
Coursework Declaration and Feedback Form 
 

The Student should complete and sign this part 
 

Student 

Number: 

 

Student 

Name: 

 

Programme of Study (e.g. MSc in Electronics and Electrical Engineering): 

 

Course Code: ENG5059P 
 

Course Name: MSc Project 

 

Name of  
First Supervisor: 

 

Name of 

Second Supervisor: 

 

Title of 

Project: 

 

Declaration of Originality and Submission Information 

 

I affirm that this submission is all my own work 

in accordance with the University of Glasgow 

Regulations and the School of Engineering 

requirements 

Signed (Student) : 

 

 

 

 

E N G 5 0 5 9 P 

 

Date of Submission : 

 
 

Feedback from Lecturer to Student – to be completed by Lecturer or Demonstrator 

 

Grade Awarded: 

Feedback (as appropriate to the coursework which was assessed): 

 

Lecturer/Demonstrator: 
 

Date returned to the Teaching Office: 

 

2776284K Sanhita Koley

Dr Umer Zeeshan Ijaz Dr Paul Harvey

On Understanding Diversity and Interactions of Microbes in Obesity 

14.08.2023



On Understanding Diversity and Interactions
of Microbes in Obesity

Sanhita Koley (Student ID:2776284K)
Supervisor: Dr Umer Zeeshan Ijaz

Co-Supervisor: Paul Harvey

August 26, 2022

A thesis submitted in partial fulfilment of the requirements for the degree of
MSc Computer Systems Engineering

School of Engineering

1



Abstract

Obesity, reported as body mass index (BMI) rather than total body fat for epidemiologic

simplicity, is generally understood to be an accumulation of excessive body fat that has negative

effects. Obesity in adults over the age of 18 is characterised by a BMI ≥ 30 kg/m2 , with BMI

calculated by dividing weight (kg) by height (m2 ). In children, median BMI (kg/m2) varies

significantly with age and gender-based specific growth of the child, the BMI is instead

presented as standard deviation scores (SDS). The World Health Organization (WHO) defines

obesity as BMI SD scores of >3 SDS from birth to age 5 years and >2 SDS for 5-18 years above

WHO growth standards median. The Centre for Disease Control and Prevention (CDC) in the

US defines a child as obese at 95th centile between ages 2-19 and 97.7th centile for obese

children less than 2 years of age. The International Obesity Task Force (IOTF) recommends the

use of BMI cut-off points which converge to the adult BMI cut-offs of 30 kg/m2 for obese and

25 kg/m2 for overweight. Gut microbiome is now recognised as vital characteristic affecting the

progression of obesity and obesity-related diseases, although it is not clear on whether changes in

gut microbiota composition and metabolites lead to obesity or are a cause.This project seeks to

explore this statement by working with 16S rRNA datasets from children/young people with

"simple" obesity (due to an unknown cause) and "hypothalamic" obesity (related to a known

cause, such as Prader-Willi syndrome). In the light of creating a contrast, 16S rRNA datasets are

also available for both "hypothalamic" lean children/young adults, and healthy lean

children/young adults, along with anthropometric and body composition metadata. Therefore,

this project will examine the microbiomes of the four types of gut samples, concentrating on the

ecology and formation of their microbial communities.

Keywords: Obesity, body mass index (BMI), excessive body fat, adults, children, growth

standards, BMI SD scores, gut microbiome, obesity-related diseases, gut microbiota

composition, metabolites, 16S rRNA datasets, simple obesity, hypothalamic obesity, Prader-Willi

syndrome, craniopharyngioma, contrast, lean children, young adults, anthropometric, body

composition, microbial communities.
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Chapter I : Introduction

1.1 Chapter Outline

This chapter analyses the burden of obesity, its risk factors, and effects. It also covers the

composition of the gut microbiota, metabolic activity in the colon, and how diversity varies over

the course of life. Additional criticism of the research on the make-up and function of the gut

microbiota in the aetiology of obesity from various animal studies, as well as the hypothesised

mechanisms linking the gut microbiota and obesity, is provided. Finally, the purpose of the

present study, the study group, and the study goals are briefly explained.

1.2 Introduction to Obesity

Obesity is a long-term medical condition in which there is an excessive buildup of body fat that

is harmful to one's health. . The measurement of body fat based on height and weight is called

BMI(Body mass index):

(1)𝐵𝑀𝐼 =   
𝑚

𝑘𝑔

𝑙2
𝑚

Where is the body weight in kilograms, is height in metres.𝑚
𝑘𝑔

𝑙
𝑚

A (BMI) of 30 or more is considered obese. Overweight is defined as a BMI of 25 or more and

BMI for children is described by the World Health Organisation (WHO) using the BMI Standard

Deviation Score (BMI SDS),where the child's age is taken into account [1].

1.2.1. Overview of obesity in adults and children

Adult obesity was defined by the WHO in 2021 as having a BMI of 30 or higher and adult

overweight as having a BMI of 25 or higher. Obesity was defined by the WHO (2021) as having

a BMI SDS more than 3 SD over the WHO Child Growth Standards median and overweight as

having a BMI SDS greater than 2 SD above that median for children under the age of five. For

children and adolescents between the ages of 5 and 19, obesity was defined by the WHO (2021)

as a BMI SDS that was more than 2 SD over the WHO Child Growth Standards median. A BMI

7



SDS greater than 1 SD above the WHO Child Growth Standards median was considered

overweight. WHO anticipated that in 2016, more than 340 million children and adolescents

between the ages of 5 and 19 will be overweight or obese, and that 38.2 million children would

be in this category by 2019 [1].

1.2.2. Hypothalamic Obesity in the Context of Prader-Willi Syndrome

Prader-Willi syndrome (PWS) stands as a rare genetic disorder attributed to the absence of

expression of chromosome 15q11-q13. This condition gives rise to a range of challenges,

including hypotonia and feeding difficulties during infancy, coupled with later complications

such as obesity, intensified by uncontrollable hyperphagia in adolescence and beyond. In contrast

to simple obesity, individuals with Prader-Willi syndrome (PWS) possess diminished lean body

mass and heightened fat mass, primarily concentrated in the trunk, with a lower prevalence of

visceral obesity. These observations suggest that the lowered resting energy expenditure (REE)

could contribute to the development of obesity in those with PWS [2]. Hence Hypothalamic

obesity, stemming from disruptions in hypothalamic signalling, provides a unique lens through

which to examine the gut microbiota's involvement in obesity. Individuals with hypothalamic

obesity often possess distinct microbial profiles that contribute to their pathological weight gain.

