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Abstract 
According to the World Health Organization, from 1975 to 2016, the number of 

overweight or obese people almost tripled. Nowadays, obesity has become a 

widespread health problem in the world. Based on the aetiology of obesity, obesity 

can be classified as simple obesity and hypothalamic obesity. Simple obesity can be 

attributed to multiple factors, including sedentary work and a diet high in sugars, fats, 

and salt. 

There is more and more evidence proving that gut microbiota is important for human 

health in many ways, including immunity, metabolism, and nutrition. 

The present research used multiple bioinformatic and statistical approaches, including 

alpha diversity analysis, beta diversity analysis, NRI/NTI analysis, NST, analysis, 

QPE analysis, and differential analysis. The aim of the present study is to investigate 

the relationship between gut microbiota, SCFAs, and obesity. 

The results of the present study showed significant connections between gut 

microbiota, SCFAs and obesity. The gut microbiota is capable of producing short-

chain fatty acids that can influence host metabolism and appetite, which in turn affects 

host nutrient and energy utilization and ultimately host body weight; in turn, the 

content of short-chain fatty acids affects the composition of the gut microbiota 

Keywords: Gut Microbiota; Obesity; Bioinformatics; SCFAs; NGS 
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Chapter 1 

Introduction 
1.1 Obesity 

1.1.1 BMI and BMI SDS 

Body Mass Index (BMI) is a commonly used weight-for-height metric for classifying 

overweight and obesity in adults, which is defined as 

𝐵𝑀𝐼 = 	!!"

"#$
.  (1) 

Where 𝑚#$ is the body weight in kilograms, 𝑙! is height in metres. 

However, the World Health Organization (WHO) uses BMI Standard Deviation Score 

(BMI SDS) to describe BMI for children. Also, the age of the child should be taken 

into consideration. 

1.1.2 Obesity in adults 

The WHO (2021) defined adult overweight as BMI equal to or greater than 25 and 

adult obesity as BMI equal to or greater than 30.  

In 2016, according to the WHO (2021), more than 1.9 billion adults aged 18 or older 

were reported as overweight, among which more than 650 million adults were obese. 

1.1.3 Obesity in children 

For children under five years, the WHO (2021) defined overweight as BMI SDS 

greater than 2 SD above the WHO Child Growth Standards median and obesity as 

BMI SDS greater than 3 SD above the WHO Child Growth Standards median.  

For children and adolescents between 5-19 years of age, the WHO (2021) defined 

overweight as BMI SDS greater than 1 SD above the WHO Child Growth Standards 

median and obesity as BMI SDS greater than 2 SD above the WHO Child Growth 

Standards median. The WHO estimated that in 2016 there were more than 340 million 

overweight or obese children and adolescents between 5-19 years of age, and around 

38.2 million children were overweight or obese in 2019. 

1.1.4 Risk factors contributing to childhood obesity 
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Obesity is a disease caused by known and unknown factors. Known causes of Obesity 

include genetic hormone deficiency or malfunctioning of the hypothalamic satiety 

centre. The hypothalamic satiety centre malfunctioning might be caused by 

chromosomal diseases like Prader-Willi Syndrome (PWS) or a tumour's (e, g. 

craniopharyngioma) erosion. In the present study, the obesity caused by hypothalamic 

satiety centre malfunctioning is called “hypothalamic obesity”. Unfortunately, a 

definitive risk factor cannot explain most of the global obesity epidemic. Those forms 

of obesity are called “simple obesity” in the present study. 

1.1.4 Risk factors contributing to simple obesity 

According to the WHO (2021), from 1975 to 2016, the prevalence of obesity 

worldwide almost tripled. The energy imbalance between consumed and expended 

calories; The increased ingestion of high fat and high sugar foods; and an increase in 

inactivity due to sedentary occupations, modern modes of transportation and 

urbanisation. All of those can lead to obesity. 

1.1.5 Hypothalamic disorder and obesity 

The Prader-Willi Syndrome (PWS) is the primary cause of syndromic obesity and a 

primary cause of metabolic problems in the hypothalamic obesity group; its most 

significant symptom is insatiable hunger, which causes the children’s change in 

behaviour, causing children to ingest food excessively.  

According to Lustig and Mueller (2011), the pathology and symptomology can be 

described as "organic leptin resistance". This means a failure in leptin signalling in the 

afferent arm, caused by hypothalamic damage, thereby leading to the efferent arm's 

autonomic dysfunction, promoting inadequate energy expenditure and excessive 

energy storage. (Lustig and Mueller, 2011)  

1.1.6 Complications of Obesity 

According to Must and Strass (1999), the complications of childhood obesity are 

shown in Table 1. 
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Table1. complications of obesity 
Short-term 

System Disease/Symptoms Risk 

Orthopaedic Slipped capital epiphysis 

Blunt’s disease, bowing of the legs and tibial 

torsion in response to unequal or early 

excess weight bearing 

50% - 70% 

80% 

Pulmonary Asthma 

Decrease of at least 15% in performance 

with exercise 

Sleep apnea with hypoventilation 

Significant decrements in learning and 

memory function due to sleep apnea 

Pickwickian syndrome, hypoventilation, 

somnolence, polycythemia and right 

ventricular hypertrophy and failure due to 

severe obesity 

30% 

More than 

80% 

Up to 94% 

Gastroenterological Steatohepatitis due to insulin resistance 

Steatohepatitis in severe obesity 

Gallstones 

20% - 25% 

40% - 50% 

8% - 33% 

Endocrine Reduction of insulin-stimulated glucose 

uptake 

Higher levels of total cholesterol, Low 

Density Lipoprotein (LDL) cholesterol, and 

triglycerides 

Non-Insulin-Dependent Diabetes Mellitus 

(NIDDM) in overweight adolescents 

NIDDM in obesity 

Menstrual abnormalities 

Polycystic ovary Syndrome 

 

 

 

 

 

2.4% 

 

90% 

Social and economic Poor emotional development 

Dieting 

 

50% 
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Smoking to control weight 

Bulimic (eating disorder) in adulthood 

20% 

40% 

Mid-term 

System Disease/Symptoms Risk 

Cardiovascular Elevated systolic or diastolic blood pressure 

in obese children between the ages of 5-11y 

High blood pressure in obese boys and girls 

High blood pressure in overweight 

adolescents 

Deleterious effects on total cholesterol and 

LDL-cholesterol in adulthood 

20% - 30% 

 

9 – 10-fold 

8.5-fold 

Persistence Obese adolescence continues to be obese in 

adulthood 

25% - 50%, 

vary by 

gender 

Long-term 

System Disease/Symptoms Risk 

Adult morbidity Risk of heart disease 

Risk of atherosclerosis 

Risk of colon cancer and gout in males 

Risk of arthritis, hip fracture, and difficulty 

with activities of daily living in females 

1.5 Relative 

Risk (RR) 

 

Adult mortality All-cause heart disease (independent of 

weight status or smoking) 

Coronary heart disease (independent of 

weight status or smoking) 

2.0 RR 

1.1.7 Management of obesity 

Obesity is a disorder caused by multiple known and unknown factors. Obesity 

interventions require not only individual efforts but also environmental and societal 

support. For individuals, the change in diet (e, g. reducing the ingestion of foods that 

are high in calories, fats and sugars, increasing the intake of fruits, vegetables, whole 

grains, nuts, and legumes) and lifestyles (e, g. doing sports for 60 minutes a day) is 

effective for preventing overweight and obesity. Nowadays, society also plays an 
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indispensable role in promoting healthy lifestyles. For instance, the food industry can 

reduce the sugars, fats, and salt in processed foods, limit the advertising of foods high 

in fats, sugars, and salt, especially to children and teenagers, and make healthy foods 

inexpensive and obtainable for every consumer. 

