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Introduction(1) 
¡  Three main types of clustering techniques 
¡  Overlapping 

¡  Partitional 

¡  Hierarchical 

¡  Hierarchical clustering is nested sequence of 
hard Partional clustering, each of which is a 
partition of data set into a different number of 
mutually disjoint subsets 
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Introduction(2) 

X = {x(1),...,x(N )}Dataset: 
where x( j) is n-dimensional feature or attribute vectors 

Collection: S = {S1,...,Sk}
of k non-overlapping data subsets Si (clusters) 

such that 

S1  S2 … Sk =X
Si ≠∅ , and Si  Sl =∅ for i ≠ l

In Overlap clustering, you relax the criteria  Si  Sl =∅

3 



Problem statement 
¡  Estimation of number of clusters contained in data 

¡  Most algorithms require that the number of clusters 
be defined a priori or a posteriori by user, e.g., k-
means, EM (expectation maximization), and 
hierarchical clustering algorithms 

¡  Conventional solution is to get data partition with 
different number of clusters and choose the best 
result according to specific criteria (may be AIC, 
BIC, etc.) 

¡  Would it then be possible to have a quantitative 
criteria for evaluating the quality of clustering?  
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k-means (via Bayesian 
Nonparametrics) (1) 
¡  In Gaussian mixture model, data arises from the distribution 

 
 
 
where k is fixed number of components,      are the mixing 
coefficients, and      and       are the means and covariances, 
respectively, of the k Gaussian distributions. 

¡  In the non-Bayesian setting, we use the EM algorithm to perform 
maximum likelihood given a set of observations 

B. Kulis, M. I. Jordan, Revisiting k-means: New Algorithms via Bayesian Nonparametrics, arXiv:1111.0352v2. http://arxiv.org/pdf/1111.0352.pdf  

p(x) = π cN(
c=1

k

∑ x |µc,Σc )

π c
µc Σc

x1,..., xn
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k-means (via Bayesian 
Nonparametrics) (2) 
¡  E-step 
¡  Compute the following quantities for all                  and for all                  

 

¡ M-step 
¡  Re-estimate the parameters using the values of  

 
 
 
 
 
 

¡  EM converges to local optimum of log likelihood function 

¡            are the probabilities of assigning     to cluster c 

i =1,...,n c =1,...,k
γ (zic ) =

π cN(xi |µc,Σc )
π jN(xi |µ j,Σ j )j=1

c
∑

γ (zic )
µc
new =

1
nc

γ (zic )xi
i=1

n

∑

Σc
new =

1
nc

γ (zic )(xi −µc
new )(xi −µc

new )T
i=1

n

∑

π c
new =

nc
n

,   nc = γ (zic )i=1

n
∑

γ (zic ) xi
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k-means (via Bayesian 
Nonparametrics) (3) 
¡  k-means objective function 
¡  Given set of data points                , the k-means objective function to 

find clusters               to minimize the following objective function:  
 
 
 
 

¡  Minimizing this function is done by k-means by computing the squared 
Euclidean distance from each point to cluster mean, and find the 
minimum by computing                                     . 

¡  Each point is then reassigned to the clusters index by        . 

¡  The centroid update step of the algorithm recomputes the mean of 
each cluster, updating     for all c.  

x1,..., xnl1,..., lk
min
lc{ }c=1

k
x−µc 2

2

x∈lc
∑c=1

k
∑

where µc =
1
lc

x
x∈lc

∑

l *(i) = argminc x−µc 2

2

l *(i)

µc
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k-means (via Bayesian 
Nonparametrics) (4) 
¡  EM algorithm for mixtures of Gaussians is quite similar to the k-

means algorithm. 
¡  When all Gaussians have fixed covariance equal to        , the 

covariances need not be re-estimated during the M-step. The E-step 
takes the following form: 
 
 
 

¡  In the limit           the value of          approaches zero for all c except for 
the one corresponding to the smallest distance             . 