On the other hand, those who have hypothalamic lesions that result in lean phenotypes also have

altered gut microbiota, demonstrating the microbiome's intricate role in hypothalamic control.

1.2.3. Health risks and complications associated

Obesity among adults stands as a significant health concern, giving rise to a spectrum of health

issues encompassing cardiovascular diseases, diabetes, joint problems, musculoskeletal

disorders, respiratory complications, and psychological distress. Similarly, childhood obesity

lays the foundation for enduring difficulties, as children become more susceptible to chronic

ailments and face an elevated risk of grappling with low self-esteem and depressive tendencies.

Addressing childhood obesity becomes paramount to forestalling the perpetuation of health

challenges into adulthood. Experiencing significant weight gain during pregnancy and retaining

weight after childbirth can impact subsequent fertility and elevate the chances of complications

in future pregnancies [3]. Additionally, pregnancy introduces distinctive complexities, as

maternal obesity heightens the likelihood of gestational diabetes, elevated blood pressure,
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labour-related complications, birth anomalies, and the need for caesarean deliveries. Moreover,

the offspring of mothers burdened by obesity confront the prospect of enduring long-term health

implications, including obesity and associated afflictions.

1.2.4. Maintenance and Management of Obesity

Obesity management and maintenance require a comprehensive and sustainable approach. This

includes eating a balanced diet, exercising regularly, and addressing psychological factors that

affect eating habits. Customised strategies, behavioural interventions, and social support are all

important for maintaining weight loss. Monitoring progress, adapting strategies, and seeking

professional guidance can help ensure long-term success. By adopting a holistic lifestyle change

and staying vigilant, individuals can effectively manage obesity and improve their overall health

and well-being. According to [4] adopting a Mediterranean diet, characterised by higher

consumption of fruits, vegetables, and the inclusion of beneficial fats such as monounsaturated

and polyunsaturated fats, promotes a health-conscious approach to achieving and sustaining

weight loss goals.

1.3. Gut Microbiota and Obesity

The human gut harbours a diverse and dynamic ecosystem of microorganisms, collectively

known as the gut microbiota. This intricate assembly comprises bacteria, viruses, fungi, and

other microorganisms that engage in intricate crosstalk with their human host. This mutualistic

relationship extends beyond simple digestion and absorption of nutrients, encompassing a wide

array of physiological functions, including immune system modulation, energy metabolism, and

even neural communication. The gut microbiota has evolved to become a key regulator of

various bodily processes, exerting a profound influence on health, disease and obesity.

1.3.1. Exploring the diversity of gut microbiota

The research conducted in [5] claims that the human intestinal tract comprises approximately

99% of intestinal microorganisms, and the term microbiota is frequently used interchangeably

with bacteria. The gut's microbial community is categorised into five prominent phyla:

Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia (Figure 1).
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Firmicutes constitute around 60% of the total bacterial population, including Bacilli, Clostridia,

Erysipellotrichia, Negativicutes, Thermolithobacteria, and some unclassified Firmicutes.

Bacteroidetes, comprising 10-20% of total bacteria, encompasses Bacteroides, Cytophagia,

Flavobacteria, and Sphingobacteria. However, a substantial portion of identified sequences,

about 64-70%, remains unclassified and their functionalities are yet to be elucidated.

Figure 1: Principal phylum of gut bacteria and their predominant subgroups [5,6].

10



1.3.2. Connection between gut microbiota composition and obesity

Gut microbiota and its role in obesity has only scratched the surface of understanding the

intricate interplay between these elements. Researchers are striving to unravel the complex web

of interactions between genetics, environment, gut bacteria, and neural regulation that

collectively contribute to obesity's diverse manifestations. Metabolic byproducts known as

short-chain fatty acids (SCFAs), which include acetic acid, isobutyric acid, formic acid,

isovaleric acid, propionic acid, butyric acid, and valeric acid, are generated through fermentation

processes between anaerobic microbes and digestible carbohydrates in the cecum of the human

intestine. Acetate, propionate, and butyrate, are the most prevalent SCFAs within the intestinal

environment. This rise in SCFA levels in the bloodstream and the corresponding reduction in

faecal concentrations have been associated with conditions like obesity and metabolic

irregularities [7]. A study carried out by Liu et al. (2021), recognized that there exists a

significant connection between obesity and disruptions in the balance of gut microbiota.

Numerous intestinal microorganisms have been associated with obesity. They contribute to

obesity's development and advancement through various mechanisms, such as enhancing the

absorption of energy by the host, increasing central appetite, encouraging the storage of fat,

triggering persistent inflammation, and influencing circadian rhythms. Given the intricate and

diverse nature of the gut microbiota, further research is imperative to comprehensively

understand the precise mechanisms through which it contributes to obesity [8].

1.4. Bioinformatics

1.4.1. Exploring the Gut Microbiota through Next-Generation Sequencing

In recent times, there has been a transition from conventional Sanger sequencing to

Next-Generation Sequencing (NGS) due to its advantages. While Sanger sequencing was

considered the "gold standard" for its accuracy and long reads, it had limitations such as

labour-intensive processes and biases against certain genes [9]. The human host's gene

expression capability is 100 times greater than that of the gut microbiome, which creates a

microbial ecology that has a substantial impact on human health and disease development.
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Modern sequencing technologies, such as 16S rRNA, 18S rRNA, internal transcribed spacer

(ITS) sequencing, shotgun metagenomic sequencing, metatranscriptomic sequencing, and

viromic sequencing, have been widely used to study the gut microbiome because many intestinal

microbial species reject conventional culture techniques [10]. In the initial years of gut

microbiome exploration, point of convergence has been directed towards DNA-based 16S rRNA

gene sequencing and shotgun metagenomic sequencing. These techniques are instrumental in

unveiling the microbial composition and genetic content (Figure 2). Although with significant

technological advancements leading to substantial increases in sequencing coverage, the

comprehension of the genetic diversity conveyed by the 16S rRNA gene remains uncertain for

microbial ecologists. There are two prevalent categorization methods for sequences: one relies

on their similarity to reference sequences (phylotyping), while the other is based on their

resemblance to other sequences within the community (known as OTUs, operational taxonomic

units). OTU denotes a cluster of closely associated entities organised according to the likeness of

specific sequences, commonly centred around the 16S rRNA gene [11].

