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ABSTRACT
The etiology of Crohn's disease's pathological processes has garnered substantial
scholarly attention. Among the prevailing hypotheses, a prominent perspective
underscores the intricate connection between the ailment and the perturbation within
the gut's microbial equilibrium. Within the spectrum of therapeutic interventions,
Exclusive Enteral Nutrition (EEN) assumes a preeminent position as a primary
modality for patients afflicted with Crohn's disease (CD). This encompasses even
those in critically compromised states, as well as children and adolescents undergoing
initial induction therapy.

Extant evidence derived from singular-center cohort investigations highlights that
EEN can yield a remarkable remission rate of up to 80% in select CD patients. The
utility of EEN transcends the mere pursuit of instigating abatement of inflammatory
processes; it serves a dual role by concurrently providing vital nutritional sustenance.
This therapeutic avenue also boasts economic viability. It presents an invaluable
option for individuals who grapple with contraindications to corticosteroids and
immunosuppressive regimens, while also remaining financially precluded from
embracing costly biologics.

In instances where these multifaceted challenges converge, EEN might emerge as the
singular efficacious recourse. Nonetheless, the precise mechanistic underpinning of
EEN's efficacy remains shrouded in ambiguity. The elucidation of its modus operandi,
specifically its capacity to ameliorate intestinal function and abate inflammatory
cascades in the context of CD patients, continues to elude comprehensive explication.

This report uses previous data: a total of 117 fecal samples from 23 CD children (in
different EEN treatment periods) and 21 healthy children were collected, and the data
set was obtained by 16s rRNA gene sequencing and shotgun gene sequencing. And by
using two relatively novel methods of analysis: network inference and zeta diversity,
to analyse the interaction of gut microorganisms and the change in diversity during
EEN treatment, to try to find the bacteria associated with the pathogenesis of CD and
to explore the role of EEN in curing the specific mechanism of Crohn's disease.

Ultimately, microorganisms like TM7x have been revealed which might exert an
influence on the development of Crohn's disease (CD) and exacerbate inflammatory
manifestations. While bacteria such as Firmicutes may secrete proteins that play a
crucial role in curing CD and improving intestinal barrier function substances, and
inhibit other harmful bacteria. EEN may reduce the diversity of gut microbiota and
increase the abundance of certain beneficial bacteria in the process of curing CD, and
regulate the dysbiosis of intestinal microbiota.
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CHAPTER 1

INTRODUCTION
1.1 Background
Within the human organism, a myriad of microorganisms coexists symbiotically with
their host, predominantly occupying regions such as the gastrointestinal tract, skin,
saliva, oral mucosa, conjunctiva, and vagina. Among these, the microorganisms
inhabiting the gastrointestinal tract—collectively referred to as gut microbiota—
amount to approximately 1 × 1014, playing a pivotal role in maintaining intestinal
equilibrium, fostering developmental processes, and fortifying the body's defenses
against invasive pathogens. Moreover, their residence within the gut engenders crucial
immunomodulatory responses and catalyses essential metabolic reactions.

The components comprising the gut microbiota encompass a rich assortment of
microorganisms, encompassing bacteria, yeasts, and viruses. Of particular significance
are the bacteria, boasting a repertoire of over a thousand distinct species. These
microbial entities can be systematically classified into six prominent phyla: Firmicutes,
Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia.
Among these, Firmicutes and Bacteroidetes emerge as preeminent, collaboratively
comprising a substantial portion, up to 90%, of the gut microbiota's composition.

Remarkably, a healthy individual's gut microbiota composition exhibits discernible
variation across distinct segments of the gastrointestinal tract and evolves over time,
reflecting changes associated with aging (including infancy and early development) as
well as being influenced by environmental factors such as dietary habits, lifestyle
choices, and antibiotic utilization. The composition of microbiota diverges
significantly among individuals, with these variations attributed to factors like age,
ethnic background, lifestyle, and dietary preferences. Diverse microbiota is further
classified into three distinct enterotypes. These variations are considered physiological
and harmonious with a state of robust microbial health. However, alterations in
microbiota composition are often associated with diseases, a condition known as
dysbiosis. Yet, the causal relationship between modified microbiota and various
diseases frequently remains enigmatic.

1.1.1 Crohn’s disease
In the realm of worldwide health concerns, the prevalence of Inflammatory Bowel
Disease (IBD) has exhibited a notable rise post-2000. Within Western nations, the
impact of IBD has extended to approximately 1 in 200 individuals in current times [1].
This ailment comprises two distinct disorders, namely Crohn’s disease (CD) and
Ulcerative Colitis (UC), each characterized by disparate pathophysiological
underpinnings, affected segments of the gastrointestinal (GI) tract, symptomatology,
complications, disease progression, and management strategies.

The exact etiology of Crohn's disease remains elusive. Current understanding points to
a multifaceted genesis involving a confluence of genetic susceptibility, immune
responses, and environmental and bacterial influences. In individuals predisposed by
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their genetic makeup, these factors converge to initiate the condition. Crohn's disease
(CD) is typified by non-continuous areas of inflammation within the gastrointestinal
(GI) tract, colloquially termed "skip lesions." This ailment entails persistent, cyclic
transmural inflammation that can precipitate chronic abdominal pain, diarrhea,
obstructions, and/or perianal lesions.

Clinical manifestations of Crohn's disease commonly encompass abdominal
discomfort, diarrhea (which may take on a bloody nature under severe inflammation),
fever, abdominal distension, and weight loss. Beyond the confines of the
gastrointestinal tract, complications may manifest, such as anemia, cutaneous eruptions,
arthritis, ocular inflammation, and fatigue.

Over the past two decades, developed nations have witnessed a consistent rise in the
occurrence of Crohn's disease (CD) among pediatric populations, a trend marked by
not only a decrease in the age of onset but also heightened disease activity [2]. While
the root cause of this phenomenon remains enigmatic, one plausible explanation
emerges from the ongoing societal shifts witnessed in the contemporary era. These
transformative changes invariably impact the microbiome, an entity of pivotal
significance in the intricate functioning of the gastrointestinal system. Unquestionably,
the microbiome assumes a pivotal role in upholding the appropriate operation of the
intestinal milieu. This role encompasses vital functions such as facilitating gut
functionality, orchestrating the production of essential vitamins, nurturing immune
system development, maintaining epithelial equilibrium, and generating crucial
metabolites—all collectively contributing to the fortification of the gut barrier.

Establishing a definitive archetype for a healthy gut microbiome proves challenging,
as its composition exhibits variance contingent on factors like age, surroundings, and
dietary choices. Nonetheless, the cardinal attributes of a thriving gut microbiome
generally encompass diversity, stability, and the faithful fulfillment of its metabolic
responsibilities.

