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Abstract 
Background: Campylobacter jejuni is present within the chicken gut and is the leading 

cause of bacterial foodborne gastroenteritis within humans worldwide. Infection can lead to 

secondary sequelae such as Guillain-Barré syndrome and stunted growth in children from 

low-resource areas. Despite the microaerophilic nature of the bacterium, we do not 

understand how C. jejuni can survive the atmospheric oxygen conditions in the environment. 

We also do not understand how chickens can tolerate >106 C. jejuni and not display any 

overt disease, yet only 500 C. jejuni cause severe disease in human hosts.  

Methods: 16S metagenomics bioinformatics and statistical analyses were performed on 

genomic DNA isolated from chicken ceca under normal and test conditions where chicken 

were exposed to different concentrations of the natural antimicrobial carvacrol within feed. 

A comparison between bioinformatics methods whether driven purely by assigning threshold 

at 97% similarity for species discretisation (VSEARCH OTUs) or based on single nucleotide 

variants (DADA2 ASVs) was assessed to view the best realisation of underlying community 

structure and its biological relevance. In addition, RNA-Seq bioinformatics and statistical 

methods were performed to investigate the expression levels of C. jejuni genes when 

comparing stress conditions against normal growth conditions from RNA isolated at late log 

phase (16 hours). For comparison purposes, we have explored alternative choices for 

obtaining transcripts abundances based on different software choices i.e. StringTie and 

bedtools.  

Results: For 16S metagenomics, alpha diversity metrics displayed an increasing microbial 

diversity as the concentration of carvacrol was increased over time. Subset regression 

(identifying a subset of confounders to play a role in community statistics) identified day 21 

displaying a decreasing effect on microbial diversity, whereas day 35 displays an increasing 

effect. Also, day 10 seems to shift the microbial community structure away from the average 

beta diversity status. In addition, increasing the concentration of carvacrol seems to shift the 

microbial population structure away from the average beta diversity status. Functional 

analysis using PICRUSt2 identified a range of genes involved in biofilm and sporulation. 

For comparison, Procrustes analysis (consolidation of patterns between multivariate 

datasets) was performed on the VSEARCH and DADA2 abundance tables. A Procrustes 

correlation of 0.787 with a p-value of 0.0001 was obtained, indicating significant similarity 

in obtaining underlying microbial community structures using either of the methods.  

For RNA-Seq, significant up and down regulated genes were obtained using StringTie and 

bedtools (here used as different methods to ascertain what could be logically defined as a 

transcript) and then correlating the results specifically with genes involved in the oxidative 
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stress response. For comparative purposes, Procrustes analysis was performed on the 

multivariate tables generated from StringTie and bedtools pipelines to ascertain how much 

they correlate. A Procrustes correlation of 0.8148 with a p-value of 0.0001 was obtained. 

This again validates conformation between the two methods. 

Conclusions: This study investigated different transcriptomics and 16S metagenomics 

pipelines analysing the pathogenesis of C. jejuni. For 16S metagenomics, certain differences 

were observed between the carvacrol treated versus normal samples. Irrespective of the 

bioinformatics tools used, the underlying patterns were more or less conserved. This was 

also observed for RNA-Seq pipelines. 
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1. Introduction 
 

1.1 Campylobacter 
 

Campylobacter jejuni is the most common bacterial cause of human gastroenteritis 

worldwide with an estimated 400 million human infections per year (Ruiz-Palacios, 2007). 

The symptoms of campylobacteriosis are malaise, fever, severe abdominal pain, and diarrhea 

(Brondsted et al., 2005). C. jejuni infection has also been associated with postinfectious 

sequelae, including septicemia and neuropathies such as Guillain-Barré syndrome (GBS) 

(Nachamkin et al., 1998). Despite specific microaerobic growth requirements, C. jejuni is 

ubiquitous in the aerobic environment and appears capable of withstanding different stresses, 

including suboptimal carbon source growth, temperature changes, and exposure to 

atmospheric oxygen (Fields and Thompson, 2008). A more complete understanding of the 

regulation of C. jejuni response mechanisms to the diverse stresses encountered both during 

the infection cycle and within the natural environment is required to facilitate appropriate 

intervention strategies to reduce the burden of C. jejuni-associated disease (Pittman et al., 

2007). 

C. jejuni are also widely found in avians and so the main route of transmission is via the 

consumption and handling of poultry products. The predominance of C. jejuni can be 

attributed to the ability to survive in the environment as well as within avian and mammalian 

hosts despite the microaerophilic nature of this bacterium (Byrne et al., 2007). How avians 

tolerate trillions of C. jejuni cells without having overt disease, yet only 500 cells cause 

severe disease in human hosts remains unknown. Intervention and control strategies against 

C. jejuni have been limited to biosecurity at poultry farms and consumer education in terms 

of cooking practices. The ban on antibiotics as growth promoters and consumer desire for 

antibiotic-free chickens has led to exploring natural alternatives to reduce pathogens and 

simultaneously achieve performance enhancement of chickens. As an example, carvacrol is 

a natural plant-derived antimicrobial (from oregano) that targets the outer membrane 

integrity and biofilm formation of certain bacterial species, and so use of carvacrol may be 

an option to reducing C. jejuni levels (Ultee et al., 1999). Thus, all these reasons serve as a 

basis to explore C. jejuni pathogenesis in the context of this study as well as the role of 

microbiota if implicated towards this end.  

 

1.1 Next-generation sequencing 
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The arrival of next-generation sequencing (NGS) during the first decade of the 21st century 

revolutionised science, and this has substantially advanced microbial ecology. Traditional 

Sanger sequencing technology typically returns 500-600 nucleotides per run. NGS 

transformed the field by producing large volumes of read data simultaneously at significantly 

reduced prices (Bonetta, 2010). NGS moved away from the electrophoretic sequencing 

(utilised by the Sanger methodology), however the key change was multiplexing, where 

instead of a single tube per reaction, a complex library of DNA templates could be 

immobilized onto a 2D surface, with all templates accessible to a single reagent volume 

(Shendure et al., 2017). Bacterial cloning was replaced with in vitro amplification which 

generates copies of each template to be sequenced. Finally, instead of measuring fragment 

lengths, sequencing includes cycles of biochemistry (e.g. polymerase-mediated 

incorporation of fluorescently labelled nucleotides) and imaging, also known as 

‘sequencing-by-synthesis’ (SBS) (Shendure et al., 2017, Goodwin et al., 2016). The Illumina 

platform is the market leader with unprecedented accuracy (Shendure et al., 2017, Goodwin 

et al., 2016). In addition to the low error rate and relative cost, the Illumina set up has great 

flexibility allowing applicability to different omics methodologies.  

More recently, a third generation of sequencing technologies has been developed, largely 

referred to as real-time single molecule sequencing where the market leaders are Oxford 

Nanopore Technologies (ONT) and PacBio. These methodologies, albeit fast and/or cheaper, 

and/or comprehensive, may provide sequencing in real-time in some cases. However they 

are far from perfect and issues including copying errors, sequence-dependent biases and 

information loss (e.g. methylation), along with time and complexity are prevalent (Goodwin 

et al., 2016). However, the major drawback is that there is a trade-off between read length 

and accuracy where relative error rates can be as high as 10% for longer reads.  

The revolution in genome sequencing has led to a deluge of genomes being sequenced. In 

addition, the development of NGS also had an important impact on alternative omics-based 

methodologies, particularly to metagenomics and transcriptomics. 

 

1.3 16S metagenomics 
 

Microbial community profiling using 16S ribosomal RNA (rRNA) is a high-throughput 

methodology utilised as a de facto approach for microbial community surveys, and allows 

us to gain insights into their spatial and temporal dynamics (Hamady et al., 2008). Microbial 

community surveys can be broken down to two methodologies: i) targeted amplicon 

sequencing, typically the 16S rRNA region; or ii) whole-genome shotgun metagenomics 
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sequencing where the complete DNA is sequenced using a PCR-free methodology. In 

prokaryotes, the 16S rRNA genes are essential and occur in at least one copy in a genome 

(Acinas et al., 2004) and the variant regions, V1–V9, are used for species identification (Lane 

et al., 1985). These characteristics allow the 16S rRNA gene to provide accurate taxonomic 

classification. Limitations of the 16S methodology are: i) amplification biases exist for 

various hypervariable regions (Hong et al., 2009, Sharpton et al., 2011); ii) genomic loci 

other than the 16S region vary in differential strength at distinguishing taxa (Schloss, 2010, 

Jumpstart Consortium Human Microbiome Project Data Generation Working, 2012); iii) 

amplicon sequencing elucidates what is there, but not necessarily the biological functions 

associated with the organisms identified (Quince et al., 2017); iv) comparative studies have 

highlighted the limitations of delineation to strain level (Johnson et al., 2019); v) given the 

pervasiveness of horizontal gene transfer, microbial profiling with amplicon sequencing can 

result in inflated estimates of the community diversity (Acinas et al., 2004); and vi) with the 

sequencing data and its similarity able to define species boundaries, what is the appropriate 

threshold to discretise species.   

 

1.4 Operational Taxonomic Units (OTUs)  
 

The use of the 16S rRNA gene sequence to profile microbial communities has inherent 

problems as the taxonomic resolution of sequence variation across a marker region is limited 

both biologically and technically, as sequence divergence may not represent wider biological 

divergence between taxa (Stackebrandt and Goebel, 1994). In addition, sequencing errors 

introduce artificial divergence (Huse et al., 2010). Thus, enumeration of all sequences is 

impractical, especially given that many unique reads are often present. To disentangle this 

issue, reads within a 16S rRNA dataset are typically collapsed into what is referred to as 

operational taxonomic units (OTUs). OTUs were initially used in the context of numerical 

taxonomy, where an “Operational Taxonomic Unit” defines the group of organisms being 

studied (Sneath and Sokal, 1973). In essence, OTUs are a practical representative for species 

at different taxonomic levels. OTUs are common units of diversity, especially for 16S 

marker gene datasets. During the 16S bioinformatics pipeline, sequences are clustered 

according to their similarity to one another, and OTUs are typically clustered on a similarity 

threshold of 97% (based on majority consensus that exists in the literature). Considerable 

debate exists whether OTUs can summarise and encapsulate true microbial species 

phylogeny or ecology, and what exactly constitutes a bacterial species (Jackson et al., 2016).  
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A range of methods enable collapsing of 16S data to OTUs (Schloss and Handelsman, 2005, 

Edgar, 2013, Jackson et al., 2016, Rognes et al., 2016) which are often implemented within 

software wrappers such as QIIME and Mothur (Schloss et al., 2009, Caporaso et al., 2010, 

Bolyen et al., 2019).A discussion point in choice of method is whether experimental 

sequences should be clustered against a reference database of sequences (closed reference 

clustering) (Liu et al., 2008, Navas-Molina et al., 2013), or simply clustered based on the 

experimental data producing what are termed de novo OTUs based on the choice of a 

threshold in terms of sequence similarity (Schloss and Handelsman, 2005, Navas-Molina et 

al., 2013). Closed reference clustering has issues in that users are limited to the sequences 

within the database. De novo clustering does not have this limitation and includes all 

experimental reads in resultant OTUs, which may better represent rare and novel taxa 

(Navas-Molina et al., 2013). A third method is termed open-reference clustering which aims 

to utilise the best of both worlds, by first clustering experimental sequences against a 

reference, followed by de novo clustering of discarded sequences (Navas-Molina et al., 

2013).  

Based on the reference or de novo approach selected, different algorithms have their own 

analytical procedures (Schloss and Handelsman, 2005, Caporaso et al., 2010, Edgar, 2013, 

Rognes et al., 2016). Linkage based methods can be used to calculate pairwise distances 

between all sequences allowing hierarchical clustering to OTUs (Schloss and Handelsman, 

2005). Greedy algorithms are also usable which aim to reduce computation time via heuristic 

approaches to finding optimal groups without calculating all possible distances (Edgar, 2013, 

Rognes et al., 2016). Furthermore, there have been a number of methods proposed to 

summarise 16S data without using a predetermined global similarity threshold. These 

include simply using de-replicated sequences (reads collapsed by 100% similarity), defining 

OTUs by inherent separation within the dataset using local rather than global cut-offs (Mahé 

et al., 2014), and splitting reads into groups based on sequence entropy at each position in 

aligned reads (Eren et al., 2015). 

 

1.5 Amplicon Sequence Variants (ASVs) 
 

Whilst thresholding-based methods (OTUs) is widely established, there is still a lot of debate 

as to what constitutes as a perfect threshold to define species boundaries. As an alternative, 

amplicon sequence variant (ASVs) have been popularised recently, which relaxes the 

assumption and gives us the distribution of species by fitting a probability distribution 

function and recover variants based on underlying noise models (Callahan et al., 2017, 
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Needham et al., 2018). Modern methods control errors sufficiently such that ASVs can be 

resolved exactly down to the level of single-nucleotide differences over the sequenced gene 

region (Eren et al., 2015, Tikhonov et al., 2015, Callahan et al., 2016, Edgar, 2016, Amir et 

al., 2017). This circumvents the use of arbitrary dissimilarity thresholds typically used for 

the aforementioned OTUs (Callahan et al., 2017). Of note, each of the methods have denoted 

their own naming convention (ASV (Callahan et al., 2017, Needham et al., 2018); ESV 

(Callahan et al., 2017); sub-OTUs (sOTUs) (Amir et al., 2017); zero Radius OTUs (zOTUs) 

(Edgar, 2016)), however they are all essentially referring to the same measurement: 

amplicons from NGS following a discretisation based on an underlying analytical approach.     