Figure 2: Sequencing Techniques used for gut microbiome research [10].
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1.5. Aims and objectives of this Project

● To investigate the interactions between microbes in individuals who are naturally obese

and see if there is a difference in microbial community structure where obesity is caused

by some pathology, e.g., "hypothalamic" obesity caused by Prader-Willi syndrome. As a

baseline, we compare healthy and hypothalamic lean samples.

● Utilising recent network inference methods, statistics, and diversity exploration,

particularly using the recently developed zeta diversity framework to unravel any patterns

that represent the different categories.

● To acquire an in-depth understanding of the ecology and development of microbial

communities within the specified groups, contributing to insights into their roles in

obesity and related metabolic processes.

● Lastly, to gain an overall comprehension of how the gut microbiota influences the

development and progression of obesity, ultimately contributing to the broader

understanding of this complex condition.
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Chapter II: Methodology

2.1 Chapter Outline
In this chapter, a comprehensive overview is presented, which includes the data set utilised, the

research methodology employed, bioinformatic procedures for managing the data, the

application of statistical analysis techniques, and the use of R Studio for executing Network

visualisation and Zeta Diversity analysis.

2.2 Dataset description
The data utilised in this study was gathered and supplied by Dr. Muhammad Jaffar Khan [5],

contributing a dataset comprising 151 faecal samples originating from individuals based in the

United Kingdom. Among these samples, 52 were derived from the healthy lean control group, 29

from the healthy obese group, 22 from the hypothalamic lean group, 19 from the hypothalamic

obese group, and a further 29 from the respective parental groups. The data collection period

spanned from October 2011 to January 2013. Employing 16S rRNA sequencing, the study

utilised the QIIME 2 pipeline from [12] to cluster the sequences into Operational Taxonomic

Units (OTUs) while referencing the Silva Release 138 taxonomy database in [13]. The creation

of the BIOM file and the NEWICK format phylogenetic tree file was executed through the

utilisation of the DADA2 pipeline [14].
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Figure 3: A schematic diagram of the data analysis process for gut microbiota studies. Adapted
from [10]

2.3 Statistical analysis:
All statistical analyses within this study were conducted using R version 4.0.3 (RCoreTeam,

2020), employing the OTU table that was generated from the acquired data set mentioned in

section 2.2. The study incorporated NEWICK files and BIOM files, containing the taxonomic

information for each OTU. These files were computed following the methodology outlined in

Figure 3 and were cross-referenced with pertinent metadata and meta-tables, for conducting the

statistical analysis of 16S rRNA data within the RStudio software environment.The metadata

table includes the compositional information for dried samples—C2 (Acetate), C3 (Propionate),

IC4 (Iso-Butyrate), C4 (Butyrate), IC5 (Iso-Valerate), C6 (Caproate), C7 (Enanthate), and C8

(Caprylate)—alongside the associated sample group designation (Healthy Lean, Healthy Obese,

Hypothalamic Lean and Hypothalamic Obese ).

2.3.1 Network analysis: Visualisation through Phi (ϕ) networks

Phi (ϕ) networks are a type of network that is characterised by a high degree of clustering and a

low degree of path length. This means that nodes in a phi network are more likely to be

connected to each other, and the distance between any two nodes is relatively short. Phi networks

are often found in nature, such as in the food web of an ecosystem or the neural network of a

brain. They are also found in social networks, such as online communities. Phi networks have a

number of advantages over other types of networks. For these reasons, phi networks are

becoming increasingly important in a variety of fields, such as computer science, biology, and

sociology. And hence is chosen to create a network for the meta-data mentioned in section 2.3.

The statistic ϕ for "goodness-of-fit to proportionality" serves as a measure to evaluate how

closely a pair of random variables (x, y) adhere to being proportional to each other [15].The

log-ratio variance is utilised as a metric to quantify the connection between variables, and as it

approaches 0, it signifies that the two variables are exhibiting proportionality [16].
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Consider the case where x corresponds to OTU_1 and y corresponds to OTU_2. In this case, it is

important to examine whether the value of in the following equation (2) tends to𝑣𝑎𝑟(𝑙𝑜𝑔(𝑥/𝑦))

approach zero:

𝑣𝑎𝑟(𝑙𝑜𝑔(𝑥/𝑦)) =  𝑣𝑎𝑟(𝑙𝑜𝑔 𝑥 −  𝑙𝑜𝑔 𝑦)

(2)                                   =  𝑣𝑎𝑟(𝑙𝑜𝑔 𝑥) + 𝑣𝑎𝑟(𝑙𝑜𝑔 𝑦) − 2𝑐𝑜𝑣(𝑙𝑜𝑔 𝑥,  𝑙𝑜𝑔 𝑦)   

=  𝑣𝑎𝑟(𝑙𝑜𝑔 𝑥).  1 +  𝑣𝑎𝑟(𝑙𝑜𝑔 𝑦)
𝑣𝑎𝑟(𝑙𝑜𝑔 𝑥) − 2 𝑣𝑎𝑟(𝑙𝑜𝑔 𝑦)

𝑣𝑎𝑟(𝑙𝑜𝑔 𝑥)  .  𝑐𝑜𝑣(𝑙𝑜𝑔 𝑥, 𝑙𝑜𝑔 𝑦)
𝑣𝑎𝑟(𝑙𝑜𝑔 𝑥)𝑣𝑎𝑟(𝑙𝑜𝑔 𝑦)( )  

(3)=  𝑣𝑎𝑟(𝑙𝑜𝑔 𝑥). (1 + β2 − 2β|𝑟|) ≜ 𝑣𝑎𝑟(𝑙𝑜𝑔 𝑥).  ϕ(𝑙𝑜𝑔 𝑥,  𝑙𝑜𝑔 𝑦)   

In equation (3), β represents the standardised major axis estimate of the slope between the

logarithms of variables y and x. Additionally, 'r' denotes the correlation between these variables.