¡  In this case, E-step is equivalent to the reassignment step of k-means 
and also the M-step exactly recomputes the center of the new 
clusters.   

σ I

γ (zic ) =
π c.exp −

1
2σ

xi −µc 2

2"

#
$

%

&
'

π j.exp −
1
2σ

xi −µ j 2

2"

#
$

%

&
'

j=1

c
∑

γ (zic )σ → 0
xi −µc 2

2
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k-means (via Bayesian 
Nonparametrics) (5) 
¡ Dirichlet Process Mixture Models 
¡  We place a Dirichlet prior of dimension k,                  and assume the 

covariance of the Gaussians are fixed to        and that the means are 
drawn from prior distribution      , we get the following model 
 
 
 
 
 

¡  Gibbs sampling for inference in a DP mixture model is algorithm 2 in the 
following paper 

Dir(k,π 0 )
σ I

G0
µ1,...,µk ~G0

π ~ Dir(k,π 0 )
z1,..., zn ~ Discrete(π )
x1,..., xn ~ N(µzi

,σ I )

R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249–265, 2000. 
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k-means (via Bayesian 
Nonparametrics) (6) 
¡ Algorithm 2 
¡  Loop repeatedly through each of the data points and perform Gibbs 

moves on the cluster indicators for each point. 

¡  For              , reassign    to existing cluster c with probability 
where         is the number of data points(excluding     ) that are assigned 
to cluster c.    

¡  Start a new cluster with the probability 
 
 
where Z is the normalizing constant 

¡  If end up choosing to start a new cluster, select its mean from the 
posterior distribution obtained from the prior      and the single sample    

¡  After sampling all clusters, perform Gibbs moves on the means: sample    
given all points currently assigned to cluster c for all c. 

i =1,...,n xi n−i,c.N(xi |µc,σ I ) / Z
xin−i,c

α
Z

N(xi |µ,σ I )dG0 (µ)∫

G0 xi
µc
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k-means (via Bayesian 
Nonparametrics) (7) 
¡ Adapting DP mixture model to Gaussian mixture scenario 
¡  Write the model as 

 
 
 

¡  Think of a draw from G as choosing one of the infinite means      drawn 
from      , with the property that the means are chosen with probability 
equal to the corresponding mixing weights. As a result, each     is equal 
to     for some c. 

G ~ DP(α,G0 )
φi ~G                for i =1,...,n
xi ~ N(φi,σ I )   for i =1,...,n

G0

µc

φi
µc
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k-means (via Bayesian 
Nonparametrics) (8) 
¡ DP mixture model connection to k-means(1) 
¡  Take     , the prior distribution over means to be a zero-mean Gaussian 

with covariance, i.e.,                       . 

¡  Given this, probability of starting a new cluster is equal to 
 
 
 

¡  The probability of being assigned to cluster c equal to 
 
 
 

¡  Let           , and write                                       for some   
 

G0
µ ~ N(0,ρI )

α
Z
(2π (ρ +σ ))−d /2.exp −

1
2(ρ +σ )

xi
2"
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2σ

xi −µc 2

2"

#
$

%

&
'

σ → 0 α = (1+ ρ /σ )d /2.exp −λ
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"
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$

%
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' λ
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k-means (via Bayesian 
Nonparametrics) (9) 
¡ DP mixture model connection to k-means(2) 
¡  Let           be the posterior probability of point i assigned to cluster c 

and let              be the probability of starting a new cluster. We then 
obtain 

γ̂ (zic )
γ̂ (zic,new )

γ̂ (zic ) =
n−i,c.exp −

1
2σ

xi −µc
2"

#
$

%

&
'

exp −
λ
2σ

−
xi

2

2(ρ +σ )

"

#
$
$

%

&
'
'+ n−i, j.j=1

k
∑ exp −

1
2σ

xi −µ j
2"

#
$

%

&
'
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exp −
λ
2σ

−
xi

2

2(ρ +σ )

"

#
$
$

%

&
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k-means (via Bayesian 
Nonparametrics) (10) 
¡ DP mixture model connection to k-means(3) 
¡  We can write               as 

 
 
 

¡  If we set             with fixed      

¡  the term     dominates 

¡  Probabilities defined before become binary 

¡           and               become increasingly dominated by 

¡  The smallest of these values receives a non-zero    value. 