ASV methods infer the biological sequences in the sample prior to the introduction of 

amplification and sequencing errors, and distinguish sequence variants differing by as little 

as one nucleotide (Callahan et al., 2017). This is achieved by generating an error model 

tailored to an individual sequencing run and employing algorithms that use the model to 

distinguish between true biological sequences and those generated by error (Callahan et al., 

2017). Because ASVs represent actual biological material, in theory they can be directly 

compared between different studies, and this is one of the proposed major strengths of the 

methodology. ASVs have also demonstrated sensitivity and specificity as good or better than 

OTU methods and better discriminate ecological patterns (Eren et al., 2015, Callahan et al., 

2016, Needham et al., 2018). Popular methods for resolving ASVs include DADA2 

(Callahan et al., 2016), Deblur (Amir et al., 2017) and MED (Eren et al., 2015).  

There exists an ongoing discussion as to which of ASVs and OTUs is more accurate and 

should be used for microbiological community surveys (Callahan et al., 2017). Arguments 

in favour of ASVs focus on the utility of finer sequence resolution and the advantage of 

being able to easily compare sequences between different studies. In contrast, others have 

argued that ASVs are not ideal as references for linking microbial identity with functions 

(Dueholm et al., 2019) as: i) ASVs do not contain sufficient evolutionary information to 

confidently resolve their phylogeny (Yarza et al., 2014), which makes it impossible to report 

and infer how microbial traits are conserved at different phylogenetic scales (Dueholm et al., 

2019); ii) comparison of ASVs between different projects is only possible if the ASVs are 

produced and processed the same way (Dueholm et al., 2019). Nonetheless, they are gaining 

increasing importance as the de facto standard for mitigating any biases associated with 

having similar thresholds for all species.  

 

1.6 Data analysis 
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Microbial communities can be understood at both fine scales (species that are differentially 

abundant) and at coarse scales (1D-realisation of the community structure). For the latter 

analyses, diversity measures are typically applied and they fall within three categories (Ley 

et al., 2008b, Magurran, 2013): i) “alpha diversity” (the number of taxa or lineages within a 

specific sample) and “beta diversity” (how taxa or lineages are shared among samples); ii) 

analysis can be either “qualitative” (presence/absence) or “quantitative” (taking into account 

relative abundance); iii) analysis can be either “phylogenetic” (making use of a phylogenetic 

tree to relate the sequences) or “taxon-based” (treating all taxa at a given rank as 

phylogenetically equivalent) (Ley et al., 2008b, Magurran, 2013, Kuczynski et al., 2010). 

With phylogenetic methods, differences in abundances that involve closely related species 

are given lower weights, on the assumption that closely related species have similar genetic 

capabilities. One example is UniFrac (unique fraction), which has been reported to correlate 

well with the biological properties of samples (Navas-Molina et al., 2013) and measures the 

amount of “unique evolution” of a community in comparison to others (Lozupone and 

Knight, 2005, Lozupone et al., 2006). In general, taxon-based and phylogenetic methods 

provide alternative views, but equally insightful and are used in tandem. Taxon-based 

analyses are useful for analysing: i) how many different “species” (or taxonomic units) are 

most likely found within a sample (Schloss and Handelsman, 2005); ii) for comparing which 

OTUs are shared among subsets of samples (Schloss and Handelsman, 2006); iii) for 

building networks that relate species and samples to one another (Ley et al., 2008a). 

Phylogenetic methods are predominantly used for  associating drivers of community 

assembly, mainly due to taxon-based methods not being free of assumptions about 

phylogeny (that all taxa are equally related to one another) (Hamady and Knight, 2009). This 

assumption is problematic because it ignores the correlation between evolutionary 

relatedness and ecological similarity (Stackebrandt and Goebel, 1994). Although errors in 

phylogenetic reconstruction can affect the clustering results, regardless of reconstruction 

method, a tree will provide a more accurate model of evolution than the taxon-based method 

(Lozupone et al., 2007). 

 

1.6 Bacterial transcriptomics 
 

As with 16S rRNA microbial community surveys, NGS has also left its mark on bacterial 

transcriptomics, specifically with the method RNA-Seq (Sorek and Cossart, 2010). Before 

the use of omics-based approaches, in the 20th century, study of transcription was largely 

based on northern blotting, RT-PCR and qPCR where these methods investigated 
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transcription at the individual gene level. At the turn of the century microarrays provided a 

means to ascertain transcription profiles at a genome wide level. RNA-Seq methodologies 

have provided further advances allowing researchers to capture data that was not previously 

possible. Alternative transcripts within operons have challenged the classical operon 

definition, and many small RNAs involved in regulation of transcription, translation and 

pathogenesis have been discovered (Güell et al., 2011, Creecy and Conway, 2015). In 2008, 

RNA-Seq was developed which performed deep sequencing of cDNA generated from RNA 

preparations (Wilhelm et al., 2008). This technology has overcome some of the drawbacks 

of tiling arrays: providing single-base resolution, a better signal-to-noise ratio owing to a 

reduced background and a higher dynamic range (Vivancos et al., 2010). 

 

1.7 Bacterial transcriptomics data analysis 
 

The methodology of RNA-Seq has many applications and every experimental scenario could 

potentially have different optimal methods for gene or transcript quantification, 

normalization, and ultimately differential expression analysis (Conesa et al., 2016). The 

general steps for typical RNA-Seq analysis involve quality control, read alignment with or 

without a reference genome, obtaining metrics for gene or transcript expression, and 

approaches for detecting differential gene expression (Conesa et al., 2016, Sorek and 

Cossart, 2010). For transcript alignment, if a genome sequence is available for the studied 

organism, it should be possible to identify transcripts by mapping RNA-Seq reads onto the 

genome. By contrast, for organisms without sequenced genomes, quantification would be 

achieved by first assembling reads de novo into contigs and then mapping these contigs onto 

the transcriptome (Conesa et al., 2016). The read coverage can then be used to quantify 

transcript expression levels.  

Estimating gene and transcript expression is principally based on the number of reads that 

map to each transcript sequence. The simplest method to quantification is to combine raw 

counts of mapped reads. A typical program that does this is HTSeq-count (Anders et al., 

2015). This methodology is typically referred to as a gene-level (as opposed to transcript-

level) quantification methodology which utilises a gene transfer format (GTF) file that 

contains all of the coordinates of genes and other features of interest (Conesa et al., 2016). 

Other methods include StringTie, an assembler of RNA-Seq alignments into potential 

transcripts, which uses a novel network flow algorithm as well as an optional de novo 

assembly step to assemble and quantitate full-length transcripts representing multiple splice 

variants for each gene locus (Pertea et al., 2015). As a sanity check, bedtools, a powerful 
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toolset for genome arithmetic can be used with the multicov command which reports the 

count of alignments from multiple position-sorted and indexed BAM files that overlap 

intervals in a BED file (Quinlan, 2014). 

It is important to note that raw counts alone are not adequate to compare expression levels 

between samples as these values are affected by factors such as transcript length, total 

number of reads, sequencing biases, and sequencing depth (Conesa et al., 2016, Soneson and 

Delorenzi, 2013). Thus, normalisation methods such as RPKM (reads per kilobase of exon 

model per million reads) and FPKM (fragments per kilobase of exon model per million 

mapped reads) which are within-sample normalisation methods (the latter for transcripts) are 

utilised (Mortazavi et al., 2008). Different methodologies exist to estimate transcript-level 

expression in order to circumvent the problem of related transcripts sharing similar 

amplicons. A popular method is Cufflinks which estimates transcript expression from a 

mapping to the genome obtained from mappers such as TopHat using an expectation-

maximization approach that estimates transcript abundances (Trapnell et al., 2010). 

Differential gene expression analysis allows the comparison of gene expression values 

among samples. Normalisation methods described above such as RPKM, FPKM and TPM 

remove the biases associated with different sampling depths. These methods rely on total or 

effective counts and usually perform inefficiently when samples have heterogeneous 

transcript distributions (Bullard et al., 2010). If only normalisation methods were used, the 

sum of the normalized counts across all genes would not necessarily be equal between 

samples, thus the aim is instead to make the normalised counts for non-differentially 

expressed genes similar between the samples (Soneson and Delorenzi, 2013). Thus, methods 

have been developed to consider these factors and the most well-known is DESeq2 (Anders 

and Huber, 2010). 

 

1.8 Aims and objectives 
 

The aim of this study is to explore, utilise, and compare different 16S rRNA pipelines as 

well as transcriptomics pipelines by focusing on understanding the pathogenesis of the 

foodborne pathogen C. jejuni. These are delineated in terms of objectives as follows: - 

 

Objectives: 

• Investigate the impact of different concentrations of carvacrol on the chicken cecal 

microbiome and compare different metagenomics bioinformatics pipelines. The 

comparison will be between DADA2 (ASV) and VSEARCH (OTU) methodologies.  
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• Investigate the impact of oxidative stress on the C. jejuni transcriptome and compare 

different RNA-Seq bioinformatics pipelines. The comparison will be between 

StringTie and bedtools, both used at the read count stage in this study. 
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2. Methods 
 

All relevant pipelines were established by Dr Umer Zeeshan Ijaz 

(http://userweb.eng.gla.ac.uk/umer.ijaz/) at the University of Glasgow and training was 

provided accordingly (http://www.tinyurl.com/JCBioinformatics3). FASTQ files used 

within this project were obtained by Ozan Gundogdu previously at the LSHTM using 

Illumina guidelines from existing projects.  

 

2.1 File organisation 
 

FASTQ files were organised to allow functioning and flexibility in downstream pipelines. 

To achieve this, the following set up was created within a Linux environment: -  

 

mkdir Carvacrol2020 #make the project folder 

cd Carvacrol2020 #move into the project folder 

cp /home/ozan/Documents*.fastq . #copy all FASTQ files to the Carvacrol 

folder:- 
for i in $(awk -F"_" '(Lindqvist et al.)' <(ls *.fastq) | sort 

| uniq); do mkdir $i; mkdir $i/Raw; mv $i*.fastq $i/Raw/.; 

done #Place all FASTQ files within a folder (filename designates folder name), and within 

it, a ‘Raw’ folder which contains the FASTQ files are placed. 

 

2.2. Qiime2 bioinformatics pipeline with DADA2 
 

The DADA2 v1.14 (Callahan et al., 2016) software was used to produce the abundance table 

by constructing Amplicon Sequence Variants (ASVs), a higher-resolution analogue of the 

traditional OTU table, which records the number of times each exact amplicon sequence 

variant was observed in each sample. The DADA2 bioinformatics section of the pipeline is 

based on the version developed by Dr Ijaz 

(https://github.com/umerijaz/tutorials/blob/master/qiime2_tutorial.md). A complete 

methodology is provided in Appendix I. Briefly, fictitious barcodes were generated and 

saved for each sample. Forward and reverse reads were assembled together and loaded into 

Qiime2 (Bolyen et al., 2019). Samples were demultiplexed and exported for viewing in 

Qiime2 viewer (https://view.qiime2.org/). DADA2 was performed with truncating forward 

reads above 280 and reverse reads above 220 after visually inspecting where the qualities 
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dropped significantly on the length of the reads, and for sufficient nucleotide overlap 

between the truncated amplicons (https://benjjneb.github.io/dada2/tutorial.html). A 

phylogenetic tree within Qiime2 was created with align-to-tree-mafft-fasttree using MAFFT 

(v7.310) (Katoh and Standley, 2013) and FastTree (v2.1.10) (Price et al., 2010). The 

phylogenetic tree was exported to NEWICK format. Taxonomy was created to represent the 

ASVs against the SILVA SSU Reference NR database release v132 database (Quast et al., 

2013). ASV table (table.qza) was exported to a BIOM format. ASV sequences (rep-seqs.qza) 

were exported to FASTA format. The taxonomy was exported to a TSV file. The ASV 

abundance table (feature_table.txt) was merged with the taxonomy (taxonomy.tsv) to create 

a final BIOM file for compatibility to R and phyloseq (McMurdie and Holmes, 2013). Finally, 

the ASV table was generated by matching the original barcoded reads against clean ASVs.  