1.2 Gut microbiota, short-chain fatty acids, and obesity 

The gut microbiota is a dynamic ecosystem coevolving with its human host, which 

accounts for 1 kilogram of human body weight. (Gérard, 2016) 

limit the advertising. According to Gérard (2016), the gut microbiota “ferments 

otherwise indigestible food components, synthesises vitamins and other essential 

micronutrients, metabolises dietary toxins and carcinogens, converts cholesterol and 

bile acids, assures the maturation of the immune system, affects the growth and 

differentiation of enterocytes, regulates intestinal angiogenesis, and protects against 

enteric pathogens”. 

The gut microbiota can process dietary plant polysaccharides that are otherwise 

unreachable to humans into monosaccharides and Short-Chain Fatty Acids (SCFAs), 

principally acetate, propionate, and butyrate, which provide roughly 10% energy 

supply in omnivores but also act as signalling molecules, influencing energy ingestion 

and metabolism; moreover, SCFAs are ligands for the Free Fatty Acid Receptor 2 or 

the G-Protein Coupled Receptor 43 (FFAR2 or GPR43), and the Free Fatty Acid 

Receptor 3 or the G-Protein Coupled Receptor 41 (FFAR3 or GPR41); it is also 

suggested that the fibre administration results in increased production of SCFAs and 

thereby leads to increased satiety and reduced ingestion of foods. (Gérard, 2016) 

1.3 Next-Generation Sequencing approach for analysing gut microbiota 

Recent years have seen the shift of sequencing tools from traditional Sanger 

sequencing technology to Next-Generation Sequencing (NGS) technology. (Panek et 

al., 2018) 

The Sanger sequencing technology, due to its low error rate, long read length, and 

large insert size, was considered the “gold standard”, which would improve the 

outcomes of assembly for shotgun data; however, Sanger sequencing is labour-
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intensive when it comes to its associated bias against the genes that are toxic for the 

cloning host. (Thomas et al., 2012) 

The shotgun metagenomics technology provides complete information on the 

sample’s gene pool; however, the amount of data generated from this technology is 

much too high and requires extensive effort in sequence analysis. (Panek et al., 2018) 

16S rRNA amplicon sequencing provides cost-effectiveness, adequate resolution and 

sequencing depth and covers variable gene regions; it is the optimal method for 

bacterial community composition research on clinical and environmental samples. 

(Thomas et al., 2012; Panek et al., 2018) 

The emulsion polymerase chain reaction (ePCR) is commonly used for amplifying 

DNA molecules in physically separated picolitre-volume water-in-oil droplets that act 

as reduced “reaction tubes”; the ePCR technology is used for determining the number 

of copies with digital droplet PCR, and preparative-scale applications, such as NGS 

for RNA profiling, molecular evolution, and genome-scale DNA and aptamer library 

construction; however the shortcoming of the conventional ePCR method for 

preparative-scale applications includes the hazardous organic solvents (like diethyl 

ether (DEE) and butanol) are used in breaking the emulsion, the silica-based columns 

are used in purifying PCR products, and those chemicals, even in trace amounts, will 

possibly interfere with the downstream applications, thus need to be removed by 

taking extra steps. (Verma et al., 2020) 

Verma et al. (2020) developed two novel ePCR methods without hazardous organic 

solvents, which are proven to be equally effective for purifying PCR products after 

ePCR as the traditional ePCR method: a) the “spin + column” method avoids using 

DEE but involves centrifuging the emulsion to remove the oil and then using the QIA 

PB buffer to break the emulsion, and then the QIAquick spin columns are adopted to 

purify the PCR product; b) the “Quick ePCR extraction protocol” involves directly 

adding the QIA PB buffer to the PCR product for breaking the emulsion and then use 

the QIAquick spin columns to purify the PCR product, thus simplifying the process of 
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extracting DNA after ePCR and making it amenable with high-throughput 

applications. 

1.4 Operational Taxonomic Units 

The concept of the Operational Taxonomy Units (OTUs) was first coined by Sneath 

and Sokal (1963), meaning the “thing (s) being studied”. The “thing(s)” concept is 

quite broad; it could be an organism, a named taxonomic group like species or genus, 

or even a group with undetermined evolutionary relationships that shares a set of traits. 

(Edgar, 2017) 

Wayne et al. (1987) coined that, in general, the phylogenetic definition of a species 

would include about 70% or greater DNA-DNA relatedness between strains. 

Stackebrandt and Goebel (1994) found that 97% similarity of 16S rRNA sequences 

corresponds to around 70% of DNA reassociation in bacteriology. 

However, the clustering threshold of 97% identity is not always accurate. Edgar 

(2018a) used a blinded test, and he found out 249490 identical sequences were 

annotated conflictedly in the SILVA release 128 (SILVA, 2018) and the Greengenes 

13.5 (Second Genome, 2018) database at ranks up to phylum level, showing that the 

annotation error rate of those databases is around 17%. Edgar (2018b) used a large set 

of high-quality, full-length 16S rRNA sequences to assess the OTUs’ correspondence 

to species; as a result, the conventional 97% threshold was proven too low. Edgar 

(2018b) also suggested that the optimal thresholds should be increased to at least 99% 

for both the V4 region and full-length sequences. 

1.5 Aims and objectives 

The present cross-sectional study aims to determine the relationship between gut 

microbiota and obesity. Specifically, the present study looks into the dataset 

previously obtained and investigates:  

1. The difference in gut microbiota between different groups of people. 

2. The relationship between gut microbiota, SCFAs, and obesity. 

3. The difference in gut microbiota between the healthy and hypothalamic groups. 
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CHAPTER 2 

Methodology 
2.1 Dataset description 

Data used in this study was collected and provided by Dr Muhammad Jaffar Khan. 

There were 151 faecal samples collected from people from the United Kingdom. Of 

those samples, 52 were from the healthy lean control (Healthy Lean Control) group, 

29 were from the simple obese (Healthy Obese) group, 22 were from the 

hypothalamic lean (Hypoth. Lean) group, 19 were from the hypothalamic obese 

(Hypoth. Obese) group, and another 29 were from the parents of the groups. The 

samples were collected from October 2011 to January 2013. The sequencing method 

involved in the present study was 16S rRNA (ribosomal RNA) sequencing. The 

sequences were clustered into OTUs using the QIIME 2 pipeline (Bolyen et al., 2019) 

with the Silva Release 138 taxonomy database (SILVA, 2019). The BIOM file and the 

NEWICK format  phylogenetic tree file were generated using the DADA2 pipeline 

(Callahan et al., 2016).  

2.2 Statistical analysis 

The statistical analysis involved in the present study was run in R 4.2.0 (RCoreTeam, 

2022), using the BIOM file (feature_w_tax.biom) and NEWICK format phylogenetic 

tree file (tree.nwk), along with the related metadata (meta_data.csv). The metadata 

table includes the group where the sample was from and the contents of C2 (Acetate), 

C3 (Propionate), IC4 (Iso-Butyrate), C4 (Butyrate), IC5 (Iso-Valerate), C5 (Valerate), 

C6 (Caproate), C7 (Enanthate), and C8 (Caprylate) in the dried sample. 

2.2.1 Alpha diversity 

Alpha diversity was calculated for Healthy Lean Control, Healthy Obese, Hypoth. 

Lean, and Hypoth. Obese groups, respectively, with the vegan package (Oksanen et 

al., 2022). Since a single alpha diversity measure cannot characterise the diversity 

completely, a total of 5 measures were adopted: 

1. Species richness (Whittaker, 1972) is a simple species count. 
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2. Shannon entropy (Shannon, 1948) measures the balance of a community. A higher 

Shannon’s index means that the community is more balanced. 

3. Pielou evenness (Pielou, 1966) measures the evenness of communities. 

4. Fisher alpha (Fisher, 1972) compares the communities with various numbers of 

individuals. 

5. Simpson’s index (Simpson, 1949) also measures the evenness of communities but 

ranges from 0 to 1. 