¡  The resulting form is ANALOGOUS to k-means  

¡  Reassign a point to the cluster corresponding to the closest mean, 
unless the closest cluster has squared Euclidean distance greater 
than  

γ̂ (zic,new )

exp −
1
2σ

λ +
σ

ρ +σ
xi

2"

#
$

%

&
'

(

)
*

+

,
-

σ → 0 ρ

λ

γ̂ (zic ) γ̂ (zic,new ) xi −µ1
2 ,..., xi −µk

2 ,λ{ }
γ̂

λ
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k-means (via Bayesian 
Nonparametrics) (11) 
¡  DP mixture model connection to k-means(4) 

¡  If we choose to start a new cluster, final step is to sample a new mean from 
the posterior based on the prior     and single observation     

¡  Prior and likelihood are Gaussian, so the posterior is also Gaussian 
¡  Let      be the mean of the points currently assigned to cluster c and     be 

the number of points assigned to cluster c, then the posterior is a Gaussian 
with the mean and covariance as 
 
 
 

¡  As           , the mean of the Gaussian approaches     , covariance goes to 
zero and mass of distribution becomes concentrated at      

¡  Thus algorithm similar to k-means is obtained with the exception that a new 
cluster is formed whenever a point is farther than      away from every cluster 
centroid 

¡  DP-mean algorithm shown on next page is the end result BUT IT DEPENDS on 
ordering of the data (Come up with ordering?) 

G0 xi

xc nc

µc = 1+ σ
ρnc

!

"
#

$

%
&

−1

xc,   Σc =
σρ

σ + ρnc
I

σ → 0 xc xc

λ
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k-means (via Bayesian 
Nonparametrics) (12) 

min
lc{ }c=1

k
x−µc

2

x∈lc
∑c=1

k
∑ +λk

where µc =
1
lc

x
x∈lc

∑

¡  Objective function is simply k-
means with an additional 
penalty based on the number 
of clusters with     controlling 
the tradeoff between 
traditional k-means and 
cluster term:   

λ
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Validity measures 
¡ Davies-Bouldin Index 

¡ Variance Ratio Criterion – VRC (Calinski-Harabasz Index) 

¡ Dunn’s Index 
 

¡  Silhouette Width Criterion of Kaufman and Rousseeuw 

¡ Adjusted Rand Index 

¡  Jaccard Index 

D. L. Davies and D. W. Bouldin, A cluster separation measure, IEEE Trans. Pattern Analysis and Machine Intelligence, 1 (1979), pp. 224–227. 

R. B. Calinski and J. Harabasz, A dendrite method for cluster analysis, Comm. in Statistics, 3 (1974), pp. 1–27. 

J. C. Dunn, Well separated clusters and optimal fuzzy partitions, J. of Cybernetics, 4 (1974), pp. 95–104. 
M. Halkidi, Y. Batistakis, and M. Vazirgiannis, On clustering validation techniques, J. of Intelligent Information Systems, 17 (2001), pp. 107–145. 
 

L. Kaufman and P. Rousseeuw, Finding Groups in Data, Wiley, 1990. 

L. Hubert and P. Arabie, Comparing partitions, J. of Classification, 2 (1985), pp. 193–218. 

M. Halkidi, Y. Batistakis, and M. Vazirgiannis, On clustering validation techniques, J. of Intelligent Information Systems, 17 (2001), pp. 107–145. 