 

2.3. Qiime2 bioinformatics pipeline with VSEARCH 
 

The VSEARCH v2.3.4 pipeline was used to produce the abundance table by constructing 

OTUs, a representation of species, as described in 

http://github.com/torognes/vsearch/wiki/VSEARCH-pipeline). The VSEARCH section of 

the pipeline is based on the publication by Ijaz et al. with modifications (Ijaz et al., 2018). A 

complete methodology is provided in Appendix II. Briefly, paired-end reads were pre-

processed based on guidelines from recent publications (Schirmer et al., 2015, D'Amore et 

al., 2016). Reads were trimmed (average Phred quality score of 20 using a sliding window 

approach) and reads were filtered using Sickle v1.33 (Joshi and Fass, 2011). BayesHammer 

(Nikolenko et al., 2013) was used from Spades v3.1.1 assembler to perform error-correction 

on paired-end reads. Then, PANDAseq (v2.11) (Masella et al., 2012) was used to assemble 

the forward and reverse reads into a single sequence spanning the entire V4 region with a 

minimum overlap of 10 bp. Reads were then pooled, dereplicated, sorted in order of 

decreasing abundance and singletons were discarded. Following this, the reads were 

clustered based on 97% similarity and removal of clusters was performed with chimeric 

models built from more abundant reads (--uchime_denovo option in vsearch). In addition, a 

reference-based chimera filtering step (--uchime_ref option in vsearch) was performed using 

a gold database (https://www.mothur.org/w/images/f/f1/Silva.gold.bacteria.zip). Finally, the 

OTU table was generated by matching the original barcoded reads against clean OTUs. After 

creating a tab-delimited version of the OTU table (otus.fa; representing all of the OTU 

sequences) an otu_table.txt (representing the OTU abundance table) was created. The 

sequence file was then loaded into Qiime2 (Bolyen et al., 2019), followed by assigning a 
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taxonomy to represent the OTUs against the SILVA SSU Ref NR database release v132 

database (Quast et al., 2013). The taxonomy was exported to a TSV format. A phylogenetic 

tree within Qiime2 was created with align-to-tree-mafft-fasttree (Katoh and Standley, 2013) 

using MAFFT (v7.310) (Katoh and Standley, 2013) and FastTree (v2.1.10) (Price et al., 

2010). The phylogeny was exported to NEWICK format. A BIOM file was created within 

Qiime2 merging the otu_table.txt (abundance table) and the taxonomy.tsv (taxonomy) for 

compatibility to R and phyloseq (McMurdie and Holmes, 2013). 

 

2.4. Statistical analysis of 16S microbiome data 

 

Statistical analyses was performed as described by Ijaz et al., 2018 with R using output files 

generated from the DADA2 (section 2.2) or VSEARCH (section 2.3) bioinformatic pipelines 

and the associated metadata (Table 1) predominantly employing the vegan package for 

diversity measures (Oksanen et al., 2015). We have employed both diversity within samples 

(alpha diversity) and between samples (beta diversity) as is the norm. For alpha diversity 

measures, Richness is an estimated measure of species/features per rarefied sample (rarefied 

to minimal library size i.e. read numbers); Shannon entropy is a commonly used index to 

measure the balance of a community within a sample (higher the index, the more balanced 

the community is); Pielou’s index represents the evenness of a community; Simpson 

measures evenness of the community from 0 to 1; and Fisher alpha is an alternative diversity 

index. All of these diversity indices are based on different analytical procedures and 

highlight different aspects of diversities, whether focussing on rare species, or on 

predominant species.  

 

Table 1. Metadata table for 16S carvacrol study. Table includes dummified (original 

categorical labelling converted to presence and absence) data used for subset regression 

analysis. 
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For beta diversity, three alternative distance matrices were utilised: i) Bray-Curtis which 

only focusses on OTUs/ASVs abundances as a dissimilarity measure; ii) unweighted 

UniFrac which is a phylogenetic distance metric calculating the distances between samples 

by taking the proportion of the sum of unshared branch lengths in the sum of all of the branch 

lengths of the phylogenetic tree for the OTUs/ASVs observed between two samples (without 

considering their abundances); and iii) weighted UniFrac which is a phylogenetic distance 

metric combining phylogenetic distance and relative abundances, thus emphasising 

dominant OTUs/ASVs or taxa. Unifrac distances were calculated using the phyloseq 

package.  

Next, Local Contribution to Beta Diversity (LCBD) analysis (Legendre and De Caceres, 

2013) was performed using LCBD.comp() from adespatial package (Dray et al., 2018). This 

was performed to identify outliers in beta diversity space. The Hellinger distance 

(abundances), unweighted Unifrac (phylogenetic distance) and weighted Unifrac 

(phylogenetic distance weighted by abundance) dissimilarities were used. LCBD provides 

the sample-wise local contributions to beta diversity that could be derived as a proportion of 

the total beta diversity. In the context of this study, it provides a mean to show how markedly 

different the microbial community structure of a single sample is from the average (with 

extreme LCBD values from the average representing outliers), and also provides a method 

to demonstrate when the community structure has stabilized in a temporal setting. 

To investigate environment filtering (phylogenetic overdispersion versus clustering), 

phylogenetic distances within each sample were further characterised by calculating the 

nearest taxa index (NTI) and net relatedness index (NRI). Here, the aim was to determine 

whether the community structure was stochastic (overdispersion in phylogenetic tree and 

driven by competition), or deterministic (phylogenetic clustering and driven by strong 

environmental pressure). The NTI was calculated using mntd() and ses.mntd(), and the mean 

phylogenetic diversity (MPD) and NRI were calculated using mpd() and ses.mpd() functions 

from the picante package (Kembel et al., 2010). NTI and NRI represent the negatives of the 

output from ses.mntd() and ses.mpd(), respectively. Additionally, they quantify the number 

of standard deviations that separate the observed values from the mean of the null 

distribution (999 randomisation using null.model-‘richness’ in the ses.mntd() and ses.mpd() 

functions and only considering taxa as either present or absent regardless of their relative 

abundance). As opposed to authors’ recent work (Ijaz et al., 2018), OTUs collated at genera 

were used for the calculations.  

Next we wanted to see what is the minimal subset of species that can explain roughly the 

same beta diversity as compare to utilising all of the OTUs/ASVs in the sample space. For 
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this purpose, the “BVSTEP” routine (Clarke and Ainsworth, 1993) was used to search for 

the highest correlation, in a Mantel test, by imploding the abundance table at genera level to 

absolute minimal set of genera that preserve the beta diversity between samples. To run this 

algorithm, bvStep() (from the sinkr package) (Taylor, 2014) was used as considered in 

author’s recent publication (Ijaz et al., 2018). 

To allow identification of genera that are significantly different between categories, 

DESeqDataSetFromMatrix() function from DESeq2 (Love et al., 2014) package was used 

with the adjusted p-value significance cut-off of 0.05 and log2 fold change cut-off of 2. This 

function uses negative binomial GLM to obtain maximum likelihood estimates for 

OTUs/ASVs log fold change between two conditions. Then, Bayesian shrinkage was applied 

to obtain shrunken log fold changes subsequently employing the Wald test for obtaining 

adjusted p-values for multiple comparisons. DESeq2 identified changes on a local scale (in 

conjunction with beta diversity analysis) to identify genera that are causing the shift in 

microbial communities. Also, to see what the dominant species distributions are, we have 

given a visual representation of the proportions of the top-25 abundant species at a particular 

level along with binning everything else as “others” category in taxa bars.  

Next, we wanted to get the directionality out by focussing on microbiome characteristics and 

the sources of variations that were captured for each sample. For this purpose, subset 

regression of different microbiome metrics were performed against a comprehensive set of 

explanatory variables ("CarvacrolConc", "Status_C", "Status_T1", "Status_T2", 

"Status_T3", "Day_10", "Day_21", "Day_35"), by selecting the best model (a subset of these 

variables) according to some statistical criteria (fit of regression etc), with recommendations 

given in (Kassambara, 2018) and code available at 

http://www.sthda.com/english/articles/37-model-selection-essentials-in-r/155-best-subsets-

regression-essentials-in-r/. The R function regubsets() from leaps (Lumley and Miller, 2009) 

package was used to identify different best models of different sizes, by specifying the option 

nvmax, set to the maximum number of predictors to incorporate the model. Having obtained 

the best possible subsets, the k-fold cross-validation consisting of first dividing the data into 

k subsets. Each subset (10%) served successively as test data set and the remaining subset 

(90%) as training data. The average cross-validation error is then computed as the model 

prediction error. This was all done using a custom function utilising R’s train() function from 

the caret package (Kuhn, 2008). Finally R’s tab_model() function from sjPlot package 

(Lüdecke, 2018) was used to obtain the statistics for each model.  

To find the core microbiome, we have used R’s microbiome package (Lahti et al., 2017) and 

the recommendations given in (Shetty et al., 2017) to find OTUs/ASVs that are consistently 
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prevalent and have a reasonable detection limit in terms of abundances to ascertain that they 

are core. To investigate association with environmental ontology terms, seqenv (Sinclair et 

al., 2016) was utilised. Seqenv performs similarity searches of short sequences against the 

“nt” nucleotide database provided by NCBI and from every match extract (if available) the 

textual metadata field. This was performed to incorporate historical data about where these 

sequences were previously observed in (habitat, environmental microbiomes etc). Alpha and 

beta diversity metrics were also applied to the results. After collecting all of the isolation 

sources (habitat) from all the search results, we ran a text mining algorithm to identify and 

parse words that are associated with the Environmental Ontology (EnvO) controlled 

vocabulary. This, in turn, enabled us to determine both in which environments individual 

sequences or taxa have previously been observed and, by weighted summation of those 

results, to summarize complete samples. 

PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved 

States) is a software for predicting functional abundances based only on marker gene 

sequences (Douglas et al., 2020). Although predicting functional and metabolic potential of 

microbial communities based on reference based genomic potential, is still a prediction, 

~20K genome representation in PICRUSt2 databases makes it a very strong contender to 

profile the functional dynamics. Alpha and beta diversity metrics were also applied to the 

results. Here, "Function" usually refers to gene families such as KEGG orthologs and 

Enzyme Classification numbers, but predictions can be made for any arbitrary trait.  

For comparisons between two 16S microbiome analysis methodologies, the abundance 

tables from each pipeline were compared using Procrustes, which was used to demonstrate 

similarity between different configurations (Peres-Neto and Jackson, 2001).  

In the majority of the figures displaying boxplots, pair-wise ANOVA was performed taking 

two categories at a time, and where significant (p ≤ 0.05), the categories were joined together 

by a line and the significance was plotted on top (*: 0.01 ≤ p < 0.05; **: 0.05 ≤ p < 0.001; 

***: p ≤ 0.001). 

 

2.5. RNA-Seq bioinformatics pipeline  
 

For exploring Campylobacter pathogenesis, we performed laboratory scale experiments on 

C. jejuni isolates with bioinformatic steps given as follows and details of these experiments 

following this section. Once the sequences were obtained, paired-end reads were trimmed 

and filtered using Sickle v1.200 (Joshi and Fass, 2011) by using a sliding window approach 

and trimming the reads where the average base quality drops below 20. The NCTC11168 
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reference genome sequence (FASTA format) and annotation (GFF format) were downloaded 

(https://www.ebi.ac.uk/ena/data/view/Taxon:192222). Bowtie2 (Langmead and Salzberg, 

2012) was used to map the reads against the reference sequence. This generated the mapping 

in SAM format which were later converted to BAM format using Samtools (Li et al., 2009) 

and were index sorted. gffread from cufflinks suite (Trapnell et al., 2010) was used to convert 

annotations from GFF to GTF format. These were then used in bedtools (with multicov- 

bams option) (Quinlan and Hall, 2010) or StringTie (Pertea et al., 2015) (with –e –B –o 

option) with the mapped reads to generate transcript counts per samples. A shell utility 

created by Dr Ijaz 

(http://userweb.eng.gla.ac.uk/umer.ijaz/bioinformatics/GENERATEtable.sh) was then used 

to collate all these transcripts into a transcripts abundance table for the 11168H strain. 

Statistical analysis on these abundance tables were performed in R.  

 

2.6. Experimental details and statistical analysis of RNA-Seq transcriptomics 

data 

 

Hydrogen peroxide (H2O2) are a type of Reactive Oxygen Species (ROS) where 

accumulation can lead to damage of nucleic acids, proteins and membrane structures 

(D'Autreaux and Toledano, 2007, Atack and Kelly, 2009). Statistical analysis of RNA-Seq 

data was performed for two separate comparisons where physiological concentrations of 

H2O2 were utilised: - 

 

- 5 mins 5 mM H2O2 stress vs. Control (no stress) 

- 15 mins 5 mM H2O2 stress vs. Control (no stress) 

where RNA was initially isolated from C. jejuni grown to late-log phase (16 hr). 

 

Ordination of abundance tables in reduced space (beta diversity) was performed using 

Principal Coordinate Analysis (PCoA) plots of transcripts Bray-Curtis distance in Vegan’s 

cmdscale() function (Oksanen et al., 2015). This was performed to find if there were any 

clustering on categorical basis (clustering based on samples originating from the same 

categories). 

The DESeqDataSetFromMatrix() function from DESeq2 (Love et al., 2014) package was 

used with the adjusted p-value significance cut-off of 0.05 and log fold change cut-off of 2. 