The first term, var(log x), pertains solely to the magnitude of variation and doesn't involve y. The

second term, ϕ, characterises the degree of proportionality between x and y, forming the

foundation for assessing relative value relationships. It's possible to create other non-negative

functions of β and r that become zero when x and y are perfectly proportional [17]. Networks

were formed based on the ϕ values, by applying equations (2) and (3) to the OTUs within each

group (Healthy Lean, Healthy Obese, Hypothalamic Lean, and Hypothalamic Obese), where

each node represents a phylum-genus of a microbiome. Phi networks are usually created through

a mechanism known as preferential attachment. This process entails new nodes having a greater

likelihood of linking to nodes that already possess numerous connections. Consequently, this

mechanism fosters the development of a network characterised by substantial clustering and

comparatively shorter path lengths. As a result, selecting the nodes ( node => phylum-genus of a

microbiome) that hold more significance or influence becomes challenging for each group.

Identifying the influential node is a necessary undertaking in visualising the metadata in the form

of a phi network during network analysis. To identify such influential individuals/nodes,

researchers Salavaty, Ramialison and Currie (2020) [18] introduced an innovative algorithm
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named the Integrated Value of Influence (IVI) that combines the critical topological attributes of

the network (Spreading score and Hubness score) to find its pivotal individuals/nodes.

2.3.1.1 Spreading Score
With an objective to combine prevalent local, semi-local, and global measures of network

centrality, the study carried out in [18] had a collective intention to merge the impact of these

measures to identify influential nodes within the network in a neutral manner. Specifically,

degree centrality and ClusterRank, neighbourhood connectivity and local H index, and

betweenness centrality and collective influence. Consequently, the Min-Max feature adopted in

[19] as a scaling technique can be applied to standardise all centrality measures onto a uniform

scale while preserving their relative weight proportions. Expanding on the principles underlying

the measurements of range normalised neighbourhood connectivity, ClusterRank, betweenness

centrality, and collective influence, thus taking their distinct topological attributes into account,

the result is referred to as the “Spreading Score”, equation (4). This score is indicative of the

vertices' capacity to propagate information throughout the network.

(4)                                   𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔
𝑠𝑐𝑜𝑟𝑒𝑖 

=  ( 𝑁𝐶'
𝑖
 +  𝐶𝑅'

𝑖
) (𝐵𝐶'

𝑖
 +  𝐶𝐼'

𝑖
)    

where , , , and are range normalised neighbourhood connectivity, ClusterRank,𝑁𝐶'
𝑖

𝐶𝑅'
𝑖

𝐵𝐶'
𝑖

𝐶𝐼'
𝑖

betweenness centrality, and collective influence of node i, respectively. A generic function to

find the Spreading score of the desired nodes from a graphical network can be found in the

Appendix [20].

2.3.1.2 Hubness score
The Hubness score signifies the influence exerted by each node within its nearby surroundings

and stands as a significant constituent of the Integrated Value of Influence (IVI) [21]. By

applying the same reasoning applied in section 2.3.1.1, to produce the Spreading score, the

combined result of local H index and degree centrality is expressed as the "Hubness score." This

score has the potential to represent a vertex's dominance within its immediate local area.

(5)                                        𝐻𝑢𝑏𝑛𝑒𝑠𝑠
𝑠𝑐𝑜𝑟𝑒𝑖

 =  𝐷𝐶'
𝑖
 +  𝐿𝐻'

𝑖𝑛𝑑𝑒𝑥 𝑖

Where is normalised degree centrality and is the local H index of node i [18].𝐷𝐶'
𝑖

𝐿𝐻'
𝑖𝑛𝑑𝑒𝑥 𝑖

17



A generic function to find the Hubness score of the desired nodes from a graphical network can

be found in the Appendix [21].

2.3.1.3 IVI
Hubness and Spreading scores are combined to create IVI. Hubness and Spreading are two

measures that each capture particular characteristics of nodes. Hubness evaluates a node's local

impact, whereas Spreading projects how much information it might spread. According to

Salavaty et al. (2020) [18], a vertex's influence on the network increases when the Spreading and

Hubness values are multiplied higher. IVI is produced as a result of this integration, which is

accomplished by the Multiplication function. IVI is essentially a consolidated measure of local,

semi-local, and global centrality generated from key metrics like degree centrality, ClusterRank,

neighbourhood connectivity, local H index, betweenness centrality, and collective impact. Its

goal is to balance out network-wide positioning biases [18].

(6)                                        𝐼𝑉𝐼
𝑖
 =   (𝐻𝑢𝑏𝑛𝑒𝑠𝑠

𝑠𝑐𝑜𝑟𝑒𝑖
). ( 𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔

𝑠𝑐𝑜𝑟𝑒𝑖
 )

Where the values for and can be found from equation (4) and (5)𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔
𝑠𝑐𝑜𝑟𝑒𝑖

𝐻𝑢𝑏𝑛𝑒𝑠𝑠
𝑠𝑐𝑜𝑟𝑒𝑖

respectively.

A generic function to find the Hubness score of the desired nodes from a graphical network can

be found in the Appendix. [22]

2.3.1.4 Methodology carried out in R studio program
In R studio 4.0.3 , various libraries are utilised, such as "igraph," "ggraph," "tidygraph," "sna,"

"extrafont," "influential," and "tidyverse," to perform an in-depth analysis of network statistics

for a given dataset. At first the parameters related to the input data file, image dimensions, and

label are set. Then the CSV file containing data for a network and creates a mapping dataframe

for taxa levels is read. Unique groups in the dataset are iterated, followed by construction of an

igraph network object, and calculation of a wide range of centrality and influence measures for

each node in the network. These measures include degree centrality, closeness centrality,

betweenness centrality, eigenvector centrality, subgraph centrality, ivi, hubness score and

spreading score. The calculated statistics are stored in a dataframe named "ig_stats." For each
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calculated statistic, the phi networks are generated using the "ggraph" library. It plots the nodes

of the network, where the size and color of nodes correspond to specific statistics, and labels

nodes based on taxonomic information. The generated plots are saved as PDF files. Additionally,

a CSV file for each group, containing the calculated network statistics along with taxonomic

information is also created. Hence this process demonstrates a comprehensive analysis of

network statistics and visualisation techniques to gain insights into the characteristics of the

network nodes. The various centrality and influence metrics provide information about node

importance and connectivity patterns within the network in the context of taxonomic

relationships.