17 



Calinski-Harabasz Index 
(VRC)(1) 

X = {x(1),...,x(N )}Dataset: where x( j)∈ℜn

and a partition of data into k mutually disjoined clusters 

VRC = trace(B)
trace(W)

×
N − k
k −1

where W and B are the within-group and between-group dispersion 
matrices, respectively, defined as: 

W = (xi (l)− xi )(xi (l)− xi )
T

l=1

Ni

∑
i=1

k

∑ ,  B = Ni (xi − x)(xi − x)T
i=1

k

∑
where Ni is the number of objects assigned to ith cluster,  xi (l)
is lth object assigned to that cluster, xi is n-th dimensional vector of sample 
means within that cluster (cluster centroid), x is n-th dimensional vector of 
overall sample means (data centroid). 
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Calinski-Harabasz Index 
(VRC)(2) 
Within-group and between-group matrices sum up to the scatter matrix of 
the data set: 

T =W+B

where T = (x(l)− x)(x(l)− x)T
l=1

N

∑
¡  Trace of W is the sum of the within-cluster variances. 

¡  Trace of B is the sum of the between-cluster variances. 

¡  Compact and separated clusters are expected to have small values of 
trace(W) and large values of trace(B). 

¡  Better the data partition, the greater the value of the ratio between trace(B) 
and trace(W). 

¡  Normalization term (N-k)/(k-1) prevents this ratio to increase monotonically 
with the number of clusters, thus making VRC and optimization (maximization) 
criteria with respect to k. 
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     and        are the average within-group distance for the ith cluster 
and the inter-group distance between clusters i and j, respectively. 
Also, 

Davies-Bouldin Index(1) 
¡  Related to VRC as based on ratio involving within-group and 

between-group distances 

DB = 1
k

Di
i=1

k

∑
where Di =max j≠i Di, j{ }
Di, j       is the within-to-between cluster spread for the ith and jth clusters, i.e.  

, 

Di, j = (di + dj ) / di, j
di di, j

di = (1 / Ni ) xi (l)− xil=1

Ni∑ ,   di, j = xi − x j
where . is a norm (e.g., Euclidean) 
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Davies-Bouldin Index(2) 
¡        represents the worst-case within-to-between cluster spread 

involving the ith cluster. 

¡ Minimizing     for all clusters minimizes the Davies-Bouldin Index. 

¡ Good  partitions, composed of compact and separated 
clusters, are distinguished by small values of DB. 

Di

Di
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Dunn’s Index 
¡  It is based on geometrical measure of cluster compactness and 

separation and defined as 

¡  Partitions composed of compact and separated clusters are 
distinguished by large values of DN. 

DN = min
p, q∈{1,...,k}
          p≠q

δp,q

max
l∈{1,...,k}

Δl

$
%
&

'&

(
)
&

*&

where        is the diameter of the lth cluster, defined as 
 
 
Set distance         is defined as the minimum distance between a pair of 
objects across clusters p and q.  

Δl

δp,q

Δl =maxi≠ j xl (i)− xl ( j)

δp,q =mini≠ j x p(i)− xq ( j) (single linkage) 
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Variants of Dunn’s Index(1) 
¡  Set distance and diameter (previous slide) were generalized to 

give 17 variants of original Dunn’s index (combination of 5 set 
distances and 3 diameters) 
J. C. Bezdek and N. R. Pal, Some new indexes of cluster validity, IEEE Trans. Systems, Man and Cybernetics −B, 28 (1998), pp. 301–315. 

δp,q =maxi, j
x p(i)− xq ( j)

δp,q =
1

NpNq

x p(i)− xq ( j)
j=1

Nq

∑
i=1

Np

∑

δp,q = xp − xq

δp,q =
1

Np + Nq

x p(i)− xq
i=1

Np

∑ + xq (i)− xp
j=1

Nq

∑
#

$
%%

&

'
((

δp,q =max maxi min
j
x p(i)− xq ( j) ,maxj min

i
x p(i)− xq ( j){ }

(complete linkage) 

(average linkage) 

(same as inter-group distance in Davis-Bouldin Index) 

(Hybrid of average linkage) 

