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1 Introduction

The membership of an element in a fuzzy set A is denoted by µA(x) and the fuzzy set A is
defined as:

A = {(x,µA(x)), x ∈X} (1)

where X denotes the universe. Kaufmann [1] proposes the difference between two fuzzy sets A
and B as

A −B = A ∩ B̄ (2)

The fuzzy compliment is defined per Zadeh [2] as

∀x ∈X µĀ(x) = 1 − µA(x) (3)

Intersection has three definitions:

∀x ∈X µA∩B(x) =min(µA(x), µB(x)) A ∩B[2] (4)

∀x ∈X µA∩B(x) = µA(x).µB(x) A.B (5)

∀x ∈X µA∩B(x) =max(0, µA(x) + µB(x) − 1) A ⩀B[3] (6)

The three difference operators are A ∩ B̄, A.B̄, and A ⩀ B̄, respectively. In addition, Zadeh [4]
introduced bounded difference, defined as

∀x ∈X µA∣−∣B(x) =max(0, µA(x) − µB(x)). (7)

and can be shown that µA⩀B(x) = µA∣−∣B(x).
The anticommutative difference is defined as

∀x ∈X µA∣B̄(x) = [1 + (µB̄(x)2 − µĀ(x)2)]
2

(8)

and is termed anticommutative difference because

∀x ∈X µA∣B̄(x) = 1 − µB∣Ā(x) (9)

so that A∣B̄ = B∣Ā. As both µA(x) and µB(x) range over [0,1], so likewise do µĀ(x) and
µB̄(x). Therefore, µB̄(x)2 − µĀ(x)2 ranges over [−1,+1] and to map this expression back to
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[0,1], we add one and divide by two. When A and B partition X, the following relationship is
true:

∀x ∈X µA∣B̄(x) = µA∩B̄(x) = µA(x) (10)

For boolean operators, A ∩ B̄, A.B̄, and A∣ − ∣B, recover the difference when applied to crisp
sets, however the anticummutative difference A∣B̄ fails to recover classical difference and does
not qualify as a binary operator for crisp sets. On the other hand, anticommutative difference
is an interactive operator, i.e., a change in either µA(x) or µB(x) necessarily changes µA∣B̄(x),
where as fuzzy difference based on the min definition of intersection, and bounded difference
are non-interactive. A.B̄ is interactive, but with crisp sets reduces to a Boolean operator and
interaction is masked. Zadeh’s [4] bounded difference (A∣−∣B) is the most conservative operator.
A∣ − ∣B = Ø unless ∃x ∈ X ∶ µA(x) − µB(x) > 0. Dubois and Prade [5] interpret A∣ − ∣B as a set
of elements which belong more to A than to B. The next most conservative operator is A.B̄

∀x ∈X µA∣−∣B(x) ⩽ µA.B̄(x) (11)

Also, µA.B̄(x) = µA∣−∣B(x) only when µA(x) or µB(x) = 0 or 1. In the order of decreasing
conservativeness, the next operator is A ∩ B̄:

∀x ∈X µA.B̄(x) ⩽ µA∩B̄(x) (12)

Finally, the last operator is anticommutative difference:

∀x ∈X µA∩B̄(x) ⩽ µA∣B̄(x) (13)

And so we have the following relations of the membership functions:

A∣ − ∣B ⊂ A.B̄ ⊂ A ∩ B̄ ⊂ A∣B̄ (14)

1.1 Ordination based on Bray-Curtis similarity [7]

The coefficient of similarity by Bray and Curtis [6] is defined as

C = 2w

a + b
(15)

where a is the sum of quantitative values (abundance) of all species in one sample, b is the
sum of quantitative values in another sample, and w is the sum of quantitative values the two
samples have in common for each species. For example, given three species, abundance count
for Sample 1 is (10,20,30), Sample 2 is (24,23,15). To get w, the sum of the lowest value for
each species between the two samples is 10+20+15 = 55. Therefore, C = 2×55

60+62 = 0.9016393; i.e.,
Sample 1 and 2 have a similarity of 90%. This index ranges from zero, if the two samples have
no species in common, to 1.00 if they are by chance identical.