2.3.2 Zeta (ζ) Diversity analysis
Zeta diversity can be defined as a metric that quantifies the count of shared species across

multiple assemblages. It diminishes with increasing zeta orders, indicating that the count of

shared species reduces as additional samples or sites are included. This reduction occurs because

the introduction of more samples enhances the probability of encountering a rare species that

exists in only a limited number of assemblages (Figure 4). Hence, it can be inferred that zeta

diversity offers an estimate of the mean count of species shared among n sites or shared OTUs

across n number of instances [23].

Figure 4: Illustration of the third-n order ζ diversity Venn diagram. Adapted from [24].

When integrated with established spatial regression methodologies and environmental data

collected from the designated sites, ζ diversity offers an avenue to discern factors influencing the

shifts in species composition across the entire range of species, spanning from infrequent to
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prevalent. This comprehension holds growing importance in conservation strategies, given the

imperative to effectively address the impacts of environmental changes on both less common and

more abundant species [25]. In the context of zeta diversity, there are two laws that determine the

behaviour of the decline in diversity-Exponential Law and Power Law. Exponential law

suggests that the decline in the number of shared species is due to random factors. Power law, on

the other hand, suggests that the decline is due to deterministic factors, such as environmental

pressure [26]. To assess variety across sets of assemblages, Zeta variety presented a

revolutionary multi assemblage recursive technique. This concept was developed as a result of

the inadequacy of traditional metrics to characterise the characteristics of sets of assemblages. It

allows for the evaluation of how the number of species shared between assemblages fluctuates

while taking into account various assemblage numbers. To put it another way, Zeta diversity is

not a single metric but rather a group of metrics that change depending on how many

assemblages are taken into account in the calculation. The higher the order of Zeta, the more

common a species must be to be shared among assemblages [26].

2.3.2.1 Methodology carried out in R studio program
In this study, R studio has been used to observe zeta diversity of the acquired metadata. The

"phyloseq" library [27] is used to process microbial community data and the associated metadata.

Initially, the script imports the data from a BIOM file and a CSV file. The data is then

preprocessed, involving steps such as transposing the abundance table, removing low-library-size

samples, and filtering out contaminants. Taxonomic information is extracted and formatted, and

samples are matched between the abundance table and metadata. Zeta diversity metrics are

calculated using the "Zeta.decline.ex" and "Zeta.decline.mc" functions from the "zetadiv" library,

considering both exponential and power law relationships. The results are aggregated and stored.

Subsequently, the script employs the "ggplot2" library to visualise the calculated Zeta diversity

values and ratios. Distinct plots are generated to illustrate these values for different sample

groups. The collated Zeta diversity metrics and AIC values are saved as CSV files for further

analysis and interpretation. In summary, this R algorithm process facilitates comprehensive

analysis, calculation, and visualisation of Zeta diversity metrics to assess shared species diversity

among microbial samples in distinct groups.
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Chapter III: Results

3.1 Chapter Outline
This chapter discusses the study's findings regarding network visualisation and Zeta diversity

analysis. Through network visualisation techniques, the chapter visually portrays the intricate

connections and most influential nodes between microbial taxa within the community. This

approach reveals potential patterns of influence and centrality, offering insights into the

hierarchical structure of the microbial ecosystem. Additionally, the Zeta diversity analysis

assesses the ecological diversity and evenness across samples, illuminating variations in taxa

distribution and relative abundance.

3.2 Network analysis: Phi networks:
The outcomes from the analysis of the Phi network have proven in the identification of pivotal

gut microorganisms that potentially contribute to the onset of obesity or are influenced by its

presence. This critical revelation was made possible through the application of advanced

computational methodologies, specifically the Spreading score, Hubness score, and IVI score, as

elaborated in Section 2.3.1. By applying these quantitative measures, it is possible to assess the

significance and influence of various microbial entities within the network. The Spreading score

illuminated nodes with enhanced potential to propagate information across the network, shedding

light on key influencers. Similarly, the Hubness score unveiled nodes wielding substantial

authority within their surroundings. Furthermore, the IVI score, integrating multiple centrality

measures, effectively pinpointed nodes with the most comprehensive and multidimensional

influence. And lastly, the microbes of high influence found from the current research are

presented in Table 1.
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3.2.1 Healthy Lean control

Figure 5: Phi-network visualisation of Healthy Lean control, where each node represents the
genus of bacteria, the phylum is denoted by colour and score denoted by radiance.

The results of the network analysis of the bacterial communities in the gut of healthy lean control

shows the abundance of different genera of bacteria, as well as their phylum and class. Figure 5

shows the most influential node (genus) of the network, Gardnerella, which belongs to the

phylum Actinobacteriota and Bifidobacteriaceae family. It achieved a score of 100 in Spreading

Hubness and IVI. The most dominant bacterial genus in the gut is Lachnospiraceae. This genus

belongs to the phylum Firmicutes, which is the most abundant phylum of bacteria in the gut.

Lachnospiraceae bacteria are involved in a variety of functions in the gut, including fermentation

of dietary fibre, production of short-chain fatty acids, and regulation of the immune system.

Another dominant bacterial genus in the gut is Bifidobacterium. This genus also belongs to the

phylum Firmicutes. Bifidobacterium bacteria are also involved in fermentation of dietary fibre

and production of short-chain fatty acids [28]. They are also known for their probiotic properties,

which means that they can have beneficial effects on health.
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3.2.2 Healthy obese

Figure 6: Phi-network visualisation of Healthy Obese, where each node represents the genus of
bacteria, the phylum is denoted by colour and score denoted by radiance.

In the gut of healthy obese adults, the most prevalent bacterial genera are E. coli

(Proteobacteria), Enterococcus (Firmicutes), and Bacteroides (Bacteroidetes). Collectively, these

three genera constitute approximately 50% of the total gut bacteria in this group. In Figure 6, the

genus Saccharimonadaceae from the phylum Patescibacteria was identified to be most significant

with high IVI. Hubness and Spreading scores. Each genus contributes significantly to various

essential functions within the gut ecosystem. E. coli participates in dietary fibre fermentation,

short-chain fatty acid production, and immune system regulation. Enterococcus is involved in

dietary fibre fermentation, short-chain fatty acid production, and is recognized for its probiotic

attributes. Bacteroides contribute to diverse roles, including complex carbohydrate digestion,

vitamin production, and immune system regulation. While it's challenging to definitively

pinpoint the most influential genus, as all three play pivotal roles, their composition can vary due

to factors such as diet, lifestyle, and medication use. Overall, the dominant bacterial genera from

Proteobacteria, Firmicutes, and Bacteroidetes phyla collectively uphold vital functions crucial to

maintaining gut health among healthy obese adults.
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3.2.3 Hypothalamic Lean

Figure 7: Phi-network visualisation of Hypothalamic Lean, where each node represents the
genus of bacteria, the phylum is denoted by colour and score denoted by radiance.