(Hausdorff metric) 
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Variants of Dunn’s Index(2) 
¡ Alternative definitions for diameter 

Δl =
2

Nl (Nl −1)
xl (i)− xl ( j)

j=1

i

∑
i=1

Nl

∑

Δl =
2
Nl

xl (i)− xl
i=1

Nl

∑

                                                               
(average distance among all                            pairs of the lth 
cluster) 

Nl (Nl −1) / 2

                                                               
(two times the cluster radius, estimated as the average distance 
among the objects of the lth cluster and it’s prototype) 
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Silhouette Width Criterion(1) 
¡  It is based on geometrical considerations about compactness 

and separation of clusters. 

¡  Let jth object of the dataset,        , belong to a given cluster  
 

¡  Let the average distance of this object to all other objects in 
cluster p be denoted by         

¡  Let the average distance of this object to all objects in another 
cluster q,          , be called             

¡  Let           be the minimum           computed over                   ,which 
represents the average dissimilarity of object        to its closest 
neighboring cluster               

x( j)
p∈ {1,...,k}

ap, j

q ≠ p dq, j
bp, j dq, j q =1,...,k

x( j)
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Silhouette Width Criterion(2) 
¡  Silhouette of the individual object           is defined as 

 
 
 
 
 

¡  The higher         , the better the assignment of         to cluster p. 

¡  If p is singleton, i.e., only unique         then                 . This prevents 
the Silouette Width Criterion, defined as the average  of         over               
                    i.e, 
 
to elect the trivial solution k=N, with each object of the data set 
forming a cluster on its own, as the best one.     

x( j)

sx( j ) =
bp, j − ap, j

max{ap, j,bp, j}
where denominator is just a normalization term 

sx( j ) x( j)

x( j) sx( j ) = 0 sx( j )
j =1,2,...,N, SWC = 1

N
Sx( j )

j=1

N

∑
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Silhouette Width Criterion(3) 
¡  The best partition is achieved when SWC is maximized, which 

implies minimizing the intra-group distance (         ) while 
maximizing the inter-group distance (         ). 

ap, j
bp, j
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Silhouette Variations(1) 
¡  Simplified: The computation of all distances among all objects 

can be replaced with a simplified one based on distance among 
objects and cluster centroids (idea is to replace average 
distances with distances to the mean points). 
¡           is redefined as the dissimilarity of ith object to the centroid of its 

cluster p. 

¡           is computed as the dissimilarity of the ith object to the centroid of 
the cluster q,           .           

¡           becomes the dissimilarity of the ith object to the centroid of its 
closest neighboring cluster   

ap, j
dq, j

q ≠ p
bp, j
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Silhouette Variations(2) 
¡ Alternative Silhouette: We have an alternative definition of the 

silhouette of an individual object: 
 
 
 
where     is a small constant (e.g. 10^-6 for normalized data) used 
to avoid division by zero when                 . 

¡  Both definition of silhouette are intended to favour larger values of 
        and lower values of        , with previous definition in linear and 
this new definition as non-linear case.  

¡  Hybrid Silhouette: Combining alternative silhouette with simplified 
silhouette.      

sx( j ) =
bp, j

ap, j +ε
ε

ap, j = 0

bp, j ap, j
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Adjusted Rand Index(1) 
¡  One of the main difficulties in classification problems consists on the correct 

evaluation of the classifier performance. 

¡  Conventionally measures like Mean Squared Error (MSE) or the Classification 
Correct Rate are used. 

¡  Other measures like AUC (area in percentage under the ROC curve), Sensitivity 
and Specificity are also used. 

¡  All these measures compare the labeled outcome of the supervised classification 
algorithm with the known labeled target 

¡  This leads to poor results due to the fact that the output labels could be switched 
even if the classes are well identified. 