1.1.2 EEN (Exclusive Enteral Nutrition)
A definitive cure for Crohn's disease remains elusive. However, an inadvertent
revelation during the 1970s unveiled the potential of exclusive enteral nutrition (EEN)
to elicit remission in CD patients. Since then, EEN has emerged as a groundbreaking
strategy for inducing remission while concurrently optimizing nutritional status post-
diagnosis. In 2014, the European Society of Pediatric Gastroenterology, Hepatology
and Nutrition (ESPGHAN) and the European Crohn’s and Colitis Organization
(ECCO) jointly published updated consensus guidelines. These guidelines not only
endorse EEN's role but also propose it as the primary first-line induction therapy for
pediatric patients afflicted with CD.

For the purpose of remission induction, patients underwent treatment with exclusive
enteral nutrition (EEN) administered either orally or via nasogastric tube feeding over
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a span of approximately 6–8 weeks. During this regimen, consumption was restricted
to solely chewing gum and water, as stipulated [3]. The dietary protein sources
encompassed elemental, semi-elemental, and polymeric diets. Interestingly, variations
in protein or lipid levels appeared to exert minimal influence on efficacy. Notably, its
effectiveness in inducing clinical remission in children and adolescents grappling with
active CD is tantamount to that of corticosteroids. Furthermore, it outshines
corticosteroids in its capacity to elicit mucosal healing.

Despite a substantial body of evidence supporting the efficacy of nutritional therapy in
pediatric cases, the precise mechanisms underpinning EEN's remission-inducing
properties remain inscrutable. The distinctive gut microbiota and metabolomic profiles
exhibited by CD patients in comparison to healthy individuals underline a significant
proposition—that disrupted co-metabolism within the gut microbial community could
substantively contribute to the pathogenesis of CD.

1.2 Prior research
Past investigations have primarily centered their attention on scrutinizing alterations
within the intestinal flora as well as the concomitant intestinal inflammation within
patients afflicted by Crohn's disease and subjected to exclusive enteral nutrition (EEN)
treatment. To illustrate this, a study was conducted (Dong Guo et, al, 2022) [4] that
initiated with the collection of data from 16 recently diagnosed Crohn's disease
patients, designated as the experimental group. Concomitantly, a control group
consisting of 10 healthy volunteers was assembled. Within the cohort of Crohn's
disease patients, the 16 individuals were randomly allocated to either the EEN group or
the corticosteroid group. The focal point of this study was the subsequent analysis and
comparison of the gut microbiota composition.

This study methodology encompassed a two-tier evaluation framework. Initially, it
entailed an assessment of the clinical treatment effects based on indicators such as
albumin (ALB) levels and Crohn's Disease Activity Index (CDAI) scores.
Subsequently, a comprehensive exploration into shifts within microbial composition
throughout the treatment process was undertaken. The ultimate findings served to
validate that EEN effectively sustained Crohn's disease remission while
simultaneously mitigating inflammation, resulting in improvements in nutritional
indices.

EEN, as well as corticosteroids, emerged as influential agents capable of enhancing
microbiome diversity, thereby facilitating the induction of Crohn's disease remission.
Notably, these interventions exhibited divergent effects on the proportions of
microbiome species. Seeking to illuminate EEN's precise role in reestablishing
microbial equilibrium within the gut, Joseph Runde et al. embarked on the task of
reconstructing genomes extracted from the gut metagenomes of 12 pediatric subjects.
This endeavor culminated in the classification of each microbial population into
distinct "phenotypes" or response patterns. This classification was predicated on
variations in the relative abundance of each microorganism throughout the treatment
course. The outcomes elucidated that children who achieved clinical remission
throughout treatment showcased enriched microbiota. However, these microbial
communities were either suppressed or underwent transient proliferation, attributable
to the functional influence of EEN. A pivotal hallmark of EEN's efficacy manifested as
the transient emergence of rare microbial populations akin to those observed in healthy



9

individuals. This phenomenon corresponded with a concurrent reduction in microbes
typically associated with gut homeostasis [39].

1.3 Aims and Objectives
1. Employing network inference, an in-depth analysis was executed utilizing a dataset
of 16S rRNA obtained from both Crohn's disease (CD) patients and individuals in
good health. The primary objective centered around elucidating the intricate
interactions within the gut microbiota. This pursuit aimed to offer discernment into the
functions of distinct bacterial species and their associated metabolites, thereby
shedding light on their contributions to the symptom of CD.

2. Utilize the Zeta diversity technique as a pivotal tool in the research endeavors to
explore the dynamic changes in diversity elicited by EEN treatment. By applying this
technique, delve into the intricate mechanisms underlying the action of EEN. The core
aim is to elucidate how EEN operates to induce therapeutic effects, shedding light on
the intricate processes governing its modulatory impact on the gut microbiota and
associated diversity patterns.
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CHAPTER 2

METHODOLOGY

Microbiomes stand as intricate microbial communities, characterized by intricate
structures and functions heavily shaped by interactions among microorganisms and
between microorganisms and the host. These interactions manifest through diverse
mechanisms, encompassing direct cell-to-cell communication and interspecies
signalling, as well as indirect sensing of metabolites. Collectively, these mechanisms
have emerged as pivotal players in modulating disease progression and clinical
outcomes [13]. An exemplar of intricate microbial interactions contributing to disease
exacerbation is polymicrobial synergism, a phenomenon where infections involving
multiple interplaying species of bacteria yield more severe outcomes compared to
single-agent infections. Notably, polymicrobial synergism has been linked to
heightened levels of antibiotic resistance, biofilm formation, tissue damage, and
adaptive responses to the environment [14, 15].

Consequently, comprehending the microbiome in its entirety necessitates a holistic
perspective that encompasses not only the intricate interplay among various microbial
taxa but also the intricate interactions these microorganisms have with their host
organisms. This comprehensive comprehension stands as a pivotal prerequisite for
unravelling the multifaceted roles that microbiomes undertake in terms of host health,
developmental processes, dysbiosis, and the intricacies of polymicrobial infections.
Despite the profound impact of NGS technologies in vastly expanding the scope and
scale of microbiome studies, it remains surprising that the analytical methodologies
tailored to scrutinize microbe–microbe and host–microbe interactions remain
surprisingly constrained [12].