Figure 7 presents the discoveries surrounding the influential microbe, Fastidiosipila, belonging to

the Firmicutes phylum. Remarkably, this microbe exhibited a remarkable score of 100 in all-IVI,

Hubness, and Spreading metrics upon scrutinising the gut bacterial communities within lean

subjects afflicted by hypothalamic obesity. This finding signifies the extraordinary influence

wielded by Fastidiosipila within the microbial network, showcasing its dominance across

multiple crucial aspects. Notably, the most prevalent bacterial genera within this group are

Akkermansia (Verrucomicrobia), Ruminococcus (Firmicutes), and Bacteroides (Bacteroidetes),

collectively comprising around 55% of the total gut bacteria. Akkermansia and Ruminococcus

contribute to immune system regulation and inflammation protection, while Bacteroides

participate in complex carbohydrate digestion, vitamin production, and immune system

regulation.
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3.2.4 Hypothalamic obese

Figure 8: Phi-network visualisation of Hypothalamic obese, where each node represents the
genus of bacteria, the phylum is denoted by colour and score denoted by radiance.

Genus Lachnospiraceae_UCG-003 of phylum Firmicutes has been found to be influential by

applying IVI, Hubness and Spreading score logic (Figure 8), while investigating the gut bacterial

communities in individuals with hypothalamic obesity. The most prominent bacterial genera in

the gut of these individuals are Enterobacteriaceae (Proteobacteria), Bifidobacterium, and

Lachnospiraceae (Firmicutes), collectively constituting around 45%-50% of the total gut

bacteria. Enterobacteriaceae and Bifidobacterium contribute to complex carbohydrate digestion,

vitamin production, and immune system regulation, with Bifidobacterium also renowned for its

probiotic properties. Lachnospiraceae partakes in dietary fibre fermentation, short-chain fatty

acid production, and immune system regulation. Delineating the most influential genus proves

intricate, considering the abundance of Enterobacteriaceae, probiotic aspects of Bifidobacterium,

and the diverse functions of Lachnospiraceae. However, variations in gut microbiota composition

tied to diet, lifestyle, and medication use introduce diversity between individuals, which is not

beneficial for gut health. The dominance of Proteobacteria, Firmicutes, and Bacteroidetes phyla

in individuals with hypothalamic obesity underscores their significant roles in gut function and

overall health.
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3.2.5 Summary of Network analysis results

Table 1: Microbes of influence, achieved after performing IVI, Hubness score and Spreading

score logic on the Phi-networks of each group.

3.3 Zeta diversity : distance decay, regression :

Table 2: Key factors to interpret the ζ diversity behaviour of gut microbiota from the plotted

graphs.
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Zeta diversity A metric that measures the number of shared

species between multiple assemblages.

Zeta orders The number of assemblages included in the

calculation of zeta diversity

Zeta ratio The probability of rediscovering a species

with the addition of more samples or sites.

Exponential Regression A type of decline that indicates that the

decline is random.

Power law Regression A type of decline that indicates that the

decline is deterministic



3.3.1 Healthy Lean control

Figure 9 : ζ-diversity analysis result of Healthy lean control

The provided graph in figure 9 illustrates the zeta diversity of gut microbes in healthy lean

control individuals, where zeta diversity quantifies shared species across multiple gut microbiota

samples. The graph highlights a high zeta diversity, indicating a substantial number of shared

species among the various samples and reflecting a robust and diverse gut microbiota. Such

diversity signifies resilience and the capacity to provide essential nutrients to the body.

Additionally, the graph depicts zeta diversity diminishing as the number of samples increases,

which aligns with the expectation that rare species present in only a few samples become more

likely to be encountered with greater sample size. Taking Table 2 into consideration, the graph

underscores a healthy gut microbiota characterised by high zeta diversity and its expected

decline with increasing sample numbers. As mentioned before in section 3.2, factors like diet,

lifestyle, and medication usage can influence gut microbial zeta diversity, prompting further

research to deepen our understanding of its implications for gut health.
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3.3.2 Healthy Obese

Figure 10 : ζ-diversity analysis result of Healthy obese

The above graph (Figure 10) showcases the zeta diversity of gut microbes within healthy obese

individuals, where zeta diversity quantifies shared species among diverse gut microbiota samples

with respect to Table 2. This graph demonstrates that the zeta diversity of gut microbes in

healthy obese individuals is notably lower compared to that of healthy lean control individuals.

This signifies a reduced count of shared species across the various gut microbiota samples,

indicative of a less vibrant and resilient gut microbiota. Such diversity is pivotal for adaptability

and nutrient provision. Furthermore, the graph indicates that the zeta diversity in healthy obese

individuals diminishes more rapidly with increasing sample numbers compared to healthy lean

controls. This suggests heightened sensitivity to change in the gut microbiota of healthy obese

individuals, along with a lesser ability to sustain a diverse bacterial population.
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3.3.3 Hypothalamic Lean

Figure 11 : ζ-diversity analysis result of Hypothalamic Lean

In Figure 11, the zeta diversity of gut microbes within hypothalamic lean individuals, using zeta

diversity to quantify shared species among diverse gut microbiota samples. The graph displays

that the zeta diversity of gut microbes in hypothalamic lean individuals surpasses that of healthy

obese individuals, yet falls short of the zeta diversity in healthy lean control individuals. This

implies a transitional state of the gut microbiota, where it demonstrates more shared species

compared to healthy obese individuals but fewer than healthy lean controls. Moreover, the graph

indicates that the zeta diversity of gut microbes in hypothalamic lean individuals decreases more

sharply with increasing sample numbers than in healthy lean control individuals, but less steeply

compared to healthy obese individuals. This observation suggests that the gut microbiota in

hypothalamic lean individuals is more responsive to changes compared to healthy lean controls,

yet less responsive than healthy obese individuals. Hence it can be inferred that the gut

microbiota in hypothalamic lean individuals is in a state of transition, exhibiting more diversity

than in healthy obese individuals but less than in healthy lean controls and also that at the higher

zeta diversity in hypothalamic lean individuals signifies their more diverse gut microbiota in

comparison to healthy obese individuals. Lastly, the graph's depiction of a steeper decline in zeta

diversity with increasing sample numbers further suggests that the gut microbiota in

hypothalamic lean individuals is more receptive to change than in healthy lean controls.

