AMPLIpyth: A Python Pipeline for Amplicon Processing
David Jacob Meltzer
0803837m
MSc Bioinformatics, Polyomics and Systems Biology

Supervisor: Dr. Umer Zeeshan ljaz

A report submitted in partial fulfillment of the requirements for the MSc
Bioinformatics, Polyomics and Systems Biology Degree at the University of Glasgow

August 2015

Summary
Next generation sequencing technologies have revolutionized the way in which
microbial communities are analyzed. The massively parallel nature of these
technologies allows for rapid and accurate sequencing of the contents of these
communities. This combined with the culture-independent 16S and 18S rRNA
sequence amplification method had dramatically increased the ability to analyze
these types of data. Analysis of these metagenomic datasets is complicated by the
variety of platforms that generate them and the variety of tools optimized to analyze
the resulting data. Currently, there exist analysis pipelines such as QIIME and
mothur to process these data. These pipelines, while powerful, have certain
limitations that leave room for improvement. In this project we sought to develop a
software workflow which could analyze amplicon based metagenomic datasets and
give detailed information about the microbial community profile. In addition this
program would be optimized for the Illumina sequencing platform and would
require minimal user input and upon execution, no user input at all. This was
accomplished with the creation of the AMPLIpyth software. AMPLIpyth uses a
python wrapper to call server sides programs using subprocesses and generates an
HTML output with the pertinent results of the analysis. The program was heavily
tested using a fecal sample dataset for Crohn’s disease and through the comparison

of the results to an existing bash based workflow.

Acknowledgments

[would like to thank my supervisor Dr. Umer Zeeshan Ijaz for his mentorship and all

of his assistance throughout this process.

I would like to thank Gianna Hayner for her assistance in editing this document.

5
6-7
8-13
14 - 22
23 -24
35-36
37 - 38
39 -40

Contents

Abbreviations and Definitions

Introduction
Analysis
Product
Evaluation
Discussion
Conclusions/Further Work

References

Abbreviations and Definitions
NGS = Next Generation Sequencing
BP = Base Pair
EEN = Exclusive Enteral Nutrition
CD = Crohn’s Disease
CSV = Comma Separated Value
OTU = Operational Taxonomic Unit
Amplicon = The product of a PCR Amplification
Raw Reads = The sequencing data directly from the sequencer before any

processing or analysis

Introduction

Microbial communities are as numerous as they are widespread. These
communities are either directly or indirectly involved with every living organism on
Earth[1]. In the past, the study of microbial communities was limited by the ability
to culture these microbes within a laboratory environment. With less than 1% of
prokaryotes able to be laboratory cultured, community studies were incredibly
difficult[2]. Next-generation sequencing technologies, also called second-generation
technologies, have revolutionized the investigation of these communities and
because of this, metagenomics has exploded as a research topic in recent years[3].

Metagenomic investigations enable the profiling of microbial communities
without the need to culture them in laboratory environment. This is made possible
by next generation sequencing (NGS) that allows for the massively-parallel
sequencing of millions of DNA fragments[4]. One of the predominant techniques is
the amplification of ribosomal RNA genes such as 16S/18S rRNA. These genes are
fairly conserved at species level and can be used as a DNA barcoding strategy[5,6].
There are two main approaches for amplicon processing: a reference-based
approach and a de novo approach. A reference-based approach uses a well curated
database such as SILVA, BERGEYS taxonomy for RDP as a reference point from
which sequencing data is assembled against. A de novo approach involves the
clustering of reads by aligning them against each other and then binning the reads
based on a similarity threshold [7]. Regardless of the approach used, the process is
computationally intensive and may require the use of a cohort of software tools,

each with their own arguments and complications, and each tailored to a specific

part of the analysis [8]. Therefore, there exist several analysis pipelines for
metagenomic datasets. Of these, two of the most widely used are QIIME and
mothur. Both QITME and mothur are capable of handling large amounts of data in
a variety of NGS formats and produce highly accurate analyses [8,9]. These
programs are not without their downsides. QIIME can be very difficult to install,
requiring a significant amount of dependencies, and both QIIME and mothur
require user intervention (command-line interactivity) during their function
[10,11]. With this in mind, we sought to create an analysis pipeline that lacked
these downsides as well as an optimized workflow informed by recently published
work on error profiling for the Illumina platform[12]. Hence, the aim of this project
was to construct an automated pipeline for metagenomic analysis that requires
minimal human interaction outside the initial set up and has the optimal

subprocesses.