2.2.2 MPD and MNTD 

The Mean Phylogenetic Distance (MPD) is the average phylogenetic distance 

between all pairs of OTUs in a sample. The MPD can be expressed as 

𝑀𝑃𝐷 =
∑ ∑ &%,''%''(

')%*+
(,+
%)+
∑ ∑ '%''(

')%*+
(,+
%)+

. (2) 

Where 𝑑(,*  is the phylogenetic distance between OTU 𝑖 and OTU 	𝑗, 𝑝( is the relative 

abundance of the OTU 𝑖. (Stegen et al., 2012) 

The Mean Nearest Taxon Distance (MNTD) is the average distance between each 

OTU in a sample and the OTU’s closest relative in the phylogenetic tree.  

The MNTD can be expressed as 

𝑀𝑁𝑇𝐷 = ∑ 𝑓(!min/𝛥(!*!1
+!
(!,- . (3) 

Where 𝑓(!  is the relative abundance of OTU 𝑖 in sample 𝑘, min/𝛥(!*!1 is the nearest 

distance between OTU 𝑖 and other OTUs 𝑗 in the sample 𝑘, 𝑛# is the number of OTUs 

in sample 𝑘. (Stegen et al., 2012) 

2.2.3 NRI and NTI 

The present study examined environmental filtering for Healthy Lean, Healthy Obese, 

Hypoth. Lean, and Hypoth. Obese groups to recognise phylogenetic clustering or 

overdispersion. The phylogenetic distances were measured by calculating Net 

Relatedness Index (NRI) and Nearest Taxon Index (NTI). (Webb et al., 2000) 

NRI is expressed as 

𝑁𝑅𝐼 = −1 × ./0-./012031./01453-#%/03
2&./01453-#%/03

. (4) 
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Where 𝑀𝑃𝐷3425675&  is the observed MPD, 𝑀𝑃𝐷68+&3!(25&  is the expected MPD of 

the randomised community assemblages generated from null modelling (𝑛 = 999), 

𝑠𝑑𝑀𝑃𝐷68+&3!(25& is the standard deviation of the MPD of randomised community 

assemblages. (Stegen et al., 2012) 

NTI is expressed as 

𝑁𝑇𝐼 = −1 × .9:0-./012031.9:01453-#%/03
2&.9:01453-#%/03

. (5) 

Where 𝑀𝑁𝑇𝐷3425675&  is the observed MNTD, 𝑀𝑁𝑇𝐷68+&3!(25&  is the expected 

MNTD of the randomised community assemblages generated from null modelling 

( 𝑛 = 999 ), 𝑠𝑑𝑀𝑁𝑇𝐷68+&3!(25&  is the standard deviation of the MNTD of 

randomised community assemblages. (Stegen et al., 2012) 

The positive NRI or NTI values suggest phylogenetic clustering, while negative NRI 

or NTI values suggest phylogenetic overdispersion. (Kraft et al., 2007) Phylogenetic 

clustering suggests the community assembly results from the non-biotic assembly (i.e., 

environmental filtering) because closely related species tend to share the traits for 

surviving a specific set of environmental conditions; phylogenetic overdispersion 

means that the community assembly results from the biotic assembly (e.g., 

competition), as relatedness is believed to increase the similarity in traits and increase 

the possibility of competitive exclusion. (Gerhold et al., 2015) 

In the present study, the picante package (Kembel et al., 2010) was used for 

calculating NRI and NTI with the phylogenetic distance matrix generated from the 

phylogenetic tree. 

When used with a phylogenetic distance matrix, the ses.mpd() function returns the 

Standardised Effect Size (SES) of MPD in the communities (equal to NRI multiplied 

by -1) (DataCamp, 2022). And the ses.mnntd() function returns the SES of MNTD in 

the communities (equivalent to NTI multiplied by -1) (DataCamp, 2022). In the 

picante package, seven null models are implemented (DataCamp, 2022): 

1. taxa.labels: Shuffle distance matrix labels (across all taxa included in the distance 

matrix). 
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2. richness: Randomize community data matrix abundances within samples (maintains 

sample species richness). 

3. frequency: Randomise community data matrix abundances within species 

(maintains species occurrence frequency). 

4. sample.pool: Randomise community data matrix by drawing species from a pool of 

species occurring in at least one community (sample pool) with equal probability. 

5. phylogeny.pool: Randomise community data matrix by drawing species from a 

pool of species occurring in the distance matrix (phylogeny pool) with equal 

probability. 

6. independentswap: Randomise community data matrix with the independent swap 

algorithm maintaining species occurrence frequency and sample species richness. 

7. trialswap: Randomise community data matrix with the trial-swap algorithm 

maintaining species occurrence frequency and sample species richness.  

2.2.4 Beta diversity 

To examine the difference in gut microbiome composition between different groups, 

beta diversity was analysed using three distance metrics: 

1. Bray-Curtis distance (Bray and Curtis, 1957), which tests whether the abundance 

counts of OTUs differ significantly between groups, can be expressed as 

𝑑(* =
∑ ;<%!1<'!;
5
!)+

∑ =<%!><'!?5
!)+

. (6) 

2. UniFrac distance (Lozupone and Knight, 2005), which calculates between pairs of 

OTUs in the phylogeny to test whether the gut microbiome compositions of different 

groups are significantly different based on phylogeny. For two samples, if a branch 

leads to an OTU which exists in both of the two samples, the branch is marked as a 

“shared branch”; otherwise, if a branch leads to an OTU that only exists in one sample, 

the branch is marked as an “unshared branch”. (Lozupone and Knight, 2005) The 

UniFrac distance can then be expressed as the fraction of total lengths of unshared 

branches, which is 
2@!	3B	"5+$CD2	3B	@+2D865&	468+ED52	

2@!	3B	"5+$CD2	3B	8""	468+ED52
. (7) 
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3. Weighted UniFrac distance (Lozupone et al., 2007) is a variant of UniFrac distance 

which takes into account the abundance of each OTU. The raw weighted UniFrac 

value can be expressed as 

𝑢 = ∑ 𝑏( × ?
F%
F6
− G%

G6
?+

( . (8) 

Where n is the total number of branches in the phylogenetic tree, 𝑏(is the length of 

branch 𝑖; 𝐴( is the abundance of the OTU that branch 𝑖 leads to in sample A, 𝐵(  is the 

abundance of the OTU that branch 𝑖 leads to in sample B, 𝐴: is the total abundance of 

all OTUs in sample A, 𝐵: is the total abundance of all OTUs in sample B. (Lozupone 

et al., 2007) 

To normalise the weighted UniFrac value, the 𝑢 value is then divided by a scaling 

factor, which can be expressed as 

𝐷 = ∑ 𝑑* × B
F'
F6
+ G'

G6
D+

* . (9) 

Where 𝑛 is the total number of branches in the phylogenetic tree, 𝑑* is the distance of 

the OUT that branch 𝑗 leads to; 𝐴* is the abundance of the OTU that branch 𝑖 leads to 

in sample A, 𝐵*  is the abundance of the OTU that branch 𝑖 leads to in sample B, 𝐴: is 

the total abundance of all OTUs in sample A, 𝐵: is the total abundance of all OTUs in 

sample B. (Lozupone et al., 2007) 

For the normalised 𝑢 value (@
0

), the value of 0 indicates that the two samples are 

identical, while the value of 1 indicates that the two samples are non-overlapping. 

In the present study, Bray-Curtis distance, UniFrac distance and weighted Unifrac 

distance are calculated with the phyloseq package (McMurdie and Holmes, 2013). 

The Permutational Analysis of Variance (PERMANOVA) was also performed to 

identify the cause of the variation, using the adonis() function in the vegan package 

(Oksanen et al., 2022). If the PERMANOVA of a variable is reported to be significant, 

then the 𝑅H value indicates the proportion of variability that the variable can explain. 

2.2.5 Observation of the top 25 most abundant taxa 
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The top 25 most abundant microbiome genera were analysed for Healthy Lean, 

Healthy Obese, Hypoth. Lean, and Hypoth. Obese groups to visualise the gut 

microbiome taxa abundance difference between the groups. 