The abundances for significant transcriptomes were then visualised using RPKM 

representations. For comparisons between two transcriptomics analysis methodologies, the 
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abundance tables from each pipeline were compared using Procrustes, which was used to 

demonstrate similarity between different configurations (Peres-Neto and Jackson, 2001). 
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3. Results 

 

3.1 Microbia1 community survey using DADA2 pipeline 
Whilst we obtained the tables for both OTUs and ASVs separately, we followed the ASVs 

route (with details on OTUs given in the appendices, and not followed further based on 

Procrustes and other analyses, and ASVs based methodologies explained henceforth). The 

ASV abundance table used for statistical pipelines within R contained a total of 3485 ASVs 

for n=12 samples, with summary read statistics for samples as follows: [Min: 12125 1st 

Quantile: 20138 Median: 24980, Mean: 27692, 3rd Quantile: 36980, Max: 47429]. The 

breakdown of taxa (top 25 most abundant taxa) between the different grouping categories 

are represent in Figure 1. This was followed up with taxa differential analysis whereby ASVs 

that were significantly modified between different groups were identified. As an example, 

Table 2 displayed the comparison between the groups Control vs. T1.  

 

 
 

Figure 1. The top 25 most abundant Genera representative of different sample categories. 

Carvacrol concentration of different groups (Control = 0 mg/ml, T1 = 120 mg/ml, T2 = 200 

mg/ml and T3 = 300 mg/ml). 

 

Table 2. Taxa differential of ASVs statistically modified when comparing groups Control 

vs. T1. These are log 2-fold different and statistically significant.  

 
 

To connect microbiome and extrinsic parameters together, we implode microbiome 

multivariate datasets to a single dimensional realisation, which is mainly diversity measures 
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either diversity within a sample (alpha), or between samples (beta). Initially we investigated 

at the alpha diversity level how diversity was influenced between the different sample 

categories (Figure 2). Though not significant, it was observed that increasing the 

concentration of carvacrol (Control = 0 mg/ml, T1 = 120 mg/ml, T2 = 200 mg/ml and T3 = 

300 mg/ml) resulted in an increased microbial diversity. Using certain diversity metrics, T2 

demonstrated the greatest microbial diversity. These measures are based on the number of 

samples that we acquired; the p-values may become statistically significant if we increased 

the sample size.  

 

 
 

Figure 2. Alpha diversity metrics for Control, T1, T2 and T3 samples using DADA2 pipeline. 

Richness is an estimated number of species/features per sample; Shannon entropy measured 

the balance of a community within a sample; Pielou’s index represents the evenness of a 

community; Simpson measures evenness of the community from 0 to 1, and Fisher alpha is 

an alternative diversity index. Carvacrol concentration of different groups (Control = 0 

mg/ml, T1 = 120 mg/ml, T2 = 200 mg/ml and T3 = 300 mg/ml). 

 

Beta diversity was performed with all the different measures as highlighted in the methods. 

Beta diversity with Bray-Curtis displayed considerable overlap between samples in terms of 

bacterial numbers. Sample T1 displayed a more stringent dispersion between biological 

replicates (Figure 3).  

In parallel, to see if there is any difference in microbiome community structure between 

these groups, we performed PERMANOVA (full list is provided in an accompanied file) 

(Table 3). Here, for Bray-Curtis distance, 16% of the variability in community structure is 

explained by the day groupings.  

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

Fisher alpha Pielou's evenness Richness Shannon Simpson

Co
nt

ro
l

T1 T2 T3

Co
nt

ro
l

T1 T2 T3

Co
nt

ro
l

T1 T2 T3

Co
nt

ro
l

T1 T2 T3

Co
nt

ro
l

T1 T2 T3

0.980

0.985

0.990

0.995

4.75

5.00

5.25

5.50

300

400

500

600

0.80

0.85

0.90

40

60

80

100

120

O
bs

er
ve

d 
Va

lu
es

Type

●

Control
T1
T2
T3



25  

 

Table 3. To understand the impact of different parameters on microbial community structure, 

we performed PERMANOVA. Here, using beta diversity (Bray-Curtis) distance metrics, 

16% (R2 in the table given below) of the microbiome structure is explained. 
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(C)  

 
 

Figure 3. PCoA of beta diversity was measured for all groups using: (A) Bray-Curtis; (B) 

unweighted UniFrac; (C) weighted UniFrac. Two samples if similar lie very close to each 

other. The ellipses represent the standard error in terms of grouping variations.  

 

The core microbiome where genera persist in 85% of the samples for different sample groups 

(Control, T1, T2 and T3) was assessed (Figure 4). In Figure 4, the ASVs are sorted by their 

abundances with those on the left being low abundant prevalent ASVs, whereas those at the 

right are highly abundant prevalent ASVs. Prominent genera identified include 

Ruminococcaceae UCG-05, Ruminiclostridium 5, Lactobacillus, Escherichia-Shigella, 

Oscilibacter, Faecalibacterium, Alistipes and Ruminococcaceae UCG-014 at varying levels 

of abundance. 
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Figure 4. Core microbiome analysis of all the samples. The figure shows at least 85% 

prevalent ASVs ordered by lower abundance (left) to higher abundance (right). The y-axis 

(right) represents limit of detection in terms of relative abundance. 

 

Next, we explored ecological drivers of microbial community to determine whether there 

was any environmental pressure (deterministic influence contingent upon external 

environment/any other extrinsic parameter). A value above +2 signifies a strong 

phylogenetic clustering at both global (NRI) and local (NTI) levels, whilst a value below -2 

signifies a strong overdispersion in phylogenetic tree. The more clustered the phylogenetic 

tree is, the more evidence there is of environment/any other parameter playing a role in its 

assembly. NTI and NRI displayed relatively low values indicating a reduced impact of 

environmental influence on microbial community structure (Figure 5). Since chicken ceca 

are already a constrained environment to begin with (as opposed to real environmental 

datasets), the values <0 (traditionally this implies stochasticity) may not be feasible to 

ascertain randomness/stochasticity/competitive exclusion principle, and hence the values 

should be taken relatively with an increasing value implying increasing host environmental 

pressure. For NTI, though no statistical significance was observed, it is interesting to note 

the observation that addition of carvacrol did lead to a reduced environmental influence.  
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Figure 5. Investigating the environmental pressure on microbial community structure using 

NRI/NTI.  

 

To further analyse the data, we performed Local Contributions to Beta Diversity (LCBD) 

which shows how markedly different the microbial community structure of a single sample 

is from the average (with LCBD values differing from the mean LCBD values representing 

outliers). LCBD analysis was performed by using: (A) The Hellinger distance (abundances); 

(B) unweighted UniFrac (phylogenetic distance); and (C) weighted UniFrac (phylogenetic 

distance weighted by abundance) dissimilarities (Figure 6). Interestingly, when considering 

abundances alone (Hellinger distance), though not significant, we observe a gradual trend 

away from the average when increasing the level of carvacrol. For unweighted UniFrac 

distance (phylogeny without abundance), results are inconclusive, however when measuring 

weighted UniFrac (phylogeny with abundance), results though not statistically significant, 

display the Control as being furthest away from the average. 
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(B) 
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Figure 6. Local contribution to beta diversity (LCBD) calculated by using sample wise 

proportional diversities: (A) Hellinger transform on the microbial counts; (B) unweighted 

UniFrac dissimilarity (phylogenetic distances only); and (C) weighted UniFrac dissimilarity 

(phylogenetic distances weighted with abundance counts), with all values summing up to 1.  

 

Subset analysis was performed identifying a subset of ASVs that explain roughly the same 

beta diversity between samples as all of the ASVs (Table 4). Essentially, we have obtained 

a reduced feature set (ASVs) in the sample space that is deriving the change. In the interest 

of space, only one group comparison is displayed, with remaining results present within the 

accompanied files. At the same time, after imploding to the subset of genera, PERMANOVA 

analysis was performed to see if the resulting subset still has the discriminatory power (in 

terms of grouping). Analysis of all possible comparisons though identified possible ASVs 

that may differentiate between the group comparisons, were not statistically significant.  

 

Table 4. Subset analysis showing top 3 subsets of ASVs along with the correlation of the 

beta diversity distances between these subsets and full ASV table. The last column shows 

PERMANOVA statistics for these subsets highlighting their discriminatory power. R2 is the 

percentage variability of these subsets in terms of groups. In the interest of space, only one 

group comparison is displayed, with remaining results within the accompanied files. 
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To assess the impact of extrinsic parameters on microbial community structure, whilst 

PERMANOVA analysis show the extent of influence on the microbiome structure in terms 

of variability, to obtain the directions to whether an increase or decrease in these parameters 

cause an increase or decrease in the properties of microbiome metrics, subset regressions on 

one dimensionality realisation of microbiome (alpha diversity – Richness, Shannon, Pielou’s 

index, Simpson, Fisher alpha; LCBD beta diversity – Bray-Curtis, unweighted UniFrac, 

weighted UniFrac) were performed. Subset regression against different sources of variation 

("CarvacrolConc", "Status_C", "Status_T1", "Status_T2", "Status_T3", "Day_10", 

"Day_21", "Day_35") were performed by testing all the combination of all these variations 

and then selecting the best model according to some statistical criteria (adjusted R2 etc) 

(Figure 7). These subset regressions permuted through all possible subsets of explanatory 

variables (extrinsic parameters considered in this study) by ranking them in terms of 

quantitative fit after performing cross-validation. Note that red and blue backgrounds 

represent whether the predictors have a positive or a negative influence, respectively in the 

regression model. In addition, all categorical variables highlighted yellow were “dummified” 

(a standard procedure) to represent as present/absent as a tag and were used in the regression 

model to see whether their inclusion/exclusion has an effect on the final model. Day 21 

displays a clear negative effect on microbial diversity within the chicken cecum, whilst day 

35 displays a positive impact on microbial diversity. Interestingly, increasing the 

concentration of carvacrol (ControlConc) led to a shift of microbial diversity, away from the 

Group 
Comparison 

Subset 
No 

Subset Correlation 
of Subset 
with Full 
Table (R) 

PERMANOVA 
Subsets 
(Groups) 

Control, T1 S1 Ruminococcaceae UCG-
005 + Ihubacter 
massiliensis +   
Faecalibacterium +  
Clostridiales vadinBB60 
group 

0.04888 R2 = 0.7139 (p > 
0.05) 

S2 Ruminococcaceae UCG-
005 + Ihubacter 
massiliensis +   
Faecalibacterium 

0.06937 R2 = 0.6639 (p > 
0.05) 

 S3 Ruminococcaceae UCG-
005 + Ihubacter 
massiliensis 

0.05506 R2 = 0.7000 (p > 
0.05) 
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norm. Day 10 also has a positive impact on influencing the microbial community structure 

away from the average.  

 

 
 

Figure 7. Subset regression where red and blue represent the significant positive and negative 

beta coefficients that were consistently selected in different regression models. The 

categorical variables are represented with a yellow highlight (coded as 1 (present) or 0 

(absent)) and if selected is interpreted as the samples belonging to those categories having 

positive/negative influence on the respective microbiome metrics. 

 

Seqenv was performed to investigate association with environmental ontology terms (Figure 

8). A single significant environmental ontology was identified; travertine, a calcareous rock 

deposited from mineral springs.  
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Figure 8. Seqenv identified certain EnvO ontological terms associated with the sequences 

and in general with the sampling space. On performing differential analysis, weighted with 

abundances, the above figure is obtained with red highlighting any significant changes.  

 

PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved 

States) was performed to predict functional abundances. Using the search results from Table 

5, genes within specific KEGG pathways were identified. These were K16044 (iolW; scyllo-

inositol 2-dehydrogenase (NADP+) [EC:1.1.1.371]), K06348 (KapD; sporulation inhibitor), 

K14259 (KdxD, 2-dehydro-3-deoxy-D-arabinonate dehydratase [EC:4.2.1.141]), K19449 

(sinR; XRE family transcriptional regulator, master regulator for biofilm formation) and 

K13533 (two-component system, sporulation sensor kinase E [EC:2.7.13.3]). As an 

example, K16044 is part of the inositol phosphate metabolism and the specific enzyme can 

be observed within the pathway (Figure 9).  

 

Table 5. PICRUSt2 search results in relation to KEGG pathways.  
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Figure 9. Example of KEGG pathway K16044 (inositol phosphate metabolism) pathway and 

specific pathway identified as upregulated for T3. 

 

3.2 Microbia1 community survey using VSEARCH pipeline 
 

The OTU abundance table used for statistical pipelines within R contained a total of 2993 

OTUs for n=12 samples, at 97% similarity (a proxy for species-level separation) with 

summary read statistics for samples as follows: [Min: 77263 1st Quantile: 152109, Median: 

180338, Mean: 208278, 3rd Quantile: 298742, Max: 339291]. In the interest of space, all 

VSEARCH pipeline data is available within Appendix III.  

 

3.3 VSEARCH vs. DADA2 
 

A comparison of the similarity between VSEARCH and DADA2 was performed using 

Procrustes analysis. The results identified a correlation of 0.787 with a p-value of 0.0001 

between the two data sets. This indicates a significant similarity between the methods.  

 

3. RNA-Seq analysis using StringTie pipeline 
 

The StringTie transcript abundance table used for statistical pipelines within R contained a 

total of 1628 transcripts for n=9 samples, with summary read statistics for samples as 

follows: [Min: 58780 1st Quantile: 241717 Median: 279600, Mean: 318816, 3rd Quantile: 
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347288, Max:773386]. Ordination of abundance tables in reduced space (beta diversity) was 

performed using Principal Coordinate Analysis (PCoA) plots of transcripts Bray-Curtis 

distance in Vegan’s cmdscale() function (Figure 10). Here, though groups were visually 

distinct, statistical significance was not observed (data not shown), most likely due to a lack 

of replicates.  