The next step is to construct a matrix showing coefficients of similarity for each of the
samples with all other samples. The coefficients are totaled for each sample, and the sample
with the lowest sum could be considered the sample most different from all the others. It is
used as one end of the first or x-axis of the ordination. The other end sample of this axis
is the sample having the least in common with the first. Since the ordination attempts to
arrange the samples according to their relative dissimilarity, inverse values of the coefficients
of similarity are used (by subtracting the coefficient from 1.00). Expressed in these units, the
distance between samples is called dissimilarity values.

The length of the axis of the ordination is equal to the dissimilarity between the two refer-
ence samples (Fig. 1). Each of the other samples is located by drawing arcs representing the
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Figure 1: Location of sample along an axis of ordination, by projection of the point of arc
intersection on x-axis where a and b are the reference samples, L is the dissimilarity value
between the reference samples, Da and Db are dissimilarity values of a given sample from the
two reference samples, and x is the location of that sample along the axis.

dissimilarity from the two ends. These arcs intersect each other above and below a line drawn
between the two reference samples. Two triangles are given with sides exDa and e(L-x)Db

with hypotenuse as known dissimilarities from the reference samples. The triangles have the
following equations according to the Pythogorean theorem:

e2 + x2 = D2
a (16)

e2 + (L − x)2 = D2
b (17)

Subtracting one equation from the other, to eliminate e2, and solving for x gives

x = L2 +D2
a −D2

b

2L
(18)

The above calculation can be simplified since L is constant for all samples along a given axis.
When all samples are located along the x-axis, there are samples placed close together which
in reality are quite dissimilar. Therefore a second or y-axis is constructed to separate these.
The first reference sample on the y-axis is selected on the basis of the highest e value along the
x-axis and this e value is calculated from

e2 = D2
a − x2 (19)

The other end sample is the most dissimilar one to the first end within a distance from the
latter, along the x-axis, of less than 10% of the total length of the x-axis. In this way, the
second axis approximates a perpendicular relationship to the first. The samples can then be
plotted on a two-dimensional graph. In [7], distances between samples on the ordination were
calculated as d2

x+d2
y and the correlation between these distances and the respective coefficients

of similarity for a random sample of 50 intersample distances was remarkably high (r = −.922),
indicating that the method yields a close approximation of samples to one another based on
the coefficient of similarity.
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Figure 2: Graphical derivation of the anticommutative difference operator.

1.2 Anticommutative difference operator as an ordination [8]

The formula 18 is essentially the anticommutative difference operator with a slight difference.
In fuzzy set notation, Beal’s formula would be

(µAC(x))2 + (µBC(x))2 − (µAB(x))2

2(µAC(x))
(20)

where µAC(x) is the dissimilarity of point A to point C, and similarly for the other symbols
(Fig. 2). This technique is for a Euclidean space as the transitivity of the relation is known.
The maximum value of µAC(x) is one, and so when the transitivity of the relation is not known,
µAC(x) must be assumed to be one or the operator may fail as a binary operator. For fuzzy
sets, the value of µAC(x) must always be one to insure the operator quality as a binary operator
on the interval [0,1], and to ensure anticommutativity.

2 One-dimensional FSO

A one-dimensional FSO is defined through a series of operations on intermediate sets. Given
a vector of environmental data X, the first fuzzy set (A) is simply the relativized value of the
vector X.

∀x ∈X µA(x) =
x −min(x)

max(x) −min(x) (21)

The second fuzzy set (B) is the complement of the first

∀x ∈X µB(x) = 1 − µA(x) (22)

The third fuzzy set (C) is the set of plots similar to plots with higher value of X

µC(x) =
∑y≠x [Sxy(µA(y))]
∑y≠x(µA(y))

(23)

where Sxy is the similarity of samples x and y. Fuzzy set D is the set of samples similar to
samples with low value of X

µD(x) = ∑y≠x [Sxy(µB(y))]
∑y≠x(µB(y)) (24)

Fuzzy set E, the fuzzy set actually plotted in the FSO, is calculated as the anticommutative
difference of C and D

µE(x) =
[1 + µD̄(x)2 − µC̄(x)2]

2
(25)

where µC̄(x) = 1 − µC(x).
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