Analysis
Approach

The program was coded entirely in python version 2.6.6 as it is a flexible
programming language that interacts easily with the underlying unix based
operating systems which most bioinformatic servers will have. The python program
is a wrapper around multiple other programs to perform the analysis tasks
(described below). These components would need to be called by the program and
run from within the code. To do this the python module subprocess was used to
run shell commands in the operating system. A sample dataset (described below)
was provided and used to test functionality at every step of development. The
python package MatPlotLib was used to generate all graphical outputs.

Dr. ljaz’s command line tutorial “Illumina Amplicons OTU Construction with

Noise Removal” found at www.tinyurl.com/JCBioinformatics was used to develop

the framework for the pipeline. It was also used as part of the testing process as the
sample data used in the tutorial is the same as used by the pipeline.

This pipeline is optimized for Illumina sequencing. lllumina sequencing is the
dominant sequencing technology in the research world and with the recent
announcement by Roche discontinuing the 454 platform, the market share of
[llumina is set to increase[13]. Unpublished research by D’Amore et al determined
through benchmarking that the Illumina platform has the highest accuracy and
lowest error rates over the other commercially available platforms (D’Amore et al, A
comprehensive benchmarking study of protocols and sequencing platforms for 16S

rRNA community profiling, Unpublished). With this in mind, work done previously

by Schirmer and Ijaz et al was used to inform on the software choices used by this
pipeline. Schirmer and Ijaz et al investigated which combination of tools resulted in
the best error correction on Illumina generated dat. They determined that using
sickle, BayesHammer and PANDAseq for error correction resulted in a 93% decrease

in substitution error rates when compared to alternate choices[12].

Programs Used
Sickle

Sickle is a sequence-trimming program that uses a sliding window, length
and phred quality of the sliding window to determine where to trim the sequences.
In practice, the quality usually falls off at the end of the reads. Sickle has settings
to accommodate both single and paired-end reads and a variety of quality scoring
formats[14]. Sickle was used to quality filter the sample reads to prepare them

for downstream applications.

SPAdes

SPAdes is an open-source assembler software that can be used for single
and multicellular assemblies and produces excellent assemblies for uncharacterized
bacteria. Many environmental bacteria cannot be easily cloned and thus their
amplification and subsequent sequencing using current technologies is difficult if
not impossible. The SPAdes assembler uses a novel approach to deal with these
difficulties and is capable of quickly producing accurate assemblies [15]. The

assembly function of the SPAdes assembler was not used in the AMPLIpyth

program. SPAdes was used only to perform error-correction as it is bundled with
BayesHammer which is used for pre-correction of reads before performing

assembly [16].

PANDAseq

PANDAseq is assembly software used to assemble Illumina paired-end reads.
The program takes advantage of the overlap between paired-end reads for short
DNA fragments (i.e., 16S/18S variable regions that are small enough for the reads to
overlap). As the overlap increases there is a corresponding increase in the ease of
correcting incorrectly called bases by using the sequence mate’s overlap. PANDAseq
algorithmically determines the necessary overlap and performs correction on that
region, systematically going through the entire provided sequence [17]. PANDAseq

was used here in its assembler function.

UPARSE

The UPARSE pipeline functions similar to the BLAST algorithm however
the UPARSE not only allows for alignment against a reference database similar to
BLAST, but also allows clustering of reads, and the removal of chimeras (de novo as
well as reference based approach). It is substantially faster than contemporary
alignment tools as the search algorithm is heuristic in nature [7]. UPARSE pipeline
was used here to perform several analyses in the pipeline (UPARSE or USEARCH is
also used in QIIME and mothur). These are described in the “Product” section

below.

10

Mafft

The mafft program performs multiple sequence alignments[18,19]. In
AMPLIpyth, mafft takes the sequences in FASTA format and then generates a
multiple sequence alignment of these sequences. This alignment was used later by

FastTree to generate a phylogenetic tree.

FastTree

FastTree program is a program for generating phylogenies. Many
phylogeny generating programs use a distance matrix to store relationships
however as the size of the matrix increases so does the computational requirements.
The FastTree program “stores sequence profiles of internal nodes in the tree”
[20]. This allows for a decrease in the computational requirements in large trees.

FastTree was used here to generate a phylogeny of the identified OTUs.