2.2.6 PCOA 

Principal Coordinate Analysis (PCOA) was applied to the dataset to convert the beta 

diversity results to a two-dimensional plot. In the ordination plot, two samples are 

similar if they are close to each other. 

2.2.7 Differential analysis: DESeq2 and MA plot 

Differential analysis was applied to identify the significant differences in gut 

microbiome composition between different groups (Healthy Lean vs Healthy Obese, 

Healthy Lean vs Hypothalamic Lean, Healthy Obese vs Hypothalamic Obese). The 

present study used the DESeqDataSetFromMatrix() function in the DESeq2 package 

(Love et al., 2014) to convert the abundance table to the DESeqDataSet object. Then 

the DESeq() function in the DESeq2 package was used for performing differential 

analysis on the dataset based on the Negative Binomial (NB) Generalised Linear 

Model (GLM) fitting to calculate the maximum likelihood estimates of OTUs’ 

logarithm to base 2-fold changes between two groups. (DataCamp, 2022) The DESeq() 

function returned a DESeqDataSet object. Then the results of the DESeq analysis 

were tested using the Wald significance test. The results table of the log 2-fold 

changes and p-values can be extracted by the results() function in the DESeq2 

package, where the p-values were adjusted. (DataCamp, 2022) For the present study, 

the OTU is significant if its adjusted p-value is less than 0.05 and its absolute value of 

log 2-fold change is greater than 2. 

The differential analysis generated an MA plot showing the mean abundance and the 

log 2-fold change of each OTU in the two groups. The significant OTUs were shown 

as red dots. As well as the MA-plot, a boxplot showing the normalised logarithmic 

relativeness of each significant OTU in the two groups was also generated. The CSV 

file generated shows the OTU up-regulated in the two groups. An OTU is up-
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regulated in a group means that its presence in the group is identified as an increased 

presence compared to the other group. 

2.2.8 Core gut microbiome analysis 

The core microbiome analysis identifies the OTUs that are prevalent in more than a 

specific proportion of samples. Traditionally, the high prevalence threshold is 85%, 

which was defined in previous studies (Shetty et al., 2017). The microbiome package 

(Lahti et al., 2019) was used for performing the core microbiome analysis on every 

group. The results can be expressed in heat maps. 

2.2.9 Beta MNTD and beta NTI 

The Beta Mean Nearest Taxon Distance (𝛽MNTD) and the Beta Nearest Taxon Index 

(𝛽NTI) are the phylogenetic measures based on beta diversity. 

𝛽MNTD can be expressed as 

𝛽𝑀𝑁𝑇𝐷 = 0.5 I∑ 𝑓(!min/𝛥(!*#1
+!
(!,- + ∑ 𝑓(#min/𝛥(#*!1

+!
(!,- J. (10) 

Where 𝑓(!  is the relative abundance of OTU 𝑖 in sample 𝑘, min/𝛥(!*!1 is the nearest 

phylogenetic distance between OTU 𝑖 and other OTUs 𝑗 in the sample 𝑘, 𝑛#  is the 

number of OTUs in sample 𝑘. (Stegen et al., 2012) 

𝛽NTI can be expressed as 

𝛽𝑁𝑇𝐼 = I.9:0-./012031I.9:01453-#7/03JJJJJJJJJJJJJJJJJJJJJJJJJJJ

2&(I.9:01453-#%/03)
. (11) 

Where 𝛽𝑀𝑁𝑇𝐷3425675&  is the observed 𝛽MNTD, 𝛽𝑀𝑁𝑇𝐷68+&3!M25&KKKKKKKKKKKKKKKKKKKKKKK is the average 

𝛽MNTD of the randomised community assemblages generated from null modelling 

(𝑛 = 999 ), 𝑠𝑑(𝛽𝑀𝑁𝑇𝐷68+&3!(25&)  is the standard deviation of the 𝛽MNTD of 

randomised community assemblages. (Stegen et al., 2012) 

𝛽NTI is used to calculate the observed 𝛽MNTD’s standard deviations from the 

average null distribution; the average null distribution is calculated by shuffling the 

OTUs in the phylogeny and recalculating the 𝛽MNTD 999 times. (Stegen et al., 2012) 

2.2.10 Null modelling approaches for performing QPE analysis 

The null modelling was used to analyse the different groups’ gut microbial 

community assembly. 
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The Quantitative Process Estimates (QPE) were based on the two-step procedure by 

Stegen et al. (2015). Firstly, the pairwise 𝛽NTI values of all samples were calculated. 

If the 𝛽NTI value of a sample equals to or greater than 2, the community in the 

sample was assembled by variable selection; if the 𝛽NTI value of a sample equals to 

or less than -2, the community in the sample was assembled by homogeneous 

selection; if the absolute 𝛽NTI value of a sample is less than 2, the community 

assemble in the sample could be the result of homogenising dispersal, dispersal 

limitation, or undominated. (Vass et al., 2020) Secondly, the abundance-based (Raup-

Crick) beta diversity was calculated using the pairwise Bray-Curtis distance measure 

(𝛽NO.148 ). The communities not assembled by variable or homogeneous selection 

were involved in this step. If the 𝛽NO.148 value of a pair of samples is greater than 

0.95, the two samples were assembled by dispersal limitation coupled with 

undominated; If the 𝛽NO.148  value of a pair of samples is less than -0.95, the two 

samples were assembled by homogenising dispersal; If the absolute  𝛽NO.148 value of 

a pair of samples is equal to or less than 0.95, the two samples were assembled by 

undominated. (Vass et al., 2020) Among the assembly processes, variable selection 

and homogeneous selection are deterministic, while dispersal limitation, 

homogenising dispersal and undominated are stochastic. (Stegen et al., 2015)  

In the present study, the QPE process can provide the percentage of homogeneous 

selection, the percentage of variable selection, the percentage of dispersal limitation, 

the percentage of homogenising dispersal and the percentage of undominated in the 

gut microbial community assembly process. 

The QPE and the 𝛽NO.148 were calculated with the picante package (Kembel et al., 

2010), the ape package (Paradis and Schilap, 2019), and the ecodist package (Goslee 

and Urban, 2007). 

2.2.11 NST 
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Based on the null modelling approach, the null expectation of the similarity and 

dissimilarity between two communities can be calculated by randomising the 

metacommunity, recalculating the similarity between the two communities 1000 times, 

and summing the average value. (Ning et al., 2019) 

If communities are deterministically assembled, causing the communities to be more 

similar, the similarity between the two communities will be higher than the null 

expectation. (Ning et al., 2019) In this case, the Selection Strength (SS), which is 

called type-A selection strength, of the two communities can be expressed as 

𝑆𝑆(*F =
O%'1P79JJJJ

O%'
	/𝐶(* ≥ 𝐸MQKKKK1.	(12) 

Where 𝑖, 𝑗 are two communities, 𝐶(*  is the observed similarity between community 

𝑖	and community 𝑗, 𝐸MQKKKK is the null expectation of the similarity between community 

𝑖	and community 𝑗 . (Ning et al., 2019) Correspondingly, the type-A Stochasticity 

Ratio (ST) can be expressed as 

 

If communities are deterministically assembled, causing the communities to be more 

dissimilar, the dissimilarity between the two communities will be higher than the null 

expectation. (Ning et al., 2019) In this case, the SS, which is called type-B SS, of the 

two communities can be expressed as 

𝑆𝑆(*G =
0%'1R79JJJJ

0%'
= P79JJJJ1O%'

-1O%'
/𝐶(* < 𝐸MQKKKK1.	 (2-13) 

Where 𝑖, 𝑗 are two communities, 𝐷(* 	(= 1 − 𝐶(*) is the observed dissimilarity between 

community 𝑖	 and community 𝑗 , 𝐺(* 	(= 1 − 𝐸MQKKKK)  is the null expectation of the 

dissimilarity between community 𝑖	 and community 𝑗 . (Ning et al., 2019) 

Correspondingly, the type-B ST can be expressed as  

𝑆𝑇(*G = 1 − 𝑆𝑆(*G =
R79JJJJ

0%'
= -1P79JJJJ

-1O%'
	/𝐶(* < 𝐸MQKKKK1.	 (2-14) 