2.1 Data description
The presented report draws its foundation from a prior research endeavor [5]. Fecal
samples were meticulously gathered from a cohort comprising 23 children (males: n
=13; aged between 6.9–14.7 years) diagnosed with active Crohn's disease (CD),
classified according to the Montreal classification. The disease locations encompassed
L2 (n =3), L2+L4 (n =4), L3 (n =3), and L3+L4 (n =13), while the disease behaviors
were categorized as B1 (n =20), B2 (n =2), and B3 (n =1) [5]. Among these subjects,
15 (including 11 newly diagnosed cases) contributed at least two consecutive fecal
samples during the span of 8 weeks of exclusive enteral nutrition (EEN), as detailed
previously [5]. Each patient contributed a maximum of five serial samples, comprising
the initial sample (A) collected before or within six days of EEN initiation (89%
collected within four days), two samples during EEN (B: ~16 days and C: ~32 days),
one near the culmination of treatment (D: ~54 days), and a final sample (E: ~63 days
post EEN) collected after the return to habitual diet. The distribution of participants
contributing 1, 2, 3, 4, and 5 samples was 5, 3, 3, 2, and 10, respectively [5]. For
comparative purposes, 21 healthy children (males: n =12; aged between 4.6–16.9 years)
devoid of any documented familial history of inflammatory bowel disease were
included in the study, with two fecal samples collected at intervals of at least two
months apart serving as the control group [5].
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2.2 Genome primary analysis
16S rRNA gene sequencing (16Ss) and shotgun metagenomic sequencing (SMs) are
the two main NGS tools implemented for microbial community profiling [10].

2.2.1 16S rRNA gene sequencing
The 16S rRNA gene has stood as a cornerstone in the realm of sequence-based
bacterial analysis for an extended period. Following the emergence of high-throughput
sequencing methodologies, PCR-amplified 16S sequences have commonly been
clustered based on their similarity to generate operational taxonomic units (OTUs).
These OTUs, in turn, have been juxtaposed with reference databases to deduce
plausible taxonomic classifications. While this approach has demonstrated
convenience and potency, it has also given rise to certain underlying assumptions. One
illustrative example is the historical assumption that sequences displaying > 95%
identity pertain to the same genus, whereas sequences demonstrating > 97% identity
correspond to the same species [7].

In this present study, the procedural steps for conducting 16S rRNA gene sequencing,
based on previously established research, are outlined as follows:

The initial phase encompassed the isolation of bacterial DNA through the chaotropic
method [8]. Subsequently, 16S rRNA sequencing was executed targeting the V4
region utilizing the MiSeq platform (Illumina). This entailed employing 2 × 250 base
pair paired-end reads. To facilitate this process, the V4 region was amplified, and the
reverse strand was barcoded with fusion Golay adaptors. The forward 16S rRNA
primer sequence employed was 515f (GTGNCAGCMGCCGCGGTAA). Furthermore,
the reverse primers, barcodes, and adaptors mirrored those that had been previously
described [9].

Following amplification, the amplicons were subjected to purification utilizing
AMPure XP DNA purification beads (Beckman Coulter, Danvers, MA, USA),
adhering to the manufacturer's stipulated guidelines. The resultant purified amplicons
were eluted using 25 μl of Elution Buffer (Qiagen, 19086, UK). Subsequent to this, the
quantification of amplicons was conducted through employment of the KAPA SYBR®
FAST qPCR Kit (Kapa biosystems, KK4824, UK). In order to avert potential base-
calling issues arising from limited base diversity, the amplicons were then diluted to a
concentration of 40 pM, accompanied by the addition of 40 pM of genomic DNA as a
spike-in measure.

2.2.2 Shotgun metagenome sequencing
High-throughput sequencing methodologies offer a transformative avenue for genomic
analyses, enabling comprehensive investigations of all microorganisms within a given
sample, thereby surpassing the limitations posed by cultivability. Among these
methodologies, shotgun metagenomics stands out—an untargeted approach that
involves sequencing all microbial genomes present within a sample. This encapsulates
the comprehensive range of microbial genomes, collectively referred to as
'metagenomics', comprising the given sample. Shotgun metagenomics serves a dual-
fold purpose: it not only enables the characterization of the taxonomic composition and
functional capabilities of microbial communities but also enables the recovery of entire
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genome sequences. It is noteworthy that methods like high-throughput 16S rRNA gene
sequencing, which spotlight specific organisms or individual marker genes, are at
times colloquially referred to as metagenomics [11].
In this presented study, the procedural steps for conducting the 16S rRNA gene
sequencing method, as informed by previous research, unfold as follows:

To capture the genetic functional capacity, shotgun metagenomics samples were
meticulously crafted employing the Nextera XT Prep Kit (Illumina, FC-131-1096, UK),
in conjunction with the Illumina dual-barcoding Nextera XT Index kit (Illumina, FC-
131-1002, UK). Subsequent to their preparation, the sequencing libraries were
combined in equimolar concentrations and subjected to quantification utilizing the
KAPA SYBR® FAST qPCR Kit (Kapa biosystems, KK4824, UK). Following
quantification, these libraries were loaded onto both lanes of a rapid run flow cell at
concentrations of 10 pM. The HiSeq 2500 (Illumina) instrument was instrumental in
generating clusters on-board, with the subsequent sequencing process employing
TruSeq Rapid SBS Kit reagents (Illumina, FC-402-4001, FC-402-4002). The
sequencing procedure adhered to a paired-end 150-cycle protocol.

2.3 statistical analysis method
In this report, the analysis employs network and zeta diversity methodologies,
implemented through the R programming language. The overarching objective is to
scrutinize and juxtapose the gut microbiota communities between individuals afflicted
with Crohn's disease and a healthy control group. Furthermore, the study aims to
delve into the transformations of the intestinal microbiota occurring throughout the
course of exclusive enteral nutrition (EEN) treatment. This endeavor encompasses an
exploration of the potential significance held by specific pivotal flora in the genesis of
Crohn's disease, as well as an investigation into the therapeutic mechanisms
underpinning the healing effects of EEN.

2.3.1 R Language and R Studio
R serves as both a language and an environment tailored for statistical computing and
graphics. It boasts a wide-ranging assortment of statistical tools, encompassing linear
and nonlinear modelling, traditional statistical tests, time-series analysis, classification,
clustering, and more. The robustness of R lies in its extensibility, enabling users to
augment its functionalities according to their requirements.

R encompasses an integrated suite of software features designed for tasks such as data
manipulation, calculations, and graphical visualization. Notably, it furnishes an
effective mechanism for handling and storing data, an array of operators optimized for
array-based calculations (especially matrices), a comprehensive set of intermediate
tools for data analysis, and graphical utilities for presenting data either on-screen or in
hardcopy form. Furthermore, R boasts a well-developed programming language
characterized by its simplicity and efficacy. This programming language encompasses
features like conditionals, loops, user-defined recursive functions, and mechanisms for
input and output.