¡  We want a measure which evaluates how well the algorithm split the input data in 
different classes by looking at the relationship between elements of each class 
AND NOT THE LABELS 

¡  Solution: Use ARI. It is a measure of agreement between two partitions: one given 
by the clustering process and the other defined by external criteria. 
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Adjusted Rand Index(2) 
¡  Lower value of ARI for bad classification results and higher value 

of ARI for good classification results 

¡  It can be used to perform feature selection if we split each 
feature in non-overlapping equal intervals and compare the 
partition derived from the split with the one given by the targets. 

¡  Thus we evaluate each feature’s discriminant power and rank 
the features according to the computed ARI value. 

¡  Finally, we select the most discriminant feature to apply in 
classification algorithm 

J. M. Santos, and M. Embrechts. On the Use of the Adjusted Rand Index as a Metric for Evaluating Supervised Classification. ICANN’09 Proceedings of the 19th International 
Conference on Artificial Neural Networks: Part II, Lecture Notes in Computer Science, Volume 5769, 2009, pp. 175-184 
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Adjusted Rand Index(3) 
¡ Dataset: A set of n objects                               . 

¡ We have two different partitions of the objects in S,                                 
and                              such that                               and 
                                 for                     and                      . 

¡ Contingency table: 

S = {O1,O2,...,On}

U = {u1,u2,...,uR}
V = {v1,v2,...,vC}  i=1

R ui = S =  i=1
C vj

ui  u !i =∅ = vj  v !j 1≤ i ≠ #i ≤ R 1≤ j ≠ #j ≤C
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Adjusted Rand Index(4) 
¡         in the contingency table represents the number of objects 

that were classified in the rth subset of partition R and in the cth 
subset of the partition C. 

¡  From the total number of possible combination of pairs      from a 
given set we can represent the results in four different types of 
pairs: 
¡  a – objects in a pair are placed in the same group in U and in the 

same group in V 
¡  b – objects in a pair are placed in the same group in U and in different 

groups in V 
¡  c – objects in a pair are placed in the same group in V and in different 

groups in U 
¡  d – objects in a pair are placed in different groups in U and in different 

groups in V 

trc

n
2

!

"
#

$

%
&
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Adjusted Rand Index(5) 
¡  Simplified 2 X 2 contingency table 

 
 
 
 
 
 
 

¡  The values are given on next slide 
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Adjusted Rand Index(6) 
a = trc
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Adjusted Rand Index(7) 
¡  Rand Index can then be computed as 

 
 
 
and it basically weights those objects that were classified 
together in both U and V. 

¡  Problem with RI is that the expected value of the RI of two 
random partitions does not take a constant value (say zero) or 
that the Rand statistic approaches its upper limit of unity as the 
number of cluster increases.  

RI = a+ d
a+ b+ c+ d
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Adjusted Rand Index(8) 
¡ With the intention to overcome limitations with RI, we have 

Fowlkes-Mallows Index 
 
 
 
 

¡ Another one is Adjusted Rand Index (ARI) which has become 
one of the most successful cluster validation indices and is 
recommended as the index of choice for measuring agreement 
between two partitions in clustering analysis with different 
number of clusters. 

FMI = a
(a+ b)(a+ c)
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Adjusted Rand Index(9) 
¡ ARI can then be computed by 
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WGK Correlation Index(1) 
¡ Goodman-Kruksal (GK) index measures rank correlation between 

two sequences                            and                          in terms of the 
numbers of concordant and discordant pairs in A and B. 

¡  Pairs            and            are concordant if either            and            or 
            and           . 

¡  They are discordant if either             and            or             and            . 

¡  The index is then defined as 
 
 
where    and      are the numbers of concordant and discordant 
pairs in A and B, respectively.                 . 

L. A. Goodman and W. H. Kruskal, Measures of association for cross-classifications, J. of the Am. Statistical Association, 49 (1954), pp. 732–764. 

A = {a1,...,an} B = {b1,...,bn}

(ai,aj ) (bi,bj ) ai < aj bi < bjai > aj bi > bj
ai < aj bi > bj ai > aj bi < bj

γ =
S+ − S−
S+ + S−

S+ S−
γ ∈ [−1,1]
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WGK Correlation Index(2) 
¡ GK is insensitive to the element values of sequences A and B 

because only ranks of these elements are considered. 