The average pairwise SS of type-A, type-B, and total are expressed as 

𝑆𝑆F =
∑ SS%'

:5:
%'

+:
,	 (2-15) 
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𝑆𝑆G =
∑ SS%'

;5;
%'

+;
,	

(2-16) 

𝑆𝑆 =
∑ ∑ SS%'

#
')%*+

#,+
%)+

+
=

∑ SS%'
:5:

%' >∑ SS%'
;5;

%'

+:>+;
. (2-17) 

Where 𝑛F is the number of pairwise similarities higher than null expectations, 𝑛G is 

the number of pairwise similarities lower than null expectations. (Ning et al., 2019) 

The average pairwise stochasticity ratio of type-A, type-B, and total are expressed as 

𝑆𝑇F =
∑ S:%'

:5:
%'

+:
,	 (2-18) 

𝑆𝑇G =
∑ S:%'

;5;
%'

+;
,	

(2-19) 

𝑆𝑇 =
∑ ∑ S:%'

#
')%*+

#,+
%)+

+
=

∑ S:%'
:5:

%' >∑ S:%'
;5;

%'

+:>+;
. (2-20) 

Where 𝑛F is the number of pairwise dissimilarities higher than null expectations, 𝑛G 

is the number of pairwise dissimilarities lower than null expectations. (Ning et al., 

2019) 

Ideally, if the assembly process of a community is deterministic without stochasticity, 

the selection strength should be 100%, and the stochasticity ratio should be 0%; 

likewise, if the assembly process of a community is stochastic without determinism, 

the selection strength should be 0%, and the stochasticity should be 100%; however, 

since null model simulates stochastic assembly, the ST would always overestimate 

stochasticity. (Ning et al., 2019) Based on this, Ning et al. (2019) coined the 

Normalised Selection Strength (NSS) and the Normalised Stochasticity Ratio (NST). 

The NSS and the NST can be expressed as 

𝑁𝑆𝑆F = SS:1 SS	6 :

SS:	= 1 SS	6 : =
∑ SS%'

:1TUV
!
W∑ ξ5:

%' (P%'
(!),P79JJJJ)X5:

%'

∑ (-1P79JJJJ)1TUV! Y∑ ξ5:
%' (P%'

(!),P79JJJJ)Z5:
%'

, (2-21) 

𝑁𝑆𝑆G = SS;1 SS	6 ;

SS;	= 1 SS	6 ; =
∑ SS%'

;1TUV
!
W∑ ξ(P%'

(!),P79JJJJ)5;
%' X5;

%'

∑ P79JJJJ1TUV! Y∑ ξ(P%'
(!),P79JJJJ)5;

%' Z5;
%'

, (2-22) 

𝑁𝑆𝑆 = SS1 SS	6

SS	= 1 SS	6
=

∑ ξ(𝐶𝑖𝑗,P79JJJJ)%' 1TUV
!
Y(P%'

(!),P79JJJJ)Z

∑ ξ( 𝐶	𝐷 𝑖𝑗,			P79JJJJ)%' 1TUV
!
Y∑ ξ(P%'

(!),P79JJJJ)%' Z
, (2-23) 

𝐶	' () = #
0			𝐶() ≥ 𝐸*+((((
1			𝐶𝑖𝑗 < 𝐸𝑖𝑗(((

, (2-24) 
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ξ(x, y) = ,-.
,-/

			δ = 10			𝑥 ≥ 𝑦
1			𝑥 < 𝑦, (2-25) 

𝑁𝑆𝑇 = 1 − 𝑁𝑆𝑆. (2-26) 

Where 𝑆𝑆	0  is the extreme value of SS under completely deterministic assembly, 𝑆𝑆	0  

is the extreme value of SS under completely stochastic assembly, the superscript 𝐴 

indicates type-A (𝐶() ≥ 𝐸*+(((() pairwise comparisons, the superscript 𝐵 indicates type-B 

(𝐶() < 𝐸*+(((( ) pairwise comparisons, 𝐶	' ()  is the similarity between community 

𝑖	and community 𝑗 under completely deterministic assembly, 𝐸(*
(#) is one of the null 

expected values of similarity between between community 𝑖	and community 𝑗 under 

stochastic assembly, ξ  is a generalized function for 𝑆𝑆()  under observed, 

stochastic or completely deterministic assembly. (Ning et al., 2019) 

the vegan package (Oksanen et al., 2022), the ape package (Paradis and Schilap, 

2019), and the NST package (Ning et al., 2019) were used to calculate the NST values. 

There are nine null models available for NST analysis (Ning et al., 2019): 
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Table 2. null models for QPE 

Abbreviation 
Way to constrain taxa 

occurrence frequency 

Ways to constrain species 

richness in each sample 

EE Equiprobable Equiprobable 

EP Equiprobable Proportional 

EF Equiprobable Fixed 

PE Proportional Equiprobable 

PP Proportional Proportional 

PF Proportional Fixed 

FE Fixed Equiprobable 

FP Fixed Proportional 

FF Fixed Fixed 

Note: For taxa occurrence frequency, “Equiprobable” means that all taxa have an 

equal probability of occurring, “Proportional” means that the occurrence probability 

of a taxon is proportional to its observed occurrence frequency, and “Fixed” means 

that the occurrence frequency of a taxon is fixed as observed; for species richness in 

each sample, “Equiprobable” means that all samples have an equal probability of 

containing a taxon, “Proportional” means the occurrence probability in a sample is 

proportional to the observed richness in this sample, and “Fixed” means the 

occurrence frequency of a taxon is fixed as observed. (Cheaib et al., 2021) 

 

There are several phylogenetic distance measures, namely "manhattan", 

"mManhattan", "euclidean","mEuclidean", "canberra", "bray", "kulczynski", "jaccard", 

"gower", "altGower", "mGower", "morisita", "horn", "binomial", "chao", "cao". (Ning 

et al., 2019) 

In the NST package, “ruzicka” is not the possible value of the dist.method parameter 

of the tNST() function, but the Ruzicka distance measure is selected by specifying 

dist.method=”jaccard” and abundance.weighted=TRUE. 

2.2.12 Subset regression 



27 

 

The subset regression approach was used in the present study to infer the relationship 

between alpha diversity and the SCFAs.    

The subset regression takes as many subsets of explanatory variables as possible to fit 

the models. For 𝑁 independent explanatory variables, there will be 29 − 1 possible 

regression models. The generalised form of the models can be expressed as: 
𝑌 = 𝛽] + ∑ 𝛽(𝑋(

'
( .	 (2-27) 

Where 𝑌 is the dependent variable, 𝛽] is the intercept, 𝛽( is the beta-coefficient of the 

𝑖th explanatory variable 𝑋(, 𝑝 is the number of the explanatory variables in the model. 

However, the regression model can also be expressed in the form of  𝑌~𝑋. 𝑌 = 𝛽] +

𝛽(𝑋(, for instance, can be expressed as 
𝑌~𝑋( .	 (2-28) 

When fitting a model, the cross-validation technique should be adopted to make the 

model robust. Typically, two types of cross-validation approaches are available: 

1. Leave-one-out cross-validation. Fit the model on the samples, leave one sample out 

in each fitting and calculate the errors. Then calculate the root mean square of all the 

errors. This can be expressed as 

𝑒E7 = Z∑ 𝑒(H+
(,- . (2-29) 

Where 𝑛 is the number of samples, 𝑒E7 is the cross-validation error, and 𝑒( is the error 

when leaving out the 𝑖th sample. 

2. The m-fold cross-validation. Like the leave-one-out cross-validation (leave-one-out 

cross-validation is called 1-fold cross-validation), however,  𝑚 samples are left out in 

each fitting.  

The lower cross-validation error means that the regression model is better. Therefore, 

the best model would be the one with the lowest cross-validation error. 