In parallel, RStudio emerges as an integrated development environment (IDE) catering
to both R and Python programming. It amalgamates a console, a syntax-highlighting
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editor that supports direct execution of code, and an array of tools that encompass
plotting, history tracking, debugging, and workspace management.

2.3.2 Network inference
Utilizing network theory, it becomes possible to model and dissect the intricacies of a
microbiome along with its intricate interactions, all within a single network framework.
An intriguing facet of network theory is its ability to unveil universal architectural
traits present in a myriad of complex systems. These characteristics span across
various domains, encompassing microbiomes, molecular interaction networks,
computer networks, microcircuits, and social networks, among others. This pervasive
universality provides an avenue for harnessing the insights gained from extensively
studied non-biological systems. These insights can be applied to untangle the
interlinked associations that define microbial interactions within the context of a
microbiome.

Various techniques, exhibiting diverse levels of efficiency and precision, have been
employed to construct networks rooted in microbiome data. Among these methods,
some are based on (dis)similarity or distance measurements, while others lean towards
correlation-based approaches. Notably, the latter category involves the identification of
significant pairwise relationships between operational taxonomic units (OTUs), which
group organisms based on specific levels of DNA sequence similarity at a designated
marker gene. This identification typically relies on correlation coefficients like
Pearson's or Spearman's, serving as indicators. Nonetheless, the application of
correlation coefficients for detecting interdependencies within a microbiome encounter
limitation. These constraints include susceptibility to detecting spurious correlations
due to compositional considerations [16] and encountering statistical power constraints
due to the relatively limited sample size. The apprehensions associated with correlation
-centered analyses have instigated the development of methodologies that exhibit
resilience in the context of compositional data. One such innovation is SparCC (Sparse
Correlations for Compositional data), which utilizes linear Pearson correlations
between logarithmically transformed components to unveil associations within
compositional datasets. Additionally, the SPIEC-EASI approach (SParse InversE
Covariance Estimation for Ecological Association Inference) is a statistical technique
employed to infer microbial ecological networks. It amalgamates specialized data
transformations designed for the analysis of compositional data with a graphical model
inference framework. This framework is founded upon the assumption that the
inherent ecological association network is characterized by sparsity [17].
In this report, we used �-statistic and proportionality to characterize the correlation of
relative data based on previous research [18]. Sometimes, for data carrying only
relative information, common analysis methods, including correlation, can be very
misleading while CoDA(Compositional Data Analysis) could be an efficient
alternative. That is, while statistically independent variables X, Y, and Z are not
correlated, their ratios X/Z and Y/Z must be, because of their common divisor.

The CoDA theory introduces three fundamental principles:
1. Scale invariance: Analyses are required to consider vectors featuring proportionally
positive constituents as indicative of the same composition.
2. Sub-compositional coherence: Inferences drawn concerning sub-compositions
(subsets of constituents) should demonstrate consistency, irrespective of whether these
inferences are derived from the sub-composition or the entirety of the composition.



14

3. Permutation invariance: Analytical conclusions must remain independent of the
arrangement sequence of the individual components.

Proportionality obeys all three principles for analysing relative data. If relative
abundances � and � are proportional across experimental conditions �, their absolute
abundances must be in proportion:

��
��
∝ ��

��
=> �� ∝ �� (1)

where �� is the total abundance in condition �.

A “goodness-of-fit to proportionality” statistic � was proposed by researchers to assess
the extent to which a pair of random variables (x, y) are proportional (David Lovell et
al.) [17]. � is related to log-ratio variance, var(log(x/y)) as following equation 2, and is
zero when x and y behave perfectly proportionally. However, when x and y are not
proportional, � has both a clear geometric interpretation and a meaningful scale,
addressing concerns raised about log-ratio variance: the closer � is to zero, the
stronger the proportionality. Considering “Strength” of proportionality (goodness-of-fit)
rather than testing the hypothesis of proportionality because it allows us to compare
relationships between different pairs of mRNAs.

��� log �
�

= ��� ���� − ���� (2)
= ��� ���� + ��� ���� − 2��� ����, ����

= ��� ���� ⋅ 1 +
��� ����

��� ����
− 2

��� ����

��� ����
��� ����, ����

��� ���� ��� ����

= ��� ���� ⋅ 1 + �2 − 2� �
≜ ��� ���� ⋅ � ����, ����

In practice, one can use the relationship � ����, ���� = ��� log �
�

/��� ����

Within a microbiome network, distinct entities often emerge, including clusters
(referred to as modules) of closely interconnected microorganisms, alongside
individual microbes that hold pivotal positions within the network's framework
(referred to as keystone taxa). These clusters not only embody localized interaction
patterns but also wield influence over the network's overall structure and
interconnections. They can carry significance from biological, taxonomic, evolutionary,
or functional perspectives. To identify these clusters, topological clustering methods
are widely employed, serving as the preferred approach for detecting and delineating
clusters within networks.

2.3.3 Zeta diversity
Spatial variability in species presence or absence within ecological communities,
which forms the basis of biodiversity analysis, plays a critical role in ecological
research. However, one notable challenge in comprehending the relationships among
diverse biodiversity theories lies in the divergence of mathematical terminologies and
the absence of a unified system of equations. Presently, there exists no singular metric
that effectively links the array of patterns generated from species presence-absence, or
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"incidence," data. This deficiency hampers the formulation of mathematical
connections between these patterns.

The absence of a universal measure obstructs a comprehensive understanding of the
interrelations between these patterns and hinders their quantitative formulation.
Establishing a common metric would yield substantial benefits for modelling purposes
and enhancing the comprehension of the underlying mechanisms driving spatial
diversity patterns. The amalgamation of diverse biodiversity models into a coherent
framework represents a pivotal objective within the field of ecology.

The exploration of why and how biodiversity varies across different sites and habitats,
along with the implications of this variation, often involves an examination of species
richness and composition. Metrics to quantify spatial differences in compositional
similarity among communities commonly rely on β diversity. These metrics are
derived by partitioning overall γ diversity into α and β components, utilizing either
multiplicative (β=γ/α) or additive (γ=α+β) partitioning approaches [21]. A variety of
community patterns, including species-area relationships, interspecific range size
distributions, as well as patterns of rarity and endemism, are also frequently employed
for analysis purposes [21].

In cases involving comparisons among three or more ecological assemblages, the
approach often employed is the calculation of pairwise similarities and subsequent
determination of their average. Regrettably, none of the metrics designed for assessing
the turnover of species across sites based on presence-absence (incidence) data has the
capacity to comprehensively calculate all components of diversity. This limitation
implies that the diversity components for three or more distinct assemblages cannot be
accurately represented solely using α and β diversity.