¡ A weighted version of GK can bring together both the sensitivity 
of the original index to the rankings of sequences A and B and the 
sensitivity of the classic Pearson Coefficient to the values of these 
sequences by rewriting 
 
 
 
 
 
 
where     stands for absolute value. 

γ =

wij
j=i+1

n

∑
i=1

n−1

∑

wij
j=i+1

n

∑
i=1

n−1

∑

.
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WGK Correlation Index(3) 
¡  The weight        is given by: 

 
 
 
 
 
 
with                                and                             . 

¡ With this definition GK is magnitude insensitive because the values 
of        are constrained to -1, 0, or +1 irrespective of the values in 
sequences A and B. 

wij

wij =

wij
A /wij

B if wij
B ≠ 0

1 if wij
A = 0 and wij

B = 0 

0 otherwise

"

#
$
$

%
$
$

wij
A = sign(ai − aj ) wij

B = sign(bi − bj )

wij
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WGK Correlation Index(4) 
¡  Since concordance and discordance are both a matter of 

degree, a weighted version of this index can be obtained by 
replacing the terms in the numerator of     with continuous version 
of                          . 

 

 

 with components shown on next slide. 

 

γ
wij,wij

A,  and wij
B

ŵij =

min{ŵij
A / ŵij

B, ŵij
B / ŵij

A} if ŵij
A  and ŵij

B  have the same sign

max{ŵij
A / ŵij

B, ŵij
B / ŵij

A} if ŵij
A  and ŵij

B  have opposite signs

1 if ŵij
A = ŵij

B = 0

0 otherwise

!

"

#
##

$

#
#
#
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WGK Correlation Index(5) 
 

 
 
 
 
 
 
 
 
 
where                                       are the maximum and minimum 
elements of sequences A and B.  

 

ŵij
A =

ai − aj
amax − amin

if amax ≠ amin  

0 otherwise

#

$
%

&
%

ŵij
B =

bi − bj
bmax − bmin

if bmax ≠ bmin  

0 otherwise

#

$
%

&
%

amax,amin,bmax,  and bmin
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WGK Correlation Index(6) 
¡        and          belong to [-1,+1] and represent the (signed) 

percentage differences between the values at ith and jth element 
of the corresponding sequence 

¡  The weight      is such that 
¡  It is positive if pairs               and               are concordant. (        and        

have the same sign or both are null) 

¡  It is negative if pairs               and               are disconcordant. (        and        
have opposite signs) 

¡  It is null in case of a neutral (either         or        is null) 

¡  Full concordance(            ) when 

¡  Full discordance (               )  when 

ŵij
A ŵij

B

ŵij

(ai,aj ) (bi,bj ) ŵij
A ŵij

B

(ai,aj ) (bi,bj ) ŵij
A ŵij

B

ŵij
A ŵij

B

ŵij =1 ŵij
A = ŵij

B

ŵij = −1 ŵij
A = −ŵij

B
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WGK Correlation Index(7) 
¡  IT IS NOT CORRECT to assume that a larger difference between      

and        should mean a greater discordance between pairs      
and             . Why? 
¡  Because, increasing the abolute value of one of these weights is 

equivalent to reducing the absolute value of the other.  

¡  But, reducing the absolute value of a given weight means driving this 
weight towards zero and further changing sign.  

¡  This means reducing discordance towards neutrality and further turning 
to concordance 

ŵij
A

ŵij
B (ai,aj )

(bi,bj )
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WGK Correlation Index(8) 
¡ Weighted Goodman-Kruskal index (WGK) is thus defined as 

 
 
 
 
 
 

¡  It can be shown that, as it is in the case for Pearson, the extreme 
values for WGK (                  ) are obtained iff A is a linear (or affine) 
function of B.   