In the present study, subset regression was completed by using the regsubsets() 

function in the leaps package (Miller, 2020). 
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CHAPTER 3 

Results 
3.1 Diversity 

3.1.1 Alpha Diversity 

Alpha diversity analysis revealed the difference in gut microbiome composition 

between the Healthy Lean Control, Healthy Obese, Hypoth. Lean, and Hypoth. Obese 

groups (Figure 1). 

The Analysis of Variance (ANOVA) reported that the richness and the Fisher alpha 

measures are significant. 

Generally, the gut microbiome in the Healthy Obese group appeared to be 

significantly less diverse than in the Healthy Lean Control group. 

3.1.2 NRI/NTI 

In general, all the groups except the Healthy Obese group have positive NRI and NTI 

values, indicating that strong phylogenetic clustering caused by environmental 

filtering exists throughout the phylogeny of the gut microbiome. (Figure 1) Therefore, 

in Healthy Lean Control, Hypoth. Lean and Hypoth. Obese groups, the OTUs are 

more related to each other than expected. However, the Healthy Obese group’s NRI 

was reported to be negative, showing that phylogenetic dispersion caused by 

competitive exclusion existed in the phylogeny. 
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Figure1. The alpha diversity and NRI/NTI measures for each of the four groups. The “*” on the 

boxplot shows the significance (by ANOVA) of the results (∗∗∗: 𝑝 < 0.001, ∗∗: 𝑝 < 0.01, ∗ :	𝑝 <

0.05) 

 

3.1.3 Beta diversity 

From the beta diversity analysis based on the Bray-Curtis distance measure, 

sequences from the Healthy Lean Control and the Hypoth. Lean groups are 

significantly close to each other, whereas the Healthy Obese sequences are far away 

from these (Figure 2). The PERMANOVA reported the groups as the predictor of the 

variation in abundance between the four groups (𝑝 = 0.002, 𝑅H = 0.04856, 𝑑𝑓 = 3). 

Additionally, the beta diversity analysis based on Unweighted UniFrac distance 

indicates sequences from the Healthy Obese and the Hypoth. Obese groups are 

relatively close to each other. The PERMANOVA reported the groups as the predictor 

of the similar variation (𝑝 = 0.002, 𝑅H = 0.04183, 𝑑𝑓 = 3). 

3.1.4 Top 25 most abundant taxa for each group 

The top 25 most abundant taxa are shown for each group (Figure 2). For the Healthy 

Lean Control and the Healthy Obese groups, the taxa analysis reported a significant 

difference in the abundance of Bifidobacterium and Blautia.  

According to the taxa plot, the Bifidobacterium abundance and the Blautia abundance 

are relatively less abundant in lean groups than in obese groups.  
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Figure 2. Beta diversity calculated with Bray-Curtis (left) and Unweighted UniFrac Distance (right) 

distance measures, shown with PCOA plots. The dashed ellipses are the standard errors of the four 

groups. Each group’s top 25 most abundant taxa (at genus level) are shown around the PCOA plots, 

with the taxa keys on the bottom left side. 

 

3.2 Core microbiome and differential analysis 

3.2.1 Core microbiome analysis 

The core microbiome of the Healthy Lean Control, Healthy Obese, Hypoth. Lean, and 

Hypoth. Obese groups are indicated with heat maps (Figure 3). The core microbiome 

is detected based on the 85% prevalence threshold. 

The genera on the top of the heat map are the genera of low prevalence and low 

abundance, while the genera on the bottom of the heat map are the genera of high 

prevalence and high prevalence. 

For the Health Lean Control group, the top 5 most persistent genera are 

Bifidobacterium, Blautia, Agathobacter, Faecalibacterium, and Subdoligranulum. For 

the Health Obese group, the top 5 most persistent genera are Bifidobacterium, Blautia, 

Collinsella, Agathobacter, and Dorea. For the Hypoth. Lean group, the top 5 most 

persistent genera are Blautia, Bifidobacterium, Bacteroides, Faecalibacterium, and 
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Agathobacter. For the Hypoth. Lean group, the top 5 most persistent genera are 

Blautia, Bifidobacterium, Agathobacter, Faecalibacterium, and Subdoligranulum.  

As the detection threshold increases, the prevalence of each genus goes down, 

showing the difference in abundance between genera in each group. 

The Bifidobacterium and the Blautia are reported as highly prevalent in all of groups, 

but they are significantly less abundant in the groups other than the Healthy Lean 

Control group. 
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Figure 3. Core microbiome (at genus level) of the Healthy Lean Control(top-left), Healthy Obese 

(bottom-left), Hypoth. Lean (top-right), and Hypoth. Obese (bottom-right) groups. The detection 

threshold indicates the lowest level of abundance in a sample for a genus to be detected; the prevalence 

indicates the percentage of samples the genus detected with the threshold. (Note: please zoom in to 

look at the plots in detail) 

 

3.2.2 Differential analysis 

The results of differential analysis (at genus level) identified the genera significantly 

different between the groups. The results of comparisons are shown as MA plots 

(Figure 4), and a table showing the up-regulated group of the genus (Table 3). 
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Figure 4. The MA plots showing the significant genera that are different between: the Healthy Lean 

Control and the Healthy Obese groups (left), the Healthy Lean Control and the Hypoth. Lean groups 

(middle), the Healthy Obese and Hypoth. Obese groups (right). 

 

Table 3. The up-regulated genera in each group based on differential analysis 

 

 

3.3 QPE and NST analysis 

The result of QPE analysis of all the groups reported more stochastic process than 

deterministic process. (Figure 5) Among the processes, homogeneous selection and 

variable selection are deterministic, while dispersal limitation, homogenising dispersal 

and undominated are stochastic. 

 According to Ning et al. (2019), when using the Ruzicka distance measure and PP or 

PF null model, the accuracy and the correctness are the highest for NST and ST 

metrics. Therefore, the present study used the PF-Ruzicka and PP-Ruzicka measures 

to calculate the values of Normalised Stochasticity ratio (NST) in each group. The 

genus Upregulated genus Upregulated genus Upregulated
Acidaminococcus Healthy Obese Catenibacterium Healthy Lean Control [Eubacterium]_coprostanoligenes_group Healthy Obese
Akkermansia Healthy Lean Control Desulfovibrio Healthy Lean Control [Ruminococcus]_gnavus_group Hypoth. Obese
Allisonella Healthy Obese Eisenbergiella Hypoth. Lean Acidaminococcus Healthy Obese
Alloprevotella Healthy Obese Enorma Healthy Lean Control Allisonella Healthy Obese
Catenibacterium Healthy Obese Holdemanella Healthy Lean Control Alloprevotella Healthy Obese
Eisenbergiella Healthy Lean Control Hungatella Hypoth. Lean Catenibacterium Healthy Obese
Enorma Healthy Lean Control Marvinbryantia Healthy Lean Control Clostridia_UCG-014 Healthy Obese
Howardella Healthy Obese Muribaculaceae Healthy Lean Control Enterorhabdus Healthy Obese
Lactobacillus Healthy Obese Olsenella Healthy Lean Control Erysipelatoclostridium Hypoth. Obese
Megamonas Healthy Obese Phascolarctobacterium Healthy Lean Control Lachnospiraceae_UCG-010 Healthy Obese
Megasphaera Healthy Obese RF39 Healthy Lean Control Lactobacillus Healthy Obese
Olsenella Healthy Lean Control Slackia Healthy Lean Control Paraprevotella Healthy Obese
Paraprevotella Healthy Obese Succiniclasticum Hypoth. Lean Megamonas Healthy Obese
Prevotella Healthy Obese UCG-003 Healthy Lean Control Senegalimassilia Healthy Obese
Sellimonas Healthy Lean Control Succiniclasticum Healthy Obese
Slackia Healthy Lean Control
Succiniclasticum Healthy Obese

Healthy Lean Control vs Healthy Obese Healthy Lean Control vs Hypoth. Lean Healthy Obese vs Hypoth. Obese
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results are shown in the plots below (Figure 6). The results showed that the assembly 

process of the gut microbiota in the Healthy Obese and the Hypoth. Obese groups is 

more stochastic than the assembly process of the gut microbiota in the Healthy Lean 

control and the Hypoth. Lean groups. 
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Figure 5. The proportion of community assembly process in all the groups. From top to bottom: 

Dispersal Limitation, Homogeneous Selection, Homogenising Dispersal, Undominated, Variable 

Selection. 