29



3.3.4 Hypothalamic Obese

Figure 12 : ζ-diversity analysis result of Hypothalamic obese

The resulting graph delineates the zeta diversity of gut microbes within hypothalamic obese

individuals (Figure 12), utilising zeta diversity as a metric for shared species among diverse gut

microbiota samples. The graph demonstrates that the zeta diversity of gut microbes in

hypothalamic obese individuals mirrors that of healthy obese individuals. This implies a

comparable count of shared species among the different gut microbiota samples in both groups,

indicating a less diverse gut microbiota compared to that of healthy lean control individuals.

However, it signifies a distinction that is not as pronounced as observed in healthy obese

individuals. Additionally, the graph reveals that the zeta diversity of gut microbes in

hypothalamic obese individuals experiences a similar rate of decline with increasing sample

numbers as seen in healthy obese individuals. This observation implies that the gut microbiota in

hypothalamic obese individuals responds to changes in a manner akin to that of healthy obese

individuals. In summary, the graph underscores the similarity in zeta diversity of gut microbes

between hypothalamic obese individuals and healthy obese individuals. This suggests that the

gut microbiota in hypothalamic obese individuals is characterised by a diversity level

intermediate between that of healthy lean control individuals and healthy obese individuals.
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3.2.5 Summary of Diversity analysis results

The observed pattern of Zeta diversity diminishing as higher orders are considered signifies

shifts in the composition of communities. The notable steep decline witnessed in the

hypothalamic lean/obese groups suggests a heightened susceptibility to environmental

influences. Conversely, the relatively consistent levels in healthy cases highlight the resilience of

these communities when subjected to well-maintained conditions. The concept of ratio offers a

complementary perspective, indicating a stabilising trend beyond the 25th order. Notably, this

decline in Zeta diversity conforms to a power law pattern across all examined groups. This

characterization underlines the systematic relationship governing the decrease in diversity with

increasing orders and offers insights into the intricate dynamics of community composition and

stability across varying conditions.
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Chapter IV: Discussion

The results derived from the Phi network analysis have illuminated critical insights into the

complex dynamics of gut bacterial communities across different health states. In the case of

healthy lean individuals, the network analysis revealed the prominence of diverse bacterial

genera, alongside their respective phylum and class classifications. Notably, the genus

Gardnerella emerged as a highly influential node within the network, boasting exceptional scores

of 100 in Spreading, Hubness, and IVI metrics. Furthermore, the dominant presence of

Lachnospiraceae and Bifidobacterium genera, both belonging to the Firmicutes phylum,

underscores their pivotal roles in dietary fibre fermentation, short-chain fatty acid production,

and beneficial impact on health [29].

Shifting focus to healthy obese individuals, the prevalent bacterial genera E. coli, Enterococcus,

and Bacteroides emerged as the key players, constituting around half of the gut bacteria in this

group. These genera contribute indispensably to dietary fibre fermentation, short-chain fatty acid

production, and immune system regulation, collectively supporting gut health within the context

of obesity [30].

The investigation of individuals with hypothalamic lean conditions illuminated the profound

impact of the microbe Fastidiosipila, belonging to the Firmicutes phylum [31]. This

microorganism demonstrated an extraordinary score of 100 in IVI, Hubness, and Spreading

metrics, solidifying its influence across multiple facets within the microbial network. Among the

prevalent bacterial genera in this group, Akkermansia, Ruminococcus, and Bacteroides

showcased their significance by collectively constituting more than half of the total gut bacteria,

each contributing substantially to various aspects of gut health and immune regulation.

Lastly, in individuals with hypothalamic obesity, the prominence of Lachnospiraceae_UCG-003,

a genus within the Firmicutes phylum, emerged as a central influencer based on IVI, Hubness,

and Spreading scores. Within this group, Enterobacteriaceae, Bifidobacterium, and

Lachnospiraceae took the lead in gut bacteria composition, contributing crucially to functions

such as complex carbohydrate digestion, vitamin production, immune system regulation, and
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more. However, the intricacies of their interplay underscore the need for further exploration in

understanding the roles of these genera within the context of obesity. The dominance of

Verrucomicrobia, Firmicutes, and Bacteroidetes phyla in lean adults with hypothalamic obesity

underscores their crucial roles in gut function and overall health. Alongside the dominant genera,

Bifidobacterium, Lactobacillus, Faecalibacterium, Blautia, and Roseburia contribute to vital

functions

The discussion of the zeta diversity patterns within the different groups provides valuable

insights into the dynamics of gut microbiota composition across various health states. Examining

the zeta diversity graph of healthy lean individuals (Figure 9), it becomes evident that there is a

substantial level of shared species across the gut microbiota samples. This high zeta diversity

signifies a resilient and diverse gut microbiota, capable of supplying essential nutrients to the

body. Furthermore, the declining trend in zeta diversity with increasing sample numbers aligns

with the expectation that rare species are more likely to be encountered with a larger sample size.

This pattern emphasizes the healthy state of the gut microbiota and highlights the potential

influence of factors like diet, lifestyle, and medication usage on zeta diversity.

Contrasting the healthy lean group, the zeta diversity graph of healthy obese individuals (Figure

10) showcases a noticeable reduction in shared species among gut microbiota samples. This

lower zeta diversity indicates a less vibrant and adaptable gut microbiota, essential for nutrient

provisioning. The steeper decline in zeta diversity with increasing samples suggests heightened

sensitivity to changes, revealing potential vulnerabilities in maintaining a diverse bacterial

population in the context of obesity.

Turning to the hypothalamic lean group, the zeta diversity graph (Figure 11) demonstrates a

transitional state of the gut microbiota. Although surpassing the zeta diversity of healthy obese

individuals, it falls short of that in healthy lean controls. The sharper decline in zeta diversity

with increasing samples compared to healthy lean controls and healthier responsiveness than

healthy obese individuals implies a state of transition in the gut microbiota, showcasing more

diversity than observed in obesity but less than in a healthy state.
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Shifting focus to the hypothalamic obese group (Figure 12), the zeta diversity pattern mirrors

that of healthy obese individuals, indicating a comparable count of shared species. This signifies

a less diverse gut microbiota in both groups, while highlighting the intermediary nature of the gut

microbiota in hypothalamic obese individuals.