 

γ =

wij
j=i+1

n

∑
i=1

n−1

∑

wij
j=i+1

n

∑
i=1

n−1

∑

γ̂ =1 or -1
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Wilcoxon Mann Whitney 
Test(1) 
¡  In independent samples, we apply independent sample t-test 

when we had normality of the sample mean for each sample. 

¡  If there is a violation of this assumption, we’ll apply non-parametric 
test for independent samples – the Wilcoxon Mann Whitney test 

¡  It can be used only when 
¡  Data is regraded as a random sample from their respective populations 

¡  Observations within each sample is independent of one another 

¡  The two samples are independent of one another  

¡  The efficiency of the Wilcoxon Mann Whitney test is 0.95 with respect to 
parametric tests like the t-test or the z-test even if the data are normal 

https://epilab.ich.ucl.ac.uk/coursematerial/statistics/non_parametric/wilcox_mann_whitney.html 
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Wilcoxon Mann Whitney 
Test(2) 
¡  For small samples, use direct method: 
¡  Choose the sample for which the ranks seem to be smaller. Call this 

“sample 1” and call the other sample “sample 2” 

¡  Taking each observation in sample 1, count the number of observations 
in sample 2 that are smaller than it (count a half for any that are equal 
to it) 

¡  The total of these counts is U 
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Wilcoxon Mann Whitney 
Test(3) 
¡  For large samples, 

¡  Arrange all the observations into a single ranked series. That is, ranks all the 
observations without regard to which sample they are in. 

¡  Add up the ranks for the observations which come from sample 1. The sum 
of ranks in sample 2 follows by calculation, since the sum of all the ranks 
equal  N(N+1)/2 where N is the total number of observations. 

¡  U is given by 
 
 
where    is the sample size for sample 1, and     is the sume of the ranks in 
sample1. Alternatively, 
 

¡  The smaller value of     and     is the one used when consulting the 
significance table. 

¡  Null hypothesis: probability that member of the 1st population drawn at 
random will exceed a member of the 2nd population drawn at random=0.5   

U1 = R1 −
n1(n1 +1)

2
n1 R1

U2 = R2 −
n2 (n2 +1)

2
U1 U2
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Evidence Accumulation-
based Clustering(1) 
¡  Basic Idea: 

¡  Based on the idea of evidence accumulation for 
combining the results of multiple clusterings. 

¡  Initially, n d-dimensional data is decomposed into a 
large number of compact clusters using K-means 
algorithm, with several clusterings obtained by N 
random initialization of the K-means. 

¡  Take the co-occurences of pairs of patterns in the same 
cluster as votes for their association, the data partitions 
are mapped into a co-association matrix of patterns. 

¡  The n x n matrix represents a new similarity measure 
between patterns. 

¡  The final clusters are obtained by applying a minimum 
spanning tree (MST) based clustering algorithm on this 
matrix. 

A. L. N. Fred and A. K. Jain. Data clustering using evidence accumulation. In Proc. ICPR, 2002. 
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Evidence Accumulation-
based Clustering(2) 
¡  Split 
¡  Decompose multidimensional data into a large 

number of small, spherical clusters using K-means 
algorithm 

¡ Combine 
¡  Take the co-occurences of pairs of patterns in the 

same cluster as votes for their association, the data 
partitions produced by multiple runs of K-means are 
mapped into a n x n co-association  matrix: 
 
 
 
where N is the number of clusterings and            is the 
number of times the pattern pair (i,j) is assigned to 
the same cluster among the N clusterings 

co_ assoc(i, j) =
votesij
N

votesij
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Evidence Accumulation-
based Clustering(3) 
¡ Merge 
¡  Apply a minimum spanning tree (MST) algorithm, 

cutting weak links at a threshold of t, this is 
equivalent to cutting the dendrogram produced by 
the single link (SL) method over this similarity matrix at 
the threshold t, thus merging clusters produced in the 
splitting phase. 
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Evidence Accumulation-
based Clustering(4) 
¡ Algorithm: 

54 