For instance, when dealing with three assemblages, the species exclusively shared
between pairs of these assemblages within the comparison cannot be accurately
computed using only α and β diversity. Likewise, the species that are shared by all
three of the assemblages also cannot be accurately assessed using this approach.
Consequently, the use of pairwise metrics proves inadequate for effectively
representing the degree of similarity between multiple assemblages across various sites.

The notion of Zeta (�) diversity, serving as a comprehensive metric encompassing all
facets of diversity stemming from assemblage partitioning, was introduced by
researchers Hui and McGeoch in 2014 [21]. In this framework, let �� denote the
average number of species shared by � sites (as depicted in Figure 1). Notably, ��
(where � = 1) corresponds to the mean number of species across all sites. Given that
species shared by � sites necessarily include those shared by � − 1 sites, the count of
shared species �� diminishes in a monotonic manner as � increases [21]. All pairwise β
diversity metrics reliant on incidences can be represented utilizing �1 and �2. However,
for scenarios involving three or more sites, the diversity components (e.g., A–G in the
inset of Figure 1, where a component or partition represents the subset of species
shared by a specific set of sites, following the concept outlined by Lande in 1996)
cannot be solely estimated using pairwise components such as �1 and �2 [21]. The
inclusion of higher-order � components become necessary to accomplish this task.
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Figure 1: Recursive diagram of diversity partitioning across multiple
assemblages (sites or samples) [21].

Figure 2: An illustration of the first three orders of � diversity [20].

The methodology for partitioning diversity can be visually depicted through a
cumulative and recursive approach, as illustrated in Figure 1. Let �� denote the total
count of species present across n surveyed sites, and let ��,� represent the count of
species found in exactly � out of the total � sites [21]. By applying the inclusion-
exclusion principle, the subsequent general formulas can be systematically derived
through the utilization of � components:

�� = �=1
� ( − 1)�+1 ∙ ��� ∙ ��� , (3)

��,� = ��� ∙ �=1
�−�+1 ( − 1)�+1 ∙ ��−��−1 ∙ ��+�−1� (4)

Where ��� is the number of combinations of choosing � from � sites and � is the
standard index of summation.
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CHAPTER 3

RESULTS

3.1 Network inference
Complex biological systems are intricately composed of networks, and unraveling the
functional significance of individual components within these networks is pivotal for
comprehending both healthy and diseased states. A network, often represented as N =
(n, e), is characterized by its nodes (also termed vertices) and edges. Nodes represent
distinct elements within the network that are interlinked by edges. Among these nodes,
influential ones form the core of the entire network, and their identification is
facilitated by evaluating network centralities. These centralities, which quantify the
importance of nodes within a network, are derived from a comprehensive analysis of
the network's overall structure. Notably, the fundamental properties of networks and
measures of centrality possess a universal nature, extending across diverse domains,
including the realm of biological networks.

Degree centrality, ClusterRank, neighborhood connectivity, local H index,
betweenness centrality, and collective influence stand out as key determinants for
pinpointing a network's most significant nodes, as illustrated in Table 1. To surmount
the challenges associated with prior centrality measurement approaches developed for
diverse networks, which included issues like adverse impacts stemming from centrality
measurements between nodes and nonlinear centrality's positional discrepancies, a
novel technique termed the "Integrated Value of Influence" (IVI) was introduced
(Abbas Salavaty et al., 2020) [22]. IVI represents a pioneering approach that genuinely
amalgamates the influence garnered from these six critical network centrality
indicators. This method addresses the complexities posed by integrating these distinct
dimensions of influence within networks.

Table 1: Six centrality measures with their
Characteristics [22]
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The analysis of the interdependence between ClusterRank and neighborhood
connectivity, executed through four statistical methods (CANOVA, Hoeffding, MIC,
and NNS), unveiled a substantial degree of interrelation between these two metrics
across numerous networks (Abbas Salavaty et al., 2020) [22]. Furthermore, a
significant negative correlation was observed between betweenness centrality and
collective influence in a considerable subset of networks, in comparison to
ClusterRank. Hence, leveraging the mathematical principles outlined earlier,
researchers proposed utilizing the additive product of ClusterRank and neighborhood
connectivity as a means of mitigating the potential bias arising from the additive
product of betweenness centrality and collective influence.

Considering the distinct scales of various centrality measures, their integration sans
normalization could introduce bias toward the index with the broader range. To
address this, the researchers applied the Min-Max feature scaling technique to
normalize all centrality measures to a uniform range while preserving their relative
weight proportions. Building upon the foundations of these four measurements and the
topological dimensions they encapsulate, the researchers named their ultimate
amalgamation the "Spreading score." This composite metric is indicative of the
vertices' potential for information propagation within a network.

��������������� = (���' + ���')(���' + ���') (5)

Where ���' , ���' , ���' , ���' are range normalized neighborhood connectivity,
ClusterRank, betweenness centrality, and collective influence of node �, respectively.

Among six selected centrality measures, the association between local H index and
degree centrality was demonstrated by dependence analyses. According to the
significance analysis of the dependence of local H index and degree centrality using
CANOVA and Hoeffding’s independence tests, these two centrality indices were
significantly dependent on each other in the majority of the networks studied. Likewise,
the analysis of dependence level using Hoeffding, MIC, and NNS indicated that local
H index and degree centrality were dependent on each other with a noticeably high
dependence value across the majority of networks. Altogether, using the same
mathematical rules and normalization methods explained above, the Addition function
was used to combine the effect of local H index and degree centrality [22]. Moreover,
considering the same rationale used for the denomination of Spreading score, the
additive product of local H index and degree centrality was named as the Hubness
score, which could be reflective of the sovereignty of a vertex in it surrounding local
territory [22].

������������� = ���' + ��������
' (6)

where are ���' , ��������
' range normalized degree centrality and local H index of node �,

respectively.

Each of the previously described scores, including the Spreading and Hubness scores,
embodies a distinct and significant characteristic of each node within the network. The
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Hubness score captures a vertex's dominance within its immediate vicinity, whereas
the Spreading score is an indicator of its potential to disseminate information. Notably,
when the multiplicative product of the Spreading and Hubness scores is higher, it
signifies a greater influence exerted by the vertex across the entire network.

To combine the Spreading and Hubness scores and assess their combined impact, the
Multiplication function was employed to generate the Integrated Value of Influence
(IVI). In essence, the IVI represents the synergistic outcome of essential local
centrality measures (degree centrality and ClusterRank), semi-local measures
(neighborhood connectivity and local H index), as well as global measures
(betweenness centrality and collective influence). Importantly, the IVI calculation
method concurrently eliminates positional biases, thus providing a comprehensive
perspective on a vertex's influence within the network.