 

(A) 

 
(B) 

 
 

Figure 10. PCoA plots of transcripts Bray-Curtis distance comparing the different 

categorical variables, 5 mins 5 mM H2O2 stress (A) or 15 mins 5 mM H2O2 stress (B). RNA-

Seq analysis was performed using StringTie pipeline.  

 

DESeq2 was then used to identify transcripts that were differentially abundant (Figure 11). 

A subset of up and down gene lists is displayed in Appendix IV for normal vs 5 mins 5 mM 
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H2O2 stress (full list is provided in an accompanied file). The up and down gene lists for 

normal vs. 15 mins 5 mM H2O2 stress is also provided as an accompanied file due to space 

restrictions.  

(A) 

 
(B) 

 
 

Figure 11. The transcript found to be differentially expressed in terms of log 2 fold changes 

from mean are shown in red. These correspond to two conditions: (A) 5 mins 5 mM H2O2 

stress; and (B) 15 mins 5 mM H2O2 stress. RNA-Seq analysis performed using StringTie 

pipeline. 

 

For both 5 mins 5 mM H2O2 stress and 15 mins 5 mM H2O2 stress against the control, at a 

preliminary level, key genes that were involved in oxidative stress were identified as 
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significantly upregulated within the test conditions. For example, for 5 mins 5 mM H2O2 

stress, sodB was 3.8-fold upregulated and ahpC was 3.50-fold upregulated. Interestingly, the 

main gene involved in a response to peroxide stress, the gene katA (catalase) was not 

statistically upregulated. The results were similar for 15 mins 5 mM H2O2 stress; sodB was 

4.14-fold upregulated and ahpC was 3.55-fold upregulated, with the increase was slightly 

higher for the increased peroxide stress. (Appendix IV and accompanied files).  

 

3.5 RNA-Seq analysis using bedtools pipeline  
 

The bedtools transcript abundance table used for statistical pipelines within R contained a 

total of 1628 transcripts for n=9 samples, with summary read statistics for samples as 

follows: [Min: 731478 1st Quantile: 2714702 Median: 3445795, Mean: 3093608, 3rd 

Quantile: 3783061, Max: 4330536]. In the interest of space, all RNA-Seq bedtools pipeline 

data is available within Appendix V. For significant up and down data using bedtools, due 

to space limitations were not displayed, but available as accompanied files. 

 

3.6 StringTie vs bedtools 
A comparison of the similarity between StringTie and bedtools was performed using 

Procrustes analysis. The results identified a correlation of 0.8148 with a p-value of 0.0001 

between the two methods. This indicates a significant similarity between the methods.  
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4. Discussion 
 

Through incursions into multiple pipelines, for both 16S rRNA amplicon analysis and RNA-

Seq, we have been comprehensive in choosing the best strategy to delineate the underlying 

biological relevance. C. jejuni is the most common bacterial cause of human gastroenteritis 

worldwide. C. jejuni are widely found in avians and so the main route of transmission is via 

the consumption and handling of poultry products. How avians tolerate trillions of C. jejuni 

cells without having overt disease, yet only 500 cells cause severe disease in human hosts 

remains unknown. The European Union (EU) ban on antimicrobial growth promoters in 

2006 has created an increased need to devise alternative methods to improve performance 

and potentially reduce numbers of pathogenic bacteria. Examples include use of natural plant 

derived products such as carvacrol (Kelly et al., 2017), addition of dietary prebiotics 

(Sethiya, 2016) and administration of live probiotic bacteria (Gadde et al., 2017). The impact 

of carvacrol on the chicken microbiome and the potential reduction of pathogen such as 

Campylobacter is unknown.  

To investigate the impact of carvacrol on the chicken gut microbiome, data from a previously 

performed experiment was analysed using two different bioinformatics pipelines (DADA2 

ASVs vs. VSEARCH OTUs, and a range of statistical analyses). Here, a comparison of 

samples from day 10, 21 and 35 were performed. Carvacrol concentrations within the 

different day groups were as follows, Control = 0 mg/ml; T1 = 120 mg/ml; T2 = 200 mg/ml 

and T3 = 300 mg/ml. For statistical analysis, sample groupings were based on sample type 

(Control, T1, T2 and T3). Further delineation of samples was ideally preferred, specifically, 

days and specific concentrations, however arguably the greatest criticism of this study was 

the low sample number, essentially only a single sample was available per day and per 

concentration. Thus, we have grouped the samples where we believe there is little or no 

change in community structure, and in future studies it would be desirable to have multiple 

data sets for multiple categories. Dominant bacteria (from top-25 most abundant taxa; Figure 

1) include Bacteroides, Ruminococcaceae UCG-014 and Alistipes. Statistically significant 

bacteria were identified (taxa differential) between the different groups (Table 2). As an 

example, Alistipes was significant for Control vs T1, although again, this analysis compared 

all days simultaneously.  

Alpha diversity metrics (Figure. 2) using a range of diversity measures identified an 

increasing microbial diversity over time, though no statistical significance was observed 

between groups. Of note, T3 did show a trend of decreased microbial diversity when 

compared to T2. Beta diversity (Figure. 3) was performed and using distance matrix Bray-
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Curtis (sample numbers), a large overlap was observed between all samples, with Control 

and T1 displaying greater similarity. For unweighted UniFrac (phylogeny), an increasing 

similarity of data points was observed from T1 to T3 with all data points overlapping. For 

weighted UniFrac (phylogeny with abundance) T3 displayed the greatest dispersion, with 

all samples again overlapping. Core microbiome (Figure. 4) identified key genera that were 

present within all samples. Interestingly, bacteria that were selected via taxa differential as 

varying between samples may still be observed within core microbiome e.g. Alistipes. Thus, 

there is not necessarily a case of genera being present or absent, just varying in prevalence. 

No statistical significance was observed for environmental filtering (Figure. 5) and LCBD 

(Figure. 6), though LCBD did observe an increasing trend of environmental influence as 

carvacrol concentration was increased. Subset analysis (Table 4) identified key genera 

influencing differences between Control and T1. Subset regression (Figure. 7) identified day 

21 displaying a decreasing effect on microbial diversity, whereas day 35 displays an 

increasing effect. Also, day 10 seems to shift the microbial community structure away from 

the average diversity status. In addition, increasing the concentration of carvacrol seems to 

shift the microbial population structure away from the norm. Seqenv (Figure. 8) was 

performed although with limited success as most likely the environmental ontologies were 

less associated with a chicken microbiome, although it did show some relevant patterns. 

PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved 

States) was performed (Table 5) to predict functional abundances. Interestingly a number of 

genes involved in sporulation and biofilm were identified. C. jejuni can also persist in the 

environment through survival in biofilms (Gundogdu et al., 2016). Clearly the varying 

concentration of carvacrol has an association with microbiome, most likely based on the 

antimicrobial effect of carvacrol. Overall, carvacrol is having an impact on the microbial 

community structure within the chicken microbiome, however, due to a lack of sample 

number within the day category, it was difficult to tease the differences out. In addition, the 

range of statistical analysis has produced a plethora of data that if more time was permitting, 

could have been performed on an extensive dataset, if available.  

In terms of bioinformatics, a comparison between VSEARCH and DADA2 was performed 

using Procrustes analysis. The results identified a correlation of 0.787 with a p-value of 

0.0001 indicating that OTU and ASV methods produced statistically significant results in 

terms of the abundance table. Interestingly, the DADA2 pipeline produced a total of 3485 

ASVs whereas the VSEARCH pipeline produced a total of 2993 OTUs. Additionally, even 

though Procrustes did identify a similarity between the methodologies, downstream 

applications using for example subset regression did display some differences as to what was 
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identified as extrinsic parameters that were influencing the microbial community structure 

(Figure 7, DADA2 ASVs vs. Appendix III Figure 7, VSEARCH OTUs). As has been 

described elsewhere, a more detailed comparison of correlations between alpha and beta 

diversity could also have been a viable option (Glassman and Martiny, 2018). In terms of 

the biological output, here I only discuss DADA2 pipeline. Alternative steps could have been 

investigated such as Deblur (Amir et al., 2017) and MED (Eren et al., 2015). 

C. jejuni is classified as microaerophilic, and this should imply a restricted niche for the 

growth of the bacterium, yet the opposite is true (Ugarte-Ruiz et al., 2018, Gundogdu and 

Wren, 2020). C. jejuni is omnipresent within the environment and demonstrates a genetic 

architecture that clearly allows it to survive within the ambient environment (Liaw et al., 

2019). To investigate this further, RNA-Seq experimental data were obtained from previous 

studies which compared 5 mins 5 mM H2O2 stress against normal grown C. jejuni. This was 

also repeated for 15 mins.  

Beta diversity of the different samples (Figure. 10) clearly identified differences between the 

different conditions. This was demonstrated also for differential expression analysis with 

DESeq2 where clear changes in gene expression were produced. One of the criticisms of the 

experimental design is that there were only two biological replicates for the respective 

datasets. The implication of this is that during statistical analyses the up and down-regulated 

gene lists are large and difficult to investigate. This point has been highlighted in a number 

of studies (Butcher et al., 2015, Conesa et al., 2016) where greater biological replicates 

significantly reduces the gene list numbers. Time permitting, a full analysis of the gene lists 

would have been performed and investigated in terms of biological importance. At a 

preliminary level, key genes that were involved in oxidative stress were identified as 

significantly modified for the test conditions e.g. sodB, ahpC. Interestingly, the main gene 

involved in a response to peroxide stress, the gene katA (catalase) was not identified in any 

of the test conditions. Further replicates would be required to fully ascertain the reasons for 

this.  

In terms of bioinformatics, a comparison of the similarity between StringTie and bedtools 

was performed using Procrustes analysis. The results identified a correlation of 0.8148 with 

a p-value of 0.0001. This indicates a significant similarity between the methods. In this study, 

the focus was on selecting a range of tools for counting transcripts. In addition, variations in 

normalisation methods (e.g. TPM (transcripts per million) or FPKM (fragments per kilobase 

of transcript per million mapped reads)) could be investigated, and also differential 

expression methods; here only DESeq2 was performed, and so other methodologies could 
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have been attempted such as Cuffdiff (Trapnell et al., 2012), edgeR (Robinson et al., 2010), 

PoissonSeq (Li et al., 2012), and baySeq (Hardcastle and Kelly, 2010). 

 

5. Conclusions 
The aim of this study was to apply, utilise and compare different strategies to understand C. 

jejuni pathogenesis as well as the microbiome structure that is implicated in the underlying 

categorical representation of these samples, including both the active (RNA-Seq) and the 

passive (16S rRNA) components. Although we have utilised several strategies, our analytical 

understanding is limited by sample size and therefore the conclusions drawn should be 

treated with caution. Future studies that are comprehensively directed by a large sample size, 

and extensive methodology is recommended.   
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Appendix I – Bioinformatics Steps for Qiime2 analysis with DADA2 
 

All relevant pipelines were established by Dr Umer Zeeshan Ijaz 

(http://userweb.eng.gla.ac.uk/umer.ijaz/) at the University of Glasgow and training was 

provided accordingly (http://www.tinyurl.com/JCBioinformatics3). 

 

Step - 1 Create fictitious barcodes 

The file structure was organised as described in 2.1. Initially, fictitious barcodes were created 

and saved as a sample_metadata.tsv file: - 

d="/home/ozan/Documents/Nic_meta/Carvacrol/sequences"; #Sets path 

to folder variable 

t=$(ls $d | wc -l); #Sets a one-line code to view contents of folder 

paste <(ls $d) <(perl -le 'sub p{my $l=pop @_;unless(@_){return 

map [$_],@$l;}return map { my $ll=$_; map [@$ll,$_],@$l} p(@_);} 

@a=[A,C,G,T]; print join("", @$_) for 

p(@a,@a,@a,@a,@a,@a,@a,@a);' | awk -v k=$t 'NR<=k{print}') | 

awk 'BEGIN{print "sample-id\tbarcode-

sequence\n#q2:types\tcategorical"}1' > sample_metadata.tsv 

#Creates fictitious 8 bp barcodes and saves them in a .tsv file. 

