, and in this case the advantages of Rhamnolipid 
cannot be fully realized. 
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