���� = (���������������) ⋅ (�������������) (7)

In this report, based on R language programming, computing various centrality
measure values among nodes (microbial strains) are implemented, so that the
interaction between gut microorganisms can be further studied. The following is the
roughly calculation process based on R language programming against the OTU tables
sequenced in previous research by 16s rRNA sequencing and shotgun sequencing
methods:

Firstly, perform data cleaning, such as removing single samples, removing
contaminants, adjusting sample size to match metadata, and adjusting data according to
research hypotheses. Next, the microbiome data are aggregated by the specified
taxonomic level (e.g., phylum, class, order, family, genus, or species). To analyse the
correlation between microorganisms, a method based on symmetric regression and phi
statistics was used. Finally, after identifying and visualizing the nodes of microbes
with colours at Phyla level and attached name list at Genus level, the results are shown
in the figures below:

Figure 3: network visualization of three main factors for the gut microbiota of Crohn’s
disease patients within 6 days EEN treatment (Group A)
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Figure 4: network visualization of three main factors for the gut microbiota of Crohn’s
disease patients within 16 days EEN treatment (Group B)

Figure 5: network visualization of three main factors for the gut microbiota of Crohn’s
disease patients within 32 days EEN treatment (Group C)

Figure 6: network visualization of three main factors for the gut microbiota of Crohn’s
disease patients within 54 days EEN treatment (Group D)
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Figure 7: network visualization of three main factors for the gut microbiota of Crohn’s
disease patients within 63 days EEN treatment (Group E)

Figure 8: network visualization of three main factors for the gut microbiota of Health
Control Group which with no known family history of inflammatory bowel disease

From Figure 1 (Crohn’s disease patients within 6 days EEN treatment), we could find
two highly influential nodes with the bigger shape than any rest of the nodes in the
network, indicating that they have the extremely high IVI score (over 90 marks of 100)
than any other nodes, which are as following:
Group A: 1. Genus TM7x (Phylum Patescibacteria; Class Saccharimonadia; Order
Saccharimonadales; Family Saccharimonadaceae).

2. Genus Pseudopropionibacterium (Phylum Actinobacteriota; Class
Actinobacteria; Order Propionibacteriales; Family Propionibacteriaceae). And for the
whole the groups as well as health control group we could reveal nodes with high IVI
scores, which are contained in the following table:
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Table 2: Influential nodes (microbes) with high IVI score in each group

The dynamic shifts in the predominant microbial composition of the gut in Crohn's
disease (CD) patients were distinctly evident as the duration of enteral nutrition (EEN)
treatment increased. The table above illustrates these changes at the genus level.
Within the initial 6 days of EEN treatment, the central gut microbiota of CD patients
comprised TM7x and Pseudopropionibacterium. Subsequently, after 16 days of
treatment, the dominant gut microbiota encompassed Catabacter, Ezakiella,
Acetobacter, and Erysipelotrichaceae_UCG-006. Remarkably, Catabacter, Ezakiella,
and Erysipelotrichaceae_UCG-006 are constituents of the Firmicutes Phylum.

By day 32 of EEN treatment, the core gut microbiota transitioned to Moraxella,
belonging to the Proteobacteria Phylum and the Gammaproteobacteria Class. Notably,
this transformation echoed the dominant gut microbiome, Arenimonas, observed after
54 days of treatment. Ultimately, after 63 days of EEN treatment, the central
microbiome in the CD patients' intestines shifted to Microbacterium. This genus shares
the same Actinobacteriota Phylum and Actinobacteria Class with the predominant
microbiota found in the intestines of healthy control individuals. These observations
highlight the dynamic nature of the gut microbiome during the course of EEN
treatment and underscore the significance of these microbial shifts in CD patient
recovery.

3.2 Zeta diversity
Curves related to Zeta diversity was drawn based on R language programming for each
group including the healthy control group, as shown in the following figures:
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Figure 9: Zeta diversity decline curves and regression for Group A (within 6 days
EEN treatment)

Figure 10: Zeta diversity decline curves and regression for Group B (within 16 days
EEN treatment)
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Figure 11: Zeta diversity decline curves and regression for Group C (within 32 days
EEN treatment)

Figure 12: Zeta diversity decline curves and regression for Group D (within 54 days
EEN treatment)

Figure 13: Zeta diversity decline curves and regression for Group E (within 63 days
EEN treatment)
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Figure 14: Zeta diversity decline curves and regression for Health Control Group
which with no known family history of inflammatory bowel disease
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CHAPTER 4

DISSCUSSION

4.1 Bacteria correlated with Crohn’s Disease
Serving as the primary gateway to the human body, the oral cavity boasts a highly
intricate environment that houses diverse microbial communities encompassing
bacteria, fungi, viruses, protozoa, and archaea collectively known as the oral
microbiota [25]. These commensal inhabitants of the oral microbiota play a vital role
in safeguarding oral health by impeding the colonization of opportunistic pathogens
and regulating inflammatory reactions. Nonetheless, any disruption to the equilibrium
of this microenvironment can lead to the translocation of certain microorganisms.
These microorganisms might find their way to the gastrointestinal tract through
mechanisms such as bloodstream circulation or enteral migration. This translocation
phenomenon can subsequently contribute to the onset or exacerbation of inflammatory
bowel disease (IBD), and in more critical cases, it may even pose a threat to overall
health [25].

Despite the distinct environmental conditions that set apart the oral and gut
environments, which encompass factors like gastric acidity and antimicrobial bile acids
in the duodenum, the findings from the report indicate a noteworthy phenomenon [25].
Specifically, more than half of the microbial species, such as Streptococcus,
Actinomyces, and Veillonella Haemophilus, which are commonly identified in both
the oral and gut sites, suggest the potential transfer of oral microbes to the intestine,
even among individuals in a healthy state [25,26]. This intriguing observation suggests
the possibility of oral-gut translocation and ectopic colonization of oral microbes
within a healthy human, potentially contributing to the establishment and upkeep of
intestinal immunity [25]. However, it's important to note that under specific
circumstances, the ectopic colonization of certain oral microorganisms within the
intestine could play a role in the development of gastrointestinal disorders, including
inflammatory bowel disease (IBD) [27]. Conversely, individuals with IBD also exhibit
oral manifestations that can influence the composition of the oral microbiota.