 

 

Figure 6. The results of NST analysis using PF-Ruzicka (left) and PP-Ruzicka (right) measres. 

 

3.4 Regression analysis 
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The regression models estimating the relationship between alpha diversity and SCFAs 

are fitted. The tables and the plots below show the optimal models for each distance 

measure, which are FisherAlpha ~ C2_dry + C3_dry + C5_dry + C6_dry (Table 4 and 

Figure 7), PielouEvenness ~ C2_dry + IC4_dry + C5_dry + C6_dry (Table 5 and 

Figure 8), Richness ~ C2_dry + IC4_dry + C6_dry + C8_dry (Table 6 and Figure 9), 

Shannon ~ C2_dry + IC4_dry (Table 7 and Figure 10), Simpson ~ C3_dry + IC4_dry 

(Table 8 and Figure 11). (Model parameters given with significant positive influencers 

highlighted in orange and negative in blue; the SCFAs are: C2=Acetate, 

C3=Propionate, IC4=Iso-Butyrate, C4=Butyrate, IC5=Iso-Valerate, C5=Valerate, 

C6=Caproate, C7=Enanthate, and C8=Caprylate) For each distance measure, only the 

best model will be shown here, the top 9 models and their cross-validation errors (𝑒O^) 

can be found in the Appendix Ⅰ. 
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Table 4. FisherAlpha ~ C2_dry + C3_dry + C5_dry + C6_dry (𝑒O^ = 0.64961) 

 

 

Figure 7. The estimated distribution of the beta coefficients of FisherAlpha ~ C2_dry + C3_dry + 

C5_dry + C6_dry 

Predictors Estimates std. Error std. Beta standardized std. Error CI standardized CI Statistic p df
(Intercept) 5.14969 *** 0.1888 0 0.0822 4.77558 – 5.52380 -0.16289 – 0.16289 27.27643 5.00E-51 111
C2 dry -0.00097 0.00052 -0.1934 0.10361 -0.00199 – 0.00006 -0.39872 – 0.01192 -1.86651 6.46E-02 111
C3 dry -0.00379 * 0.0019 -0.23215 0.11606 -0.00755 – -0.00004 -0.46214 – -0.00216 -2.00015 4.79E-02 111
C5 dry 0.03169 ** 0.01103 0.30088 0.10477 0.00982 – 0.05355 0.09327 – 0.50849 2.87186 4.89E-03 111
C6 dry 0.03657 * 0.01445 0.22617 0.08937 0.00794 – 0.06520 0.04909 – 0.40326 2.53086 1.28E-02 111
Observations
R2 / R2 adjusted 0.243 / 0.216

* p<0.05   ** p<0.01   *** p<0.001

FisherAlpha

116
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Table 5. PielouEvenness ~ C2_dry + IC4_dry + C5_dry + C6_dry (𝑒O^ = 0.06999) 

  

 

Figure 8. The estimated distribution of the beta coefficients of PielouEvenness ~ C2_dry + IC4_dry + 

C5_dry + C6_dry 

  

Predictors Estimates std. Error std. Beta standardized std. Error CI standardized CI Statistic p df
(Intercept) 0.49183 *** 0.02775 0 0.08411 0.43684 – 0.54682 -0.16666 – 0.16666 17.72278 3.78E-34 111
C2 dry -0.00010 * 0.00005 -0.17964 0.08879 -0.00019 – -0.00000 -0.35559 – -0.00369 -2.02308 4.55E-02 111
IC4 dry 0.00706 *** 0.00178 0.43219 0.10908 0.00353 – 0.01059 0.21604 – 0.64835 3.9621 1.32E-04 111
C5 dry -0.00277 * 0.00126 -0.24491 0.11145 -0.00527 – -0.00027 -0.46575 – -0.02407 -2.19751 3.01E-02 111
C6 dry 0.00269 0.00158 0.15509 0.09103 -0.00044 – 0.00583 -0.02529 – 0.33548 1.70373 9.12E-02 111
Observations
R2 / R2 adjusted

PielouEvenness

116
0.208 / 0.179

* p<0.05   ** p<0.01   *** p<0.001
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Table 6. Richness ~ C2_dry + IC4_dry + C6_dry + C8_dry (𝑒O^ = 4.75411) 

 

 

Figure 9. The estimated distribution of the beta coefficients of Richness ~ C2_dry + IC4_dry + C6_dry 

+ C8_dry 

  

Predictors Estimates std. Error std. Beta standardized std. Error CI standardized CI Statistic p df
(Intercept) 31.39122 *** 1.91731 0 0.08107 27.59194 – 35.19051 -0.16065 – 0.16065 16.3725 2.23E-31 111
C2 dry -0.00966 ** 0.0032 -0.25533 0.08461 -0.01600 – -0.00332 -0.42299 – -0.08767 -3.01767 3.16E-03 111
IC4 dry 0.28297 ** 0.09894 0.24566 0.08589 0.08692 – 0.47902 0.07546 – 0.41586 2.86016 5.06E-03 111
C6 dry 0.29342 ** 0.11065 0.2395 0.09031 0.07417 – 0.51267 0.06054 – 0.41847 2.6519 9.18E-03 111
C8 dry 0.2076 0.16521 0.11237 0.08943 -0.11976 – 0.53497 -0.06483 – 0.28958 1.25663 2.12E-01 111
Observations
R2 / R2 adjusted 0.264 / 0.238

* p<0.05   ** p<0.01   *** p<0.001

Richness

116
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Table 7. Shannon ~ C2_dry + IC4_dry (𝑒O^ = 0.28664) 

 

 

Figure 10. The estimated distribution of the beta coefficients of Shannon ~ C2_dry + IC4_dry 

  

Predictors Estimates std. Error std. Beta standardized std. Error CI standardized CI Statistic p df
(Intercept) 1.88044 *** 0.11379 0 0.08408 1.65500 – 2.10587 -0.16657 – 0.16657 16.52602 6.28E-32 113
C2 dry -0.00049 * 0.00019 -0.22074 0.087 -0.00087 – -0.00011 -0.39309 – -0.04838 -2.53732 1.25E-02 113
IC4 dry 0.02230 *** 0.00584 0.33209 0.087 0.01072 – 0.03387 0.15974 – 0.50444 3.81732 2.21E-04 113
Observations
R2 / R2 adjusted

116
0.194 / 0.180

* p<0.05   ** p<0.01   *** p<0.001

Shannon
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Table 8. Simpson ~ C3_dry + IC4_dry (𝑒O^ = 0.0806) 

 

 

Figure 11. The estimated distribution of the beta coefficients of Simpson ~ C3_dry + IC4_dry 

  

Predictors Estimates std. Error std. Beta standardized std. Error CI standardized CI Statistic p df
(Intercept) 0.73949 *** 0.02687 0 0.08809 0.68626 – 0.79272 -0.17452 – 0.17452 27.52379 6.37E-52 113
C3 dry -0.00036 * 0.00018 -0.17886 0.08865 -0.00070 – -0.00001 -0.35450 – -0.00323 -2.01757 4.60E-02 113
IC4 dry 0.00514 ** 0.00164 0.27784 0.08865 0.00189 – 0.00838 0.10220 – 0.45347 3.13404 2.20E-03 113
Observations
R2 / R2 adjusted

116
0.116 / 0.100

* p<0.05   ** p<0.01   *** p<0.001

Simpson
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Chapter 4  

Discussion 
The genera Bifidobacterium and Blautia were found to be highly prevalent in all of 

the groups. However, the significant difference in the abundance of the two genera 

between the Healthy Lean Control and the Healthy Obese groups may explain the 

cause of simple obesity. 