 

The output produces an sample_metadata.tsv file: - 

sample-id       barcode-sequence 

#q2:types       categorical 

Day10C  AAAAAAAA 

Day10T1 AAAAAAAC 

Day10T2 AAAAAAAG 

Day10T3 AAAAAAAT 

 

Step - 2 Generate barcodes for each read 

The next step was to generate the respective barcodes for each read within our respective 

folder structure: -  

(for i in $(ls $d); do bc=$(awk -v k=$i '$1==k{print $2}' 

sample_metadata.tsv); bioawk -cfastx -v k=$bc '{print "@"$1" 

"$4"\n"k"\n+";for(i=0;i< length(k);i++){printf "#"};printf 

"\n"}' $d/$i/Raw/*_R1.fastq ; done) > barcodes.fastq 
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The output produces an barcodes.fastq.gz file: - 

barcodes.fastq.gz | head -n 10 

@M01637:109:000000000-AM9RR:1:1101:14441:1282 1:N:0:21 

AAAAAAAA 

+ 

######## 

@M01637:109:000000000-AM9RR:1:1101:9590:1353 1:N:0:21 

AAAAAAAA 

+ 

######## 

 

Step 3 - Assemble the forward reads 

This was then followed by assembling the forward reads: -  
(for i in $(ls $d); do bioawk -cfastx '{print "@"$1" 

"$4"\n"$seq"\n+\n"$qual}' $d/$i/Raw/*_R1_001.fastq ; done) > 

forward.fastq 

 

The output produces an forward.fasta.gz file: - 
forward.fastq.gz | head -n 10 

@M01637:109:000000000-AM9RR:1:1101:14441:1282 1:N:0:21 

CCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCGACGCC

GCGTGAGTGATGAAGTACTTCGGTATGTAAAGCTCTATCAGCAGGGAAGTAAGTGACGGTA

CCTGAGTAAGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGGGCAAG

CGTTATCCGGCTTTACTGGGTGTAATGGGAGTTTAGTCGGCGATGCAAGTCTGGCGTGAAA

TCCCCGTGCTCAACACCCGGTCTTCTTTGGACCCTTTTATGCTGGCTTTTCGGGTGG 

+ 

8BCCCECAAB5:0==;;=6;;8,8C6EF<@,C,6CEF@@E@,6;;FGF<C@D,FEC+8C@F

GGGGG,=BF<,C,,CF,5CFGCF?4BEF9,59,AAB<B<,<<,BDC+,@,,,5A,;>+@@+

?AF:,,73,,,,,==D=7+CB8,86,@6D6C8EED6ACDD>9>C**=,599?F*==55458

:3CB3;:;=7(:8A+;@:)409D)*).1*.53(9)*).18)*),)-)*)-)-

40),4((()).(0(((((--)),)((((4((()-6:6)(,)(((()-4*)--

*)(.(()),((.(( 

 

Step 4 - Assemble the reverse reads 

This was then followed by assembling the reverse reads respectively: -  
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(for i in $(ls $d); do bioawk -cfastx '{print "@"$1" 

"$4"\n"$seq"\n+\n"$qual}' $d/$i/Raw/*_R2_001.fastq ; done) > 

reverse.fastq 

 

The output produces an reverse.fastq.gz file: - 

reverse.fastq.gz | head -n 10 

@M01637:109:000000000-AM9RR:1:1101:14441:1282 2:N:0:21 

GACTACTCGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGAGCCTCCACGTCAGTTACC

GTCCAGTAAGCCGCCTTCGCCACTGGTGTTCTTCCTAATATCTACGCATTTCCCCGCTACC

CTAGGAATTCCGCTTACCTCTCCGGCACTCCAGCTCTACAGTTTCCAACGCAGTCCCGGTG

TTGAGCCCCGGGCTTTCCCTCCAGACTTGCCTCGCCGTCTACACTCCCTTTCCCCCCCGTA

CATCCGGATAACGCTTGCCCCCTACCTCTTACCCCGGCTGCCTGCCCCTACTTCAC 

+ 

8-

ABBFFFFB@E7EFF;,EFGF@EFECDFGGGG?C:CCCFGF,=BFGF,4;BFG,@EF9@@=A

?=,@C,,=49@CECEEDEE6>@AAF>EGFDFFGG9,==DDE7E@C9DCDG7FE?8588)@3

)96,+=?DD=?8A5DFFFEFF5)85=DFD)DF5)0*7:D=D>DD***:=))1)385*0*<@

5*=1,:5)))-05;BEB55@5(.658).()/(26((.((/)5)/27026)7),(1(-

29<6)43-((,().(4(-(-5266((4(.)4))-69>)(2(((()-183((,()))). 

 

At this stage it was possible to check if as expected, the forward, reverse and barcodes 

FASTQ files were the same size: -  
bioawk -cfastx 'END{print NR}' forward.fastq.gz 

bioawk -cfastx 'END{print NR}' reverse.fastq.gz 

bioawk -cfastx 'END{print NR}' barcodes.fastq.gz 

 

Step 5 - Further file organisation 

All files were then zipped and moved to a new folder (emp-paired-end-sequences), distinct 

from sequencing folder (../sequences; which holds the FASTQ files respectively).  
gzip *.fastq 

mkdir emp-paired-end-sequences; mv *.gz emp-paired-end-

sequences/. 

 

Step 6 - Load into Qiime2 format 

The created files were then ready to be loaded into the Qiime2 platform as follows: -  
qiime tools import \ 
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  --type EMPPairedEndSequences \ 

  --input-path emp-paired-end-sequences \ 

  --output-path emp-paired-end-sequences.qza 

 

Step 7- Demultiplexed 

The samples were then demultiplexed as follows: -  
qiime demux emp-paired --p-no-golay-error-correction --i-seqs 

emp-paired-end-sequences.qza --m-barcodes-file 

sample_metadata.tsv --m-barcodes-column barcode-sequence --o-

per-sample-sequences demux.qza --o-error-correction-details 

demux-details.qza 

 

Step 8 - Create visualisable demultiplexed files 

The sequences were then converted from .qza files into visualisable .qzv format. To 

view, .qzv files were directly loaded into the Qiime2 viewer website 

(https://view.qiime2.org/) (Figure 1A,B and C). To convert to .qzv: -  
qiime demux summarize --i-data ./demux.qza  --o-

visualization ./demux.qzv 

qiime tools export --input-path demux.qzv --output-path output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1A. Demultiplexed sequence counts summary of demux.qzv loaded into Qiime2 

viewer. 
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Figure 1B. Per-sample sequencing counts of each sample from demux.qzv loaded into 

Qiime2 viewer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1C. Quality plot of forward and reverse paired-end sequencing reads from demux.qzv 

loaded into Qiime2 viewer. 

 

Step 9 - Perform DADA2 search 

The next step was to perform DADA2 search as follows: -  
qiime dada2 denoise-paired --i-demultiplexed-seqs demux.qza -

-p-trim-left-f 0 --p-trim-left-r 0 --p-trunc-len-f 240 --p-

trunc-len-r 200 --p-n-threads 0 --o-table table.qza --o-
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representative-sequences rep-seqs.qza --o-denoising-stats 

denoising-stats.qza --verbose 

 

Step 10 - Create a phylogeny 

A phylogenetic tree was created as follows: -  
qiime phylogeny align-to-tree-mafft-fasttree --i-sequences 

rep-seqs.qza --o-alignment aligned-rep-seqs.qza --o-masked-

alignment masked-aligned-rep-seqs.qza --p-n-threads 0 --o-tree 

unrooted-tree.qza --o-rooted-tree rooted-tree.qza 

 

Step 11 - Create a taxonomy 

A taxonomy was created as follows: - 
qiime feature-classifier classify-sklearn --i-classifier 

~/Downloads/silva-132-99-nb-classifier.qza --i-reads rep-

seqs.qza --o-classification taxonomy.qza 

 

To visualise the output, the .qza file was converted into a .qzv as follows: -  
qiime metadata tabulate --m-input-file taxonomy.qza --o-

visualization taxonomy.qzv 

 

taxonomy.qzv was placed in Qiime viewer (https://view.qiime2.org/) (Figure 2).  
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Figure 2. Taxonomy representation of each samples. 

 

Step 12 - Export files  

All relevant files were then exported so to be useable in R with the package Phyloseq.  
 

qiime tools export --input-path table.qza --output-path output 

# table.qza represents the ASV table. This command creates the feature-table.biom file 

(converted later to a .tsv file). 
 

qiime tools export --input-path rep-seqs.qza --output-path 

output # rep-seqs.qza represents the ASV sequences. This command creates the dna-

sequences.fasta file.  
 

head dna-sequences.fasta  

>78269ac3aa118a0e28b713d456b4bb64 

CCTACGGGGGGCTGCGGGTGCCTCTGCAGTGCAGACTGGAGGCCAGCTGGCAGCTGCTGGC

TGTGATGTGTCCCTCTGCATCCTGCACAAAAGCTGGTCAGCCAGAGTGTCTGGCGTGAAGT

CAGGCCTTAAGGGAATCCTTCACTTATCCATGCGGCTGGAAAACCCTCCACTAAGGGACAG

CAACTGAAAAGTCAAAGACTAGAGGAAGTAAGGATGCCCTGTGTACAAGTTTAATAAGTAA

TCCCTTGTTATCGCATGCCTTGTTGAGTGATTGCAAGATACCCTAGTAGTC 

>138ee4a5a0d2a54d491b1988b217f5cf 

CCTACGGGTGGCTGGATTTCACAGAATCATAGAATGTTTGAGACTGGAAGGTAGCTCTGGA

GTCATCCAGTGCAGCTCCACTGCTCATACAGGGCATACGATTTATAGGATATCTGCAAAGT

CTCTGGGCAATCAAGCACTGTTCTAGCACTTGGTCGCCCACATAGTAAAGAAGTGTTTCCT

GATAATCAAATGGGAAGGGAATTTAGAGACCGCTTCTCACCTGAAGAGATTCTCCCATCAA

ATGGTGGAAGCAGCCTGTTCTGATACCCCAGTAGTC 

 

qiime tools export --input-path rooted-tree.qza --output-path 

output # rooted-tree.qza represents the tree file. This command creates the tree.nwk file. 

 

qiime tools export --input-path taxonomy.qza --output-path 

output # taxonomy.qza represents the taxonomy. This command creates the taxonomy.tsv 

file. 
 

head taxonomy.tsv  
FeatureID       Taxon   Confidence 
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78269ac3aa118a0e28b713d456b4bb64        Unassigned      0.64449069240967 

138ee4a5a0d2a54d491b1988b217f5cf        Unassigned      0.4249239542234641 

200a42907ed7172aff752af65fb96389        Unassigned      0.46796058992048906 

5b361e44aa27e0f844c43b97aeaeb42f        D_0__Eukaryota  0.8664500589483518 

e735a996bd77843a5f1105642b0585d0        D_0__Bacteria   0.8951819508985015 

 

Step 13 - Create compatible biom file 

To create the biom file compatible with R and Phyloseq, the biom file is initially converted 

to a .tsv file: -  
biom convert -i feature-table.biom -o feature-table.tsv –to-

tsv 

 

head feature-table.tsv  
# Constructed from biom file 

#OTU ID Day10C Day10T1 Day10T2 Day10T3 Day21C Day21T1 Day21T2 Day21T3  

78269ac3aa118a0e28b713d456b4bb64 0.0 0.0 0.0 0.0 0.0 0.0 86.0 0.0 

138ee4a5a0d2a54d491b1988b217f5cf 0.0 0.0 0.0 0.0 0.0 0.0 70.0 0.0 

200a42907ed7172aff752af65fb96389 0.0 0.0 0.0 0.0 0.0 0.0 69.0 0.0 

 

A modification of the taxonomy.tsv column names was performed: -  
sed -i s/Taxon/taxonomy/ taxonomy.tsv | sed -i s/Feature\ 

ID/FeatureID/ taxonomy.tsv 

 

head taxonomy.tsv  
FeatureID Taxon Confidence 

78269ac3aa118a0e28b713d456b4bb64 Unassigned 0.64449069240967 

138ee4a5a0d2a54d491b1988b217f5cf Unassigned 0.4249239542234641 

200a42907ed7172aff752af65fb96389 Unassigned 0.46796058992048906 

5b361e44aa27e0f844c43b97aeaeb42f D_0__Eukaryota 0.8664500589483518 

e735a996bd77843a5f1105642b0585d0 D_0__Bacteria 0.8951819508985015 

edfc9bdabae68a14e4c34703a735d831 Unassigned 0.3139517223515642 

 

Finally, the ASV feature table was merged with the taxonomy: -  
biom add-metadata \ 

  -i feature-table.tsv \ 

  -o feature_w_tax.biom \ 

  --observation-metadata-fp taxonomy.tsv \ 

  --observation-header FeatureID,taxonomy,Confidence \ 

  --sc-separated taxonomy --float-fields Confidence 
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Appendix II – Bioinformatics Steps for Qiime2 analysis with 

VSEARCH 
 
 
All relevant pipelines were established by Dr Umer Zeeshan Ijaz 

(http://userweb.eng.gla.ac.uk/umer.ijaz/) at the University of Glasgow and training was 

provided accordingly (http://www.tinyurl.com/JCBioinformatics3). 

 

Step 1 - Size checking 

The file structure was organised as described in 2.1. Initially, before performing the 

VSEARCH pipeline, quality control steps were performed to significantly reduced error 

rates. FASTQ files were checked to view if quality trimming was required: -  

 
for i in $(ls -d *); do echo $i":";bioawk -cfastx 

'{i[length($seq)]++}END{for(j in i)print j","i[j]}' 

${i}/Raw/*_R1_001.fastq | sort -nrk2 -t",";done 

 

For each sample, the number of sequences of a given length was obtained. The output is 

given as [LENGTH],[FREQUENCY]. 