At the Genus level, TM7x and Pseudopropionibacterium were identified in Group A as
core microbiomes within the intestines of Crohn's disease (CD) patients undergoing
exclusive enteral nutrition (EEN) treatment within a span of 6 days. While TM7x
constitutes a minor component of the oral microbiota, it has been observed in human
subgingival plaque [25]. Previous studies have underscored the significant role played
by the TM7 division in the initial phases of inflammatory mucosal diseases [25].
Comparative analyses of mucosal microbes in inflamed sites of patients with active
CD and ulcerative colitis (UC), in comparison to non-inflammatory bowel disease (non
-IBD) controls, have revealed that CD patients exhibit a greater diversity of TM7
phylotypes compared to both UC patients and non-IBD controls. Interestingly, the
diversity of TM7 in UC patients was approximately on par with that of controls.

It is essential to emphasize that TM7 does not directly trigger inflammation [25].
However, its presence may influence the structure and function of the oral microbial
community by impacting the physiology of the bacterial host [25]. This influence
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could manifest in the inhibition of host growth or even direct elimination, leading to
alterations in its relative abundance and, consequently, contributing to the onset of
certain oral diseases [28].

Within Group A, the collection of fecal samples pertains to patients who either
received fewer than six days of exclusive enteral nutrition (EEN) treatment or did not
undergo any treatment at all. The nodes displaying remarkably high Integrated Value
of Influence (IVI) scores identified within the Group A network are strongly
implicated in the development of inflammatory symptoms in individuals afflicted with
Crohn's disease. This correlation indirectly underscores the potential association of
TM7 with Crohn's disease.

On the whole, the available evidence, as gleaned from various studies, strongly
suggests a plausible link between TM7 and inflammatory bowel disease (IBD).
Nevertheless, the precise mechanisms underlying the role of TM7 as a bacterial trigger
in IBD, particularly Crohn's disease, necessitate further comprehensive investigation. It
is important to note that while the pathophysiological interactions between TM7 and
IBD may differ between ulcerative colitis (UC) and Crohn's disease, the intricate
mechanisms driving this association warrant further elucidation.

As the course of treatment progressed, a noticeable shift in the dominant microbial
composition of the gut towards Firmicutes was observed, particularly highlighted by
the top two microorganisms with the highest Integrated Value of Influence (IVI) scores
within the Group B network. This observation aligns with earlier research [32-35],
where dietary interventions were separately administered to individuals with Crohn's
disease (CD), resulting in elevated Firmicutes concentrations that closely approached
levels seen in healthy control subjects.

Firmicutes, being one of the fundamental bacterial phyla present in the human body,
holds significant importance. It is recognized as a probiotic that wields a direct
influence on the equilibrium of the human gut. The concentration of Firmicutes
directly impacts the gut's homeostasis. Its probiotic nature enables it to enhance the
intestinal mucosal barrier and bolster immune system functionality. Additionally, it
stimulates the secretion of anti-inflammatory factors, which, in turn, restricts the
proliferation of detrimental bacteria within the intestinal tract. On the flip side,
pathogens can compromise the integrity of the intestinal mucosal barrier, allowing
their passage through or causing damage to the mucosal lining. Probiotics, however,
can play a pivotal role in preventing or repairing such damage [36].

Within Group B, the progressive administration of exclusive enteral nutrition (EEN)
treatment contributed to a transformation in the intestinal microbial landscape of the
CD patients. As the dominance of Firmicutes intensified, it began to exert an inhibitory
effect on the growth of other potentially harmful microbial species. This gradual shift
in the microbial ecosystem was attributed to the growing prevalence of Firmicutes,
aiding in the enhancement of the intestinal barrier function.

Earlier investigations have explored interventions involving the administration of
Nuciferine and Protopine to individuals diagnosed with Crohn's disease (CD), as
documented in previous studies [29-31]. Remarkably, both of these interventions
exhibited the ability to ameliorate the composition of the gut microbiota as well as the
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functionality of the gut's immune system, resulting in a notable improvement in
inflammatory conditions. Notably, during the course of these interventions, specific
bacterial groups demonstrated a significant decrease in their concentration,
Actinobacteriota being one such example.

These findings underline the potential therapeutic impact of Nuciferine and Protopine
in the context of CD management. The observed improvements in gut microbiota
composition and enhanced immune function align with previous research,
underscoring the importance of exploring alternative treatments to mitigate the
inflammatory aspects of Crohn's disease. Furthermore, the decrease in the abundance
of Actinobacteriota is indicative of the intricate interactions between specific bacterial
groups and their role in modulating inflammatory responses within the gut.

4.2 Variations of Zeta diversity between CD children and Health Controls
In the analysis conducted in Section 3.2, the Zeta diversity correlation curve offers
insights into the dynamics of microbial populations across different groups. Notably,
the Zeta diversity curve for each group exhibits a consistent monotonic decrease as the
number of samples or the zeta order increases. This pattern illustrates that as the
sample size or zeta order expands within each group, the count of shared microbial
populations among fecal samples diminishes. However, it becomes evident that after a
specific zeta order is attained within each group, the decline in the number of shared
species levels off.

Upon examining the curves derived from the initial five CD patients subjected to
varying durations of EEN treatment, a distinct observation emerges. The Zeta decline
curve for these patients appears to stabilize around a zeta order of 15, displaying a
power-law decay pattern. Throughout this range, the count of shared species generally
remains below 50. Moreover, the trend indicates that as the zeta order surpasses 15, the
rate of species retention based on Zeta diversity decline tends to balance. This suggests
that common species tend to persist across a larger number of samples compared to
rare species.

Contrasting results are observed in the Zeta diversity curve of the healthy control
group. Notably, this curve also follows a power-law decline, yet the slope is more
gradual compared to that of the CD patient group. Intriguingly, for the healthy control
group, the curve exhibits a tendency to flatten after reaching a zeta order of 40, with
the number of shared species ranging between 50 and 100. This count is nearly twice
that observed for the CD patient group's Zeta diversity decline curve.