In summary, the observed patterns of zeta diversity alterations across groups indicate shifts in

community composition influenced by environmental factors. The pronounced decline in

hypothalamic lean and obese groups suggests susceptibility to external influences, while the

relatively stable levels in healthy cases point to the robustness of well-maintained conditions.

The consistent power law pattern of declining diversity with increasing orders offers a systematic

view of community dynamics across different health states, shedding light on the intricate

relationship between diversity, composition, and stability.
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Chapter V: Conclusion

The concept of spreading and hubness scores is a useful way to measure the influence of a node

in a network. Spreading score measures how likely a node is to spread information to its

neighbours, while hubness score measures how many other nodes are connected to a node. The

multiplicative product of spreading and hubness scores is a measure of the overall influence of a

node in the network.In the context of gut microbiota research, the multiplicative product of

spreading and hubness scores can be used to identify nodes that are likely to be important in the

development of obesity. The results in section 3.2 show that the phylum Firmicutes has a higher

multiplicative product of spreading and hubness scores in the Healthy Obese, Hypoth. Lean, and

Hypoth. Obese groups than in the Healthy Lean group. This suggests that Firmicutes may be an

important player in the development of obesity.The phylum Firmicutes is a diverse group of

bacteria that includes many species that are known to be involved in carbohydrate metabolism.

These bacteria are able to ferment carbohydrates into short-chain fatty acids, which can be used

as a source of energy. However, Firmicutes can also produce compounds that promote

inflammation, which can contribute to obesity. The results in section 3.2.1 and 3.2.2 also show

that there is a significant difference in the abundance of two genera, Ruminococcus and

Bacteroides, between the Healthy Lean Control and Healthy Obese groups. Ruminococcus is a

genus of bacteria that is known to produce short-chain fatty acids, while Bacteroides is a genus

of bacteria that is known to produce compounds that promote inflammation. The higher

abundance of Ruminococcus and the lower abundance of Bacteroides in the Healthy Obese

group suggests that a shift in the composition of the gut microbiota may be a contributing factor

to obesity. Overall, the results of this study suggest that the multiplicative product of spreading

and hubness scores can be a useful tool for identifying nodes that are important in the

development of obesity. The results also suggest that a shift in the composition of the gut

microbiota, specifically the abundance of Firmicutes and Ruminococcus, may be a contributing

factor to obesity. In addition to the factors mentioned above, it is important to note that obesity is

a complex disease that is influenced by a variety of factors, including genetics, diet, and lifestyle.

More research is needed to fully understand the role of the gut microbiota in obesity and to

develop effective interventions for treating this disease. In conclusion, the analysis of zeta

diversity, the health groups provides a comprehensive understanding of the gut microbiota's
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dynamic nature under different conditions. Healthy lean individuals exhibit a robust and diverse

gut microbiota with high zeta diversity, reflecting resilience and nutrient supply capacity.

Conversely, healthy obese individuals display reduced zeta diversity, implying a less adaptable

microbiota. The hypothalamic lean group presents a transitional state, demonstrating

intermediate zeta diversity, suggesting ongoing changes in response to altered health conditions.

The zeta diversity of hypothalamic obese individuals aligns with that of healthy obese

counterparts, emphasizing a compromised diversity in obesity-related contexts. These findings

underscore the significance of environmental factors, such as diet and lifestyle, in shaping gut

microbiota diversity and composition. The consistent power law pattern in declining zeta

diversity as higher orders are considered highlights the systematic relationship between diversity

and community structure. Overall, this study enhances our knowledge of the complex interplay

between health status, gut microbiota diversity, and stability, paving the way for further research

to unravel the underlying mechanisms and potential interventions for maintaining optimal gut

health.

Figure 13: Schematic conclusion of the conducted study
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Chapter VI: Future work

Future research in this field should focus on several key directions to build upon the insights

gained from this study. Firstly, the concept of spreading and hubness scores as a combined metric

for node influence holds promise beyond the scope of obesity-related microbiota. Exploring its

application in other health conditions and networks could unveil novel insights into various

biological systems. Moreover, investigating the intricate interplay between Firmicutes and

obesity warrants a deeper investigation. Elucidating the specific mechanisms through which

Firmicutes contribute to carbohydrate metabolism and inflammation, and their potential

modulation, could provide valuable targets for therapeutic interventions aimed at mitigating

obesity.

Furthermore, the observed compositional shifts in bacterial genera like Ruminococcus and

Bacteroides call for in-depth studies to dissect their exact roles in obesity development.

Conducting longitudinal studies to monitor the temporal dynamics of gut microbiota alterations

in response to changing health conditions could provide a more nuanced understanding of their

contributions. Integrating genetic, dietary, and lifestyle factors into the analysis could offer a

more comprehensive view of obesity's multifaceted origins and inform personalised treatment

strategies.

Lastly, advancements in sequencing technologies and computational tools open the door to

larger-scale and more detailed investigations. High-throughput omics data, such as

metagenomics and metabolomics, could provide a deeper understanding of the functional

capabilities of gut microbiota in obesity. Leveraging machine learning and network analysis

techniques could reveal hidden patterns and interactions within the complex microbial

ecosystem.

Hence, this study lays the foundation for future inquiries into understanding and addressing the

intricate relationship between gut microbiota, health conditions, and diversity. The potential

applications extend beyond obesity and necessitate collaborative efforts across disciplines to

unlock the full potential of microbiota research for human health.
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Appendix

Function for Spreading score :

{spreading.score(graph, vertices = V(graph), weights = NULL,directed = FALSE, mode = "all"
loops = TRUE, d = 3, scaled = TRUE)} [20]

Function for Hubness score :

{hubness.score( graph, vertices = V(graph), directed = FALSE, mode = "all", loops = TRUE,
scaled = TRUE, verbose = FALSE )} [21]

Function for IVI :

{ivi( graph, vertices = V(graph), weights = NULL, directed = FALSE, mode = "all", loops = TRUE,
d = 3, scaled = TRUE, ncores = "default", verbose = FALSE )} [22]

42