 
Day35T3: 

301,326963 

297,22489 

300,1500 

Day35T2: 

301,278601 

297,14540 

300,1922 

 

Step 2 - Trimming of poor quality reads 

Sickle was used to perform quality trimming where a 20 bp long window was considered to 

trim the reads, when average quality score drops below 20 as well as read length below 10 

bp.  
for i in $(ls -d *); do cd $i;cd Raw; R1=$(ls *_R1_*.fastq); 

R2=$(ls *_R2_*.fastq); cd .. ; sickle pe -f Raw/$R1 -r Raw/$R2 
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-o ${R1%.*}_trim.fastq -p ${R2%.*}_trim.fastq -s 

${R1%.*}_singlet.fastq -q 20 -l 10 -t "sanger";cd ..; done 

 

The distribution was checked: - 
for i in $(ls -d *); do echo $i":";bioawk -cfastx 

'{i[length($seq)]++}END{for(j in i)print j","i[j]}' 

$i/*_R1_*trim.fastq | sort -nrk2 -t",";done | head -30 

 
Day35T3: 

301,112713 

297,11050 

Day35T2: 

301,104473 

297,7648 

228,4521 

 

Step 3 - Error correction 

SPAdes assembler was used to perform error-correction for the paired-end reads: - 
for i in $(ls */ -d); do cd $i; spades.py -1 *_R1_*trim.fastq 

-2 *_R2_*trim.fastq -o . --only-error-correction --careful --

disable-gzip-output ; cd ..; done 

 

To check if all relevant files were created, the following code was used: -  
for i in $(ls -d *); do echo $i:; ls -1 $i; done 

 

The expected folder structure was as follows: -   
Day35T3: 

Day35T3_S18_L001_R1_001_singlet.fastq 

Day35T3_S18_L001_R1_001_trim.fastq 

Day35T3_S18_L001_R2_001_trim.fastq 

corrected 

input_dataset.yaml 

params.txt 

Raw 

spades.log 
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Step 4 - Overlap sequences 

To complete the error correction, PANDAseq was used to overlap the paired-end reads using 

a minimum overlap of 10. SPAdes (used within PANDAseq) has a technical issue when using 

for error correction, due to the reads not having the identifier to distinguish the forward and 

reverse reads. Thus, a fictitious identifier using the command below: -  
 

for i in $(ls */ -d); do cd $i; awk 'NR % 4==1{$0=$0" 

1:N:0:GGACTCCTGTAAGGAG"}1' corrected/*R1*.cor.fastq > 

corrected/forward_corrected.fastq; awk 'NR % 4==1{$0=$0" 

2:N:0:GGACTCCTGTAAGGAG"}1' corrected/*R2*.cor.fastq > 

corrected/reverse_corrected.fastq;pandaseq -f 

corrected/forward_corrected.fastq -r 

corrected/reverse_corrected.fastq -B -d bfsrk -A 

simple_bayesian -o 10 > $(basename ${i})".overlap.fasta"; 

cd ..; done 

 

The output produces an overlap file: -  
>M01637:109:000000000-AM9RR:1:1101:15566:1526:18 

CCTACGGGGGGCAGCAGTGAGGAATATTGGTCAATGGACGCAAGTCTGAACCAGCCATGCC

GCGTGCAGGATGACGGCTCTATGAGTTGTAAACTGCTTTTGTACGAGGGTAAACGCAGATA

CGAGTATCTGTCTGAAAGTATCGTACGAATAAGGATCGGCTAACTCCGTGCCAGCAGCCCT

GGTAATGCCTCCAAAACTGTTTGGCTAGAGAGTAGTTGCGGTAGGCGGAATGTATGGTGTA

GCGGTGAAATGCTTAGAGATCATGCAGAACACCGATTGCGAAGGCAGCTTACCAAACTATA

TCTGACGTTGAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCCAGTAGTC 

>M01637:109:000000000-AM9RR:1:1101:15961:1558:18 

CCTACGGGAGGCAGCAGTCGGGAATATTGCGCAATGGAGGAAACTCTGACGCAGTGACGCC

GCGTGCAGGAAGAAGGTTTTCGGATTGTAAACTGCTTTAGACAGGGAAGAAAAAAGACAGT

ACCTGTAGAATAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTGCTGGAGAGGGAGGTG

GAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGA

CTTTCTGGACAGTAACTGACGTTGAGGCACGAAAGTGTGGGGAGCAAACAGGATTAGATAC

CCCTGTAGTC 

 

Of note, SPAdes can be run with simple bayesian, pear, rdp_mle or stitch options. For the 

purpose of the MSc project, I have used simple bayesian. 

 

Step 5 - VSEARCH 
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The next step is to create a vsearch_tutorial folder at the same level as the sequences folder. 

Within the vsearch_tutorial folder, initially the .overlap.fasta files were combined in 

VSEARCH/USEARCH format: - 
for i in $(ls -d ../sequences/*/); do awk -v k=$(basename ${i}) 

'/^>/{$0=">barcodelabel="k";S"(++i)}1' < $i/*.overlap.fasta; 

done > multiplexed.fasta 

 

The final labels were in USEARCH format: >barcodelabel=FolderName;SID. The 

sequences in each sample were given internal identifiers starting with S1, S2, and so on: - 

 

The output produces an multiplexed.fasta file: -  
>barcodelabel=Day10C;S1 

CTACGGGGGGCAGCAGTGGGGAATATTGGGCAATGGGGGAAACCCTGACCCAGCAACGCCG

CGTGAAGGAAGAAGGCCTTCGGGTTGTAAACTTCTTTTACCAGGGACGAAGGACGTGACGG

TACCTGGAGAAAAAGCAACGGCTAACTATGTGCCAGCAGCCGCGGTAATACGTAGGTGGCA

AGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGTAGGCGGAGCTGCAAGGTAGCGGTGA

AATCCGTAGGTATTAGGAGGAACACCAGTGGCGAAGGCGGCTTGCTGGACGACAACTGACG

CTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTTGTAGTC 

>barcodelabel=Day10C;S2 

ACTACGGGCGGCTGCAGTGGGGAATATTGCACAATGGAGGAAACTCTGATGCAGCGATGCC

GCGTGAGGGAAGAAGGTTTTCGGATTGTAAACCTCTGTCTTTGGGGACGAGAATGACGGTA

CCCAAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGAGCAGT

GGCGATGCGGACTTACTGGGCTTTAACTGACGCTGAGGCTCGAACGCGTGGGGAGCAAACA

GGATTAGATACCCCGGTAGTC 

 

At this point, all unique reads from all of the multiplexed samples were within a single file. 

This file will be used at a later point to blast against the created list of OTUs. 

 

Step 6 - Linearising the file 

The next step was to linearise the FASTA file: -  
awk 'NR==1 {print ; next} {printf /^>/ ? "\n"$0"\n" : $1} END 

{print}' multiplexed.fasta > multiplexed_linearized.fasta 

 

Step 7 - Dereplicate, sort and remove singletons 

This was then followed by dereplication, sorting, and removing singletons: -  
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vsearch --threads 20 --derep_fulllength 

multiplexed_linearized.fasta --minuniquesize 2 --sizein --

sizeout --fasta_width 0 --uc 

multiplexed_linearized_dereplicated_vsearch_min2.uc --output 

multiplexed_linearized_dereplicated_vsearch_min2.fasta 

 

The output produces a multiplexed_linearized_dereplicated_vsearch_min2.fasta file: -  
>barcodelabel=Day21C;S1157;size=5702 

CCTACGGGAGGCAGCAGTGAGGAATATTGGTCAATGGGCGAGAGCCTGAACCAGCCAAGTA

GCGTGAAGGATGACTGCCCTATGGGTTGTAAACTTCTTTTATAAAGGAATAAAGTCGGGTA

TGGATACCCGTTTGCATGTACTTTATGAATAAGGATCGGCTAACTCCGTGCCAGCAGCCGC

GGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGA

TGTTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGATAT

CTTGAGTGCAGTTGAGGCAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACG

AAGAACTCCGATTGCGAAGGCAGCCTGCTAAGCTGCAACTGACATTGAGGCTCGAAAGTGT

GGGTATCAAACAGGATTAGATACCCCAGTAGTC 

>barcodelabel=Day21C;S1249;size=5292 

CCTACGGGAGGCAGCAGTGAGGAATATTGGTCAATGGGCGAGAGCCTGAACCAGCCAAGTA

GCGTGAAGGATGACTGCCCTATGGGTTGTAAACTTCTTTTATAAAGGAATAAAGTCGGGTA

TGGATACCCGTTTGCATGTACTTTATGAATAAGGATCGGCTAACTCCGTGCCAGCAGCCGC

GGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGA

TGTTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGATAT

CTTGAGTGCAGTTGAGGCAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACG

AAGAACTCCGATTGCGAAGGCAGCCTGCTAAGCTGCAACTGACATTGAGGCTCGAAAGTGT

GGGTATCAAACAGGATTAGATACCCTGGTAGTC 

 

Step 8 - Clustering 

The next step was to perform clustering of the sequences at 97% similarity. 
vsearch --threads 20 --cluster_size 

multiplexed_linearized_dereplicated_vsearch_min2.fasta --id 

0.97 --strand both --sizein --sizeout --fasta_width 0 --uc 

multiplexed_linearized_dereplicated_vsearch_min2_preclustered

.uc --centroids 

multiplexed_linearized_dereplicated_vsearch_min2_preclustered

.fasta 
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The output produces an 

mmultiplexed_linearized_dereplicated_vsearch_min2_preclustered.fasta file: -  
>barcodelabel=Day21C;S1157;size=296516 

CCTACGGGAGGCAGCAGTGAGGAATATTGGTCAATGGGCGAGAGCCTGAACCAGCCAAGTA

GCGTGAAGGATGACTGCCCTATGGGTTGTAAACTTCTTTTATAAAGGAATAAAGTCGGGTA

TGGATACCCGTTTGCATGTACTTTATGAATAAGGATCGGCTAACTCCGTGCCAGCAGCCGC

GGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATGGA

TGTTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGATAT

CTTGAGTGCAGTTGAGGCAGGCGGAATTCGTGGTGTAGCGGTGAAATGCTTAGATATCACG

AAGAACTCCGATTGCGAAGGCAGCCTGCTAAGCTGCAACTGACATTGAGGCTCGAAAGTGT

GGGTATCAAACAGGATTAGATACCCCAGTAGTC 

>barcodelabel=Day10C;S8597;size=111114 

CCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCGACGCC

GCGTGGAGGAAGAAGGTCTTCGGATTGTAAACTCCTGTTGTTGGGGAAAAGAAGGATGGTA

CCCAACAAGGAAGTGACGGCTAACTACGTGCCAGCAGCCGCGGTAAAACGTAGGTCACGAG

CGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGGTATGCAAGTTGGGAGTGAAA

TACATGGGCTCAACCCATGAACTGCTCTCAAAACTGTGTATCTTGAGTAGTGCAGAGGTAG

GCGGAATTCCCGGTGTAGCGGTGGAATGCGTAGATATCGGGAGGAACACCAGTGGCGAAGG

CGGCCTACTGGGCACCAACTGACGCTGAGGCTCGAAAGTGTGGGTAGCAAACAGGATTAGA

TACCCCAGTAGTC 

 

Step 9 - De novo chimera removal 

Once clustering was completed, de novo chimera removal was performed: -  
vsearch --threads 20 --uchime_denovo 

multiplexed_linearized_dereplicated_vsearch_min2_preclustered

.fasta --sizein --sizeout --fasta_width 0 --nonchimeras 

multiplexed_linearized_dereplicated_vsearch_min2_preclustered

_nonchimeras.fasta 

 

Step 10 - Reference based chimera removal 

Reference based chimera removal was also performed as there are typically chimeras missed 

from the previous step (if they have parents that are absent from the reads or are present with 

very low abundance). Thus, a reference database is used called the gold database: -  
vsearch --threads 20 --uchime_ref 

multiplexed_linearized_dereplicated_vsearch_min2_preclustered

_nonchimeras.fasta --db ~/Downloads/gold.fasta --sizein --
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sizeout --fasta_width 0 –nonchimeras 

multiplexed_linearized_dereplicated_vsearch_min2_preclustered

_nonchimeras_ref.fast 

 

Step 11 - Renaming of sequences 

Sequences were renamed to begin with “OTU_” 
python ~/bin/fasta_number.py 

multiplexed_linearized_dereplicated_vsearch_min2_preclustered

_nonchimeras_ref.fasta OTU_ > otus.fa 

 

The output produces an otus.fa file: -  
>OTU_1 

CCTACGGGAGGCAGCAGTGAGGGATATTGGTCAATGGGGGAAACCCTGAACCAGCAACGCC

GCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTGTCCTCTGTGAAGATAATGACGGTA

GCAGAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGAGCAAG

CGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTAGGCGGTTTGGTAAGTCAGAAGTGAAA

TCCATGGGCTTAACCCATGAACTGCTTTTGAAACTATCGAACTTGAGTGAAGTAGAGGTAG

GCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGAGATCGGGAGGAACACCAGTGGCGAAGG

CGGCCTACTGGGCTTTAACTGACGCTGAGGCACGAAAGCATGGGTAGCAAACAGGATTAGA

TACCCCAGTAGTC 

>OTU_2 

CCTACGGGAGGCAGCAGTGAGGAATATTGGTCAATGGACGCAAGTCTGAACCAGCCATGCC

GCGTGCAGGATGACGGCTCTATGAGTTGTAAACTGCTTTTGTACGAGGGTAAACGCAGATA

CGAGTATCTGTCTGAAAGTATCGTACGAATAAGGATCGGCTAACTCCGTGCCAGCAGCCGC

GGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCGGT

TCGATAAGTTGGAGGTGAAATGTTAGGGCTTAACCCTGAAACTGCCTCCAATACTGTTGGG

CTAGAGAGTAGTTGCGGTAGGCGGAATGTATGGTGTAGCGGTGAAATGCTTAGAGATCATA

CAGAACACCGATTGCGAAGGCAGCTTACCAAACTATATCTGACGTTGAGGCACGAAAGCGT

GGGGAGCAAACAGGATTAGATACCCCAGTAGTC 

 

Step 12 - Search against newly created OTUs 

The original multiplexed sequences were searched against the OTUs just created: - 
vsearch --threads 20 --usearch_global 

multiplexed_linearized.fasta --db otus.fa --strand both --id 

0.97 --uc map.uc 

 



64  

Step 13 - Create OTU tab-delimited format 

An OTU table in a tab-delimited format is created: -  
python ~/bin/uc2otutab.py map.uc > otu_table.txt 

 

The output produces an otus_table.txt file: -  
OTUId Day10C Day10T1 Day10T2 Day10T3 Day21C Day21T1 Day21T2 Day21T3  

OTU_127 575 229 6 335 2 99 159 131  

OTU_278 346 7 0 0 0 0 0 16  

OTU_23 834 552 0 9276 0 604 0 769  

OTU_364 267 341 1394 1950 1568 570 397 822  

 

Step 14 - Minor formatting of OTUs 

At this point, we have obtained the otus.fa (sequences) and otu_table.txt (abundance table). 