The Bifidobacterium is responsible for the metabolisation of oligosaccharides, 

including plant source fructo oligosaccharides and dairy source galacto 

oligosaccharides. Bifidobacterium also produces lactic acid and acetic acid. The 

Blautia produces butyric acid and acetic acid. (Ozato et al., 2019) Acetic acid, lactic 

acid, and butyric acid regulate the GPR41 and the GPR43, and reduce obesity. (Ozato 

et al., 2019) The Blautia is also responsible for reducing visceral fat. (Ozato et al., 

2019) 

The significant differences in gut microbiota could also account for the cause of 

obesity.  

The effect of the genus Lactobacillus on body weight is multifaceted. On the one 

hand, the species L. rhamnosus and L. acidophilus are proven to be associated with 

weight gain, while the species L. plantarum and L. curvatus are proven to have 

beneficial effects on weight. 

A significant limitation of the present study is that the Operational Taxonomic Units 

(OTUs), instead of the Amplicon Sequence Variants (ASVs), are used to represent the 

species of the gut microbiome. An OTU is constructed by clustering the sequences 

based on a fixed similarity threshold (usually 97%). Since the individuals in a species 

do not evolve or mutate at the same rate, the cluster of the similar sequences may not 

be able to accurately represent a species. However, an ASV is constructed based on a 

specific distribution model, thus the assignment of similarity is not needed. 
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Chapter 5  

Conclusion 
Here, with the modern bioinformatic and statistical techniques, I found out the 

relationship between gut microbiota, SCFAs and obesity. The gut microbiota is 

capable of producing short-chain fatty acids that can influence host metabolism and 

appetite, which in turn affects host nutrient and energy utilization and ultimately host 

body weight; in turn, the content of short-chain fatty acids affects the composition of 

the gut microbiota 

Unfortunately, due to the absence of the original sequence data and a lack of time, in 

the present study, the in-depth investigation the specific species of gut microbiome 

was not able to be completed appropriately. 

Therefore, the direction of the future studies should be conducted in the following 

directions. 

1. Use ASV (Amplicon Sequence Variant) instead of OTUs to represent the species of 

the gut microbiome. 

2. Perform a thorough investigation to figure out the functions and the properties of 

the core gut microbiome genera, especially those genera that are significantly 

different in abundance between different groups. 

3. Investigate the relationship between hypothalamic disorders, metabolism, and gut 

microbiota.  
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Appendix 
Appendix Ⅰ the cross-validation errors of the fitted models  

 

Model Cross-validation Errors
4 FisherAlpha ~ C2_dry + C3_dry + C5_dry + C6_dry 0.64961
5 FisherAlpha ~ C2_dry + C3_dry + IC5_dry + C5_dry + C6_dry 0.65295
2 FisherAlpha ~ C2_dry + C6_dry 0.65418
3 FisherAlpha ~ C3_dry + C5_dry + C6_dry 0.65725
6 FisherAlpha ~ C2_dry + C3_dry + IC4_dry + IC5_dry + C5_dry + C6_dry 0.66919
7 FisherAlpha ~ C2_dry + C3_dry + IC4_dry + IC5_dry + C5_dry + C6_dry + C8_dry 0.6755
8 FisherAlpha ~ C2_dry + C3_dry + IC4_dry + C4_dry + IC5_dry + C5_dry + C6_dry + C8_dry 0.68828
1 FisherAlpha ~ IC5_dry 0.6903
9 FisherAlpha ~ C2_dry + C3_dry + IC4_dry + C4_dry + IC5_dry + C5_dry + C6_dry + C7_dry + C8_dry 0.69527

Model Cross-validation Errors
4 PielouEvenness ~ C2_dry + IC4_dry + C5_dry + C6_dry 0.06999
5 PielouEvenness ~ C2_dry + C3_dry + IC4_dry + C5_dry + C6_dry 0.07032
3 PielouEvenness ~ C2_dry + IC4_dry + C5_dry 0.07052
2 PielouEvenness ~ C2_dry + IC4_dry 0.07096
6 PielouEvenness ~ C2_dry + C3_dry + IC4_dry + C5_dry + C6_dry + C7_dry 0.071
7 PielouEvenness ~ C2_dry + C3_dry + IC4_dry + IC5_dry + C5_dry + C6_dry + C7_dry 0.0713
8 PielouEvenness ~ C2_dry + C3_dry + IC4_dry + IC5_dry + C5_dry + C6_dry + C7_dry + C8_dry 0.0716
1 PielouEvenness ~ IC4_dry 0.07225
9 PielouEvenness ~ C2_dry + C3_dry + IC4_dry + C4_dry + IC5_dry + C5_dry + C6_dry + C7_dry + C8_dry 0.07229

Model Cross-validation Errors
4 Richness ~ C2_dry + IC4_dry + C6_dry + C8_dry 4.75411
3 Richness ~ C2_dry + IC4_dry + C6_dry 4.79648
5 Richness ~ C2_dry + C3_dry + IC4_dry + C6_dry + C8_dry 4.79727
2 Richness ~ C2_dry + C6_dry 4.95577
6 Richness ~ C2_dry + C3_dry + IC4_dry + C5_dry + C6_dry + C8_dry 4.96595
7 Richness ~ C2_dry + C3_dry + IC4_dry + IC5_dry + C5_dry + C6_dry + C8_dry 5.03256
1 Richness ~ IC4_dry 5.11507
8 Richness ~ C2_dry + C3_dry + IC4_dry + C4_dry + IC5_dry + C5_dry + C6_dry + C8_dry 5.13719
9 Richness ~ C2_dry + C3_dry + IC4_dry + C4_dry + IC5_dry + C5_dry + C6_dry + C7_dry + C8_dry 5.23092

Model Cross-validation Errors
2 Shannon ~ C2_dry + IC4_dry 0.28664
3 Shannon ~ C2_dry + IC4_dry + C6_dry 0.28696
4 Shannon ~ C2_dry + IC4_dry + C5_dry + C6_dry 0.29072
1 Shannon ~ IC4_dry 0.29402
5 Shannon ~ C2_dry + C3_dry + IC4_dry + C5_dry + C6_dry 0.29843
6 Shannon ~ C2_dry + C3_dry + IC4_dry + IC5_dry + C5_dry + C6_dry 0.30143
7 Shannon ~ C2_dry + C3_dry + IC4_dry + IC5_dry + C5_dry + C6_dry + C8_dry 0.30259
8 Shannon ~ C2_dry + C3_dry + IC4_dry + IC5_dry + C5_dry + C6_dry + C7_dry + C8_dry 0.30443
9 Shannon ~ C2_dry + C3_dry + IC4_dry + C4_dry + IC5_dry + C5_dry + C6_dry + C7_dry + C8_dry 0.30979

Model Cross-validation Errors
2 Simpson ~ C3_dry + IC4_dry 0.0806
3 Simpson ~ C3_dry + IC4_dry + C6_dry 0.08064
4 Simpson ~ C2_dry + C3_dry + IC4_dry + C6_dry 0.08104
5 Simpson ~ C2_dry + C3_dry + IC4_dry + C6_dry + C8_dry 0.08132
6 Simpson ~ C2_dry + C3_dry + IC4_dry + C5_dry + C6_dry + C8_dry 0.08178
1 Simpson ~ IC4_dry 0.08218
7 Simpson ~ C2_dry + C3_dry + IC4_dry + C5_dry + C6_dry + C7_dry + C8_dry 0.08219
8 Simpson ~ C2_dry + C3_dry + IC4_dry + C4_dry + C5_dry + C6_dry + C7_dry + C8_dry 0.08569
9 Simpson ~ C2_dry + C3_dry + IC4_dry + C4_dry + IC5_dry + C5_dry + C6_dry + C7_dry + C8_dry 0.08701

Fisher Alpha and SCFAs

Pielou Evenness and SCFAs

Richness and SCFAs

Shannon Entropy and SCFAs

Simpson Index and SCFAs