Furthermore, it is pertinent to highlight that during the course of EEN treatment, a
decreasing trend in the number of shared species becomes evident when the Zeta
diversity decline curves flatten across different CD patient groups. This trend
underscores a decline in species diversity. Consistent with prior research, successful
outcomes of EEN are characterized by the temporary emergence of rare microbial
populations commonly found in healthy individuals. This occurrence coincides with a
decrease in microbes typically associated with gut homeostasis, ultimately resulting in
an overall reduction in microbiota diversity [39]. This aligns with the observed
reduction in species diversity depicted by the Zeta diversity curve.
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4.3 Mechanism of action of EEN
The Phylum types of all groups are represented graphically, as shown in the following
figures:

Figure 15: Microbial species composition pie chart for group A at Phylum level
(receiving EEN treatment within six days)

Figure 15: Microbial species composition pie chart at Phylum level for group B
(receiving EEN treatment within 16 days)
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Figure 16: Microbial species composition pie chart at Phylum level for group C
(receiving EEN treatment within 32 days)

Figure 17: Microbial species composition pie chart at Phylum level for group D
(receiving EEN treatment within 54 days)
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Figure 18: Microbial species composition pie chart at Phylum level for group E
(receiving EEN treatment within 63 days)

Figure 19: Microbial species composition pie chart at Phylum level for Health Control
Group

The furnished diagrams furnish valuable insights into the alterations unfolding during
the course of EEN treatment. Remarkably, a discernible pattern emerges, signifying a
rise in the relative abundance of bacteria affiliated with the Firmicutes phylum over the
duration of EEN treatment. This discernment concurs with precedent investigations
(Jingjing Jiang et al., 2022) [35], which demonstrated a favorable association between
the prevalence of this bacterial phylum and the concentrations of short-chain fatty
acids (SCFA).

Short-chain fatty acids, commonly abbreviated as SCFAs, represent metabolites
originating from the microbial fermentation of non-digestible carbohydrates within the
gut ecosystem (Muhammad Akhtar et, al, 2021) [37]. These SCFAs hold significant
promise as potential therapeutic bioactive molecules for addressing gut inflammatory
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diseases. Acting as the outcome of dietary fiber fermentation by gut microbiota,
SCFAs possess the capacity to remodel intestinal ecology. Moreover, they play a role
in eliciting immunomodulation and exerting antibiotic effects. This suggests their
potential to mediate host immune regulation and effectively modulate inflammatory
responses during instances of intestinal inflammation.

Short chain fatty acids (SCFAs) are characterized by their saturated nature and their
carbon atom content, ranging from 1 to 6 carbon atoms. The specific SCFAs within
this group include formate (C1), acetate (C2), propionate (C3), butyrate (C4), valerate
(C5), and hexanoate (C6). These SCFAs are synthesized by the gut microbiota through
the fermentation of non-digestible carbohydrates, resulting in major end products,
primarily acetate, butyrate, and propionate.

It is well-established that SCFA production is reliant on the gut microbiota, and these
bioactive compounds play a pivotal role in maintaining host gut homeostasis. The
immune system's proper functioning is intricately connected to the gut microbiota and
its associated SCFAs. For instance, butyrate has been shown to regulate the production,
trafficking, and effective function of both innate and adaptive immune cells in
inflammatory bowel disease (IBD), implying its involvement in mitigating intestinal
inflammation [38].

Conversely, gut dysbiosis, which represents a disruption in the structure and function
of the gut microbiota, exacerbates the development of IBD and disrupts the production
and normal function of SCFAs. The therapeutic mechanism of exclusive enteral
nutrition (EEN) likely involves enhancing intestinal barrier function and reducing
inflammation by exerting regulatory effects on the gut flora and influencing the
expression levels of SCFAs.

4.4 Further work suggestions
The current research presented in this report has identified specific core
microorganisms that could potentially be associated with the dysbiosis induced by
Crohn's disease (CD). However, whether these bacteria hold the key to effectively
treating the gut dysbiosis and inflammation caused by CD requires further
investigation and in-depth research. Additionally, there is a gap in our understanding
of the underlying pathogenic mechanisms of these bacteria in biological contexts,
which warrants further exploration.

Similarly, the beneficial bacteria highlighted in the network analysis, which could
potentially contribute to enhancing the intestinal environment in patients, need to
undergo thorough experimental validation to determine their efficacy in practical
treatment scenarios. For instance, the study demonstrated an increase in the abundance
of Firmicutes during exclusive enteral nutrition (EEN) treatment, which correlated
with the presence of short-chain fatty acids (SCFAs), known to regulate gut flora and
alleviate intestinal inflammation. Investigating effective strategies to stimulate the
secretion of these substances in patients’ guts is an avenue for further exploration.

In relation to the Zeta diversity analysis, it was observed that EEN appeared to
diminish the diversity of the gut microbial population while simultaneously improving
symptoms in CD patients. The proposed mechanism behind EEN's effects is based on
the hypothesis that EEN may increase the abundance of beneficial intestinal flora
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while reducing overall microbial diversity, thereby counteracting the dysbiosis
associated with CD and promoting improved intestinal health. In practice, it is
important to closely monitor bacterial community diversity and the shifts in abundance
of each bacterial group before and after EEN, while taking other influencing factors
into account. Furthermore, conducting a thorough analysis of the interplays within
these microbial communities is imperative for attaining a more profound
comprehension of the observed effects.
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CHAPTER 5

CONCLUSION
This report initiates the exploration of interconnections among microorganisms within
groups A, B, C, D, E, and the healthy control (HC) group by constructing and
analysing a network. The Integrated Value of Influence (IVI) is calculated for each
node in the network, ultimately leading to a visual representation of the network.
Through the comparative examination of these depicted networks, a number of
bacterial species have been discerned, potentially linked to the disruption of the
intestinal microbiota balance and the inflammatory processes associated with Crohn's
disease (CD). For instance, at the Genus level, TM7x emerges as a potentially
significant player in the early stages of inflammatory intestinal mucosal diseases.
Similarly, at the Phylum level, the prevalence of Firmicutes as a dominant gut
microbiota for a certain duration emerges as noteworthy, given its positive correlation
with short-chain fatty acids that hold potential in enhancing and regulating gut barrier
function.

Furthermore, insights gained from the Zeta diversity curve and regression analyses
indicate a general decline in the microbiota diversity within the intestines of CD
patients undergoing exclusive enteral nutrition (EEN) treatment. Significantly, it's
worth noting that the Zeta diversity within the CD patient cohort appears to be lower
compared to that of the healthy control (HC) group. This intriguing observation
suggests that EEN treatment could potentially modulate the symptoms of CD by
concomitantly diminishing the overall diversity of the gut microbiota while promoting
the proliferation of select bacterial populations. These bacteria could produce
beneficial metabolites, enhancing overall human health, while suppressing the growth
of potentially harmful bacteria that hinder intestinal function recovery. This dual
approach of boosting beneficial bacteria while inhibiting the proliferation of
detrimental ones might be central to the efficacy of EEN in ameliorating CD
symptoms.

However, to comprehend the intricate mechanisms underlying EEN's effects, a more in
-depth investigation is crucial. This involves closely monitoring shifts in bacterial
community diversity and the abundance alterations in each bacterial community before
and after EEN, while considering various influencing factors. Analysing the intricate
interplay among these microbial communities is essential to unravel the precise
mechanisms by which EEN leads to its observed outcomes in CD patients.
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