The following steps can be performed within Qiime2. For this purpose, we convert all the 

sequences to their uppercase representation to function in Qiime2: -  
bioawk -cfastx '{print ">"$name"\n"toupper($seq)}' otus.fa > 

otus_upper.fa 

 

Step 15 - Import into Qiime2 

The sequence file was imported Qiime2’s qza format: -  
qiime tools import --type 'FeatureData[Sequence]' --input-path 

otus_upper.fa --output-path otus.qza 

 

Step 16 - Generate taxonomy 

The taxonomy was generated using Qiime2 and Silva132 database: - 
qiime feature-classifier classify-sklearn --i-classifier 

/software/qiime2_databases/silva-132-99-nb-classifier.qza --

i-reads otus.qza --o-classification taxonomy.qza 

 

To visualise the output, the .qza file was converted into a .qzv as follows: -  
qiime metadata tabulate --m-input-file taxonomy.qza --o-

visualization taxonomy.qzv 

 

taxonomy.qzv was placed in Qiime viewer (https://view.qiime2.org/) (Figure 3).  
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Figure 3. Taxonomy representation of each samples. 

 

Step 17 - Generate phylogeny 

The phylogenetic tree was generated using Qiime2 
qiime phylogeny align-to-tree-mafft-fasttree --i-sequences 

otus.qza --o-alignment aligned-otus.qza --o-masked-alignment 

masked-aligned-otus.qza --p-n-threads 0 --o-tree unrooted-

tree.qza --o-rooted-tree rooted-tree.qza 

 

Step 18 - Qiime export 

The data files were converted from Qiime2 format to native format in an "output" folder: -  
qiime tools export --input-path rooted-tree.qza --output-path 

output # rooted-tree.qza represents the tree file. This command creates the tree.nwk file. 

 

qiime tools export --input-path taxonomy.qza --output-path 

output # taxonomy.qza represents the taxonomy. This command creates the taxonomy.tsv 

file. 
 

head taxonomy.tsv  
FeatureID       Taxon   Confidence 

78269ac3aa118a0e28b713d456b4bb64        Unassigned      0.64449069240967 

138ee4a5a0d2a54d491b1988b217f5cf        Unassigned      0.4249239542234641 

200a42907ed7172aff752af65fb96389        Unassigned      0.46796058992048906 
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5b361e44aa27e0f844c43b97aeaeb42f        D_0__Eukaryota  0.8664500589483518 

e735a996bd77843a5f1105642b0585d0        D_0__Bacteria   0.8951819508985015 

 

Step 19 - Create compatible biom file 

Within the output folder, a biom file was created using the otu_table created from VSEARCH. 

 

A modification of the taxonomy.tsv column names was performed: -  
sed -i s/Taxon/taxonomy/ taxonomy.tsv | sed -i s/Feature\ 

ID/FeatureID/ taxonomy.tsv 

 

head taxonomy.tsv  
FeatureID Taxon Confidence 

78269ac3aa118a0e28b713d456b4bb64 Unassigned 0.64449069240967 

138ee4a5a0d2a54d491b1988b217f5cf Unassigned 0.4249239542234641 

200a42907ed7172aff752af65fb96389 Unassigned 0.46796058992048906 

5b361e44aa27e0f844c43b97aeaeb42f D_0__Eukaryota 0.8664500589483518 

e735a996bd77843a5f1105642b0585d0 D_0__Bacteria 0.8951819508985015 

edfc9bdabae68a14e4c34703a735d831 Unassigned 0.3139517223515642 

  

biom add-metadata -i otu_table.txt -o feature_w_tax.biom --

observation-metadata-fp taxonomy.tsv --observation-header 

FeatureID,taxonomy,Confidence --sc-separated taxonomy --

float-fields Confidence 
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Appendix III –16S microbiome results using VSEARCH pipeline 
 

 
 

Figure 1. The top 25 most abundant genera representative of different sample categories. 

Carvacrol concentration of different groups (Control = 0 mg/ml, T1 = 120 mg/ml, T2 = 200 

mg/ml and T3 = 300 mg/ml). 

 

Table 1. Taxa differential of OTUs statistically modified when comparing groups Control 

vs. T1. These are log 2-fold different and statistically significant.  
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Figure 2. Alpha diversity metrics for Control, T1, T2 and T3 samples using VSEARCH 

pipeline. Richness, estimated number of species/features per sample; Shannon entropy 

measured the balance of a community within a sample; Pielou’s index represents the 

evenness of a community; Simpson measures evenness of the community from 0 to 1, and 

Fisher alpha an alternative diversity index. Carvacrol concentration of different groups 

(Control = 0 mg/ml, T1 = 120 mg/ml, T2 = 200 mg/ml and T3 = 300 mg/ml). 
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(C) 
 

 
 
 
Figure 3. PCoA of beta diversity was measured for all groups using: (A) Bray-Curtis; (B) 

unweighted UniFrac; (C) weighted UniFrac. Two samples if similar lie very close to each 

other. The ellipses represent the standard error in terms of grouping variations.  
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Figure 4. Core microbiome analysis of all the samples. The figure shows at least 85% 

prevalent OTUs ordered by lower abundance (left) to higher abundance (right). The y-axis 

(right) represents limit of detection in terms of relative abundance. 
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Figure 5. Investigating the environmental pressure on microbial community structure using 

NRI/NTI. NRI reflects the phylogenetic clustering in a broad sense (whole phylogenetic tree) 

with the lower values representing evenly spread community. NTI focuses more on the tips 

of the tree with positive values of NTI indicating that species co-occur with more closely 

related species than expected, and lower values indicating that closely related species do not 

co-occur by chance.  
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(C)  

 
 

Figure 6. Local contribution to beta diversity (LCBD) calculated by using sample wise 

proportional diversities: (A) Hellinger transform on the microbial counts; (B) unweighted 

UniFrac dissimilarity (phylogenetic distances only); and (C) weighted UniFrac dissimilarity 

(phylogenetic distances weighted with abundance counts), with all values summing up to 1.  

 

Table 2. Subset analysis showing top two subsets of OTUs along with the correlation of the 

beta diversity distances between these subsets and full OTU table. The last column shows 

PERMANOVA statistics for these subsets highlighting their discriminatory power. R2 is the 

●

●

●

0.07

0.08

0.09

0.10

C
on
tro
l

T1 T2 T3

LC
BD

Type

●
Control
T1
T2
T3

●

●

●

0.06

0.07

0.08

0.09

0.10

0.11

C
on
tro
l

T1 T2 T3

LC
BD

Type

●
Control
T1
T2
T3



74  

percentage variability of these subsets in terms of groups. In the interest of space, only one 

group comparison is displayed, with remaining results within the accompanied files. 

 

 

 

 

 
 

Figure 7. Subset regression where red and blue represent the significant positive and negative 

beta coefficients that were consistently selected in different regression models. The 

categorical variables are represented with a yellow highlight (coded as 1 (present) or 0 

(absent)) and if selected is interpreted as the samples belonging to those categories having 

positive/negative influence on the respective microbiome metrics. 

 

 

Richness FisherAlpha Simpson Pielou Shannon 
Entropy

LCBD (Bray-
Curtis 

Distance)

LCBD 
(Unweighted 

UniFrac)

LCBD 
(Weighted 

UniFrac)

+*

-*** -* +***
-* -** -* -*

+**

Status_C

ControlConc

Status_T1

Status_T2

Status_T3

Day_10

Day_21

Day_35

Group 
Comparison 

Subset 
No 

Subset Correlation 
of Subset 
with Full 
Table (R) 

PERMANOVA 
Subsets 
(Groups) 

Control, T1 S1 Escherichia-Shigella  +  
Ruminiclostridium 5  

0.18041 R2 = 0.4528 (p > 
0.05) 

S2 Escherichia-Shigella  +  
Ruminiclostridium 5 +  
Ruminococcaceae 
UCG-014 

0.17201 R2 = 0.4694 (p > 
0.05) 
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Figure 8. Seqenv identified certain EnvO ontological terms associated with the sequences 

and in general with the sampling space. On performing differential analysis, weighted with 

abundances, the above figure is obtained with red highlighting any significant changes.  

 

Table 3. PICRUSt2 search results in relation to KEGG pathways.  

 
 

 

 

 

 

 

 

  

●

●

●

●

●

●

●●

●

●

●
●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2

0

2

4

1 10 100 1000 10000
Mean abundance

Lo
g2

 fo
ld

 c
ha

ng
e

Significant
●

●

No

Yes



76  

Appendix IV – Significant gene list obtained from RNA-Seq 
StringTie pipeline 
 

Table 1. Up and down regulated genes when comparing normal vs 5 mins 5 mM H2O2 stress 

conditions using DESeq2. In the interest of space, only a subset is displayed. In the interest 

of space, normal vs 15 mins 5 mM H2O2 stress is provided as accompanied file.  

 
 baseMean log2 Fold 

Change 
pvalue padj Upregulated GeneName 

gene-Cj1177c 173.66 3.86 2.14E-39 3.49E-36 5mins gmk 

gene-Cj1419c 591.15 4.04 6.43E-38 5.23E-35 5mins Cj1419c 

gene-Cj0062c 220.93 4.67 2.54E-36 1.38E-33 5mins Cj0062c 

gene-Cj0426 835.45 3.93 5.27E-35 2.15E-32 5mins Cj0426 

gene-Cj0639c 335.68 3.43 5.41E-34 1.76E-31 5mins adk 

gene-Cj0427 1185.44 4.36 4.99E-30 1.35E-27 5mins Cj0427 

gene-Cj1228c 276.02 3.03 3.32E-28 7.71E-26 5mins htrA 

gene-Cj0331c 207.84 4.15 4.54E-28 9.23E-26 5mins Cj0331c 

gene-Cj0664c 415.18 4.26 1.56E-27 2.82E-25 5mins rplI 

gene-Cj0102 247.82 4.41 1.07E-26 1.74E-24 5mins atpF' 

gene-Cj1487c 449.60 3.37 2.20E-26 3.26E-24 5mins ccoP 

gene-Cj0193c 288.03 3.81 6.13E-26 8.32E-24 5mins tig 

gene-Cj0912c 154.85 2.59 1.47E-25 1.84E-23 5mins cysM 

gene-Cj1110c 858.67 4.17 2.06E-24 2.39E-22 5mins Cj1110c 
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Appendix V –RNA-Seq results using bedtools pipeline 
(A) 

 
(B) 

 
 

Figure 1. PCoA plots of transcripts Bray-Curtis distance comparing the different categorical 

variables, 5 mins 5 mM H2O2 stress (A) or 15 mins 5 mM H2O2 stress (B). RNA-Seq analysis 

performed using bedtools pipeline.  
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(A) 

 
(B) 

 
 

Figure 2. The DESeqDataSetFromMatrix() function from DESeq2 package was used with 

the adjusted p-value significance cut-off of 0.05 and log fold change cut-off of 2. This 

function uses negative binomial GLM (generalised linear model) to obtain maximum 

likelihood estimates for the transcripts log fold change between the two conditions. Then 

Bayesian shrinkage was applied to obtain shrunken log fold changes subsequently 

employing the Wald test for obtaining significances for 5 mins 5 mM H2O2 stress (A) and 

15 mins 5 mM H2O2 stress (B). RNA-Seq analysis performed using bedtools pipeline. 
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