Ribosomal Database Project (RDP) Classifier

The RDP Classifier is “a naive Bayesian classifier” that is well suited to
give the taxonomy of the sequences at different levels (Phylum, Class, Order, Family,
and Genus)[21]. In the AMPLIpyth program the RDP Classifier was used to

identify the taxonomies that each of the identified OTUs belong to.

11

Python Program Development

All python programming was performed using the PyCharm Professional
Edition Integrated Development Environment (IDE). This IDE is specifically
designed for python coding and provides a variety of tools and plugins to analyze
and optimize code[22]. Code was locally produced in PyCharm and tested on Dr.

ljaz’s bioinformatics server.

Sample Data

A dataset of twenty-four fecal samples was provided by Dr. ljaz. The fecal
samples had been processed as part of a separate study in which Dr. Ijaz was an
investigator. In this study Quince et al sought to investigate the differences in gut
flora between healthy children and children with CD. The children with CD were put
on the EEN program and their feces sampled at five time points referred to by the
letters A through E: A) before or within 6 days of starting EEN, B) 16 days after
staring EEN, C) 32 days after starting EEN, D) 54 days after starting EEN and E) 63
days after the end the EEN program. The “E” group was to ascertain if the CD
children’s flora had returned to their pre-EEN levels. These samples were then
compare to the healthy children, referenced as group “H” (Quince, Loman and ljaz et
al. Extensive modulation of the fecal metagenome in children with Crohn’s disease
during exclusive enteral nutrition. Submitted for Publishing). The samples from
group E were those used in testing AMPLIpyth. The files are available on the

attached CD.

12

Sample Processing

The fecal samples had been processed per standard protocols and bacterial
DNA was isolated and purified using the chaotropic method. 16S rRNA sequencing
of the V4 region was performed on the MiSeq (Illumina) platform using 2 x 250 bp
paired-end reads. The V4 region was amplified using fusion Golay adaptors
barcoded on the reverse strand. The forward 16S rRNA primer sequence 515f
(GTGNCAGCMGCCGCGGTAA) was used. The reverse primers, barcodes and adaptors
were identical to those described previously. Amplicons were purified with AMPure
XP DNA purification beads (Beckman Coulter, Danvers, MA, USA) according to the
manufacturer’s instructions, and eluted in 25 pl of Elution Buffer (Qiagen, 19086,
UK). Subsequently, amplicons were quantified with use of KAPA SYBR® FAST qPCR
Kit (Kapa biosystems, KK4824, UK), diluted to 40 pM and spiked-in with 40 pM of
genomic DNA to avoid base-calling issues due to low base diversity (Method
barrowed with permission of Dr. [jaz from Quince, Loman and ljaz et al. Extensive
modulation of the fecal metagenome in children with Crohn’s disease during

exclusive enteral nutrition. Submitted for Publishing).

13

Product

Program overview
An amplicon-processing pipeline was successfully produced using python.

This pipeline named, AMPLIpyth, is presented in figure 1.

14

"MO[P{I0M 311 JO pua ay) Je pajesauad stndino TWLH
uy 'paqLIdsap Se MO[p{IoM ay) ydnoay) passadord uayy ale sajy Ay, ‘'uonedof 113y} 03 yiedayy aynjosqe ay3 pue
ardwes yora 10 SBI[R UR SUIRIUOD Y2IYyMm 3[1j uoneindijuod e saye) weidoid ayJ, ‘moppiom NAdiduy : T aandig

MO[Io M pAdTdury

15

Program Design

Running AMPLIpyth requires three arguments: python [AMPLIpyth Version] -
¢ [Configuration File] —o [Analysis Output Directory] -t [OTU Output Directory]. The
program requires the user to produce a configuration file which includes all of the
files to be analyzed and the required arguments for the programs involved in the
analysis. This configuration file has a required format shown in figure 2. The

pipeline requires no user input after it has been initiated.

Configuration File Diagram

[Sample Files)

109-2_R1 = /home/opt/tutorials/Raw/109-2_$109_L001_R1_001.fastq
109-2_R2 = /home/opt/tutorials/Raw/109-2_$109_L001_R2_001.fastq
110-2_R1 = /home/opt/tutorials/Raw/110-2_S110_L001_R1_001.fastq
110-2_R2 = fhome/opt/tutorials/Raw/110-2_S110_L001_R2_001.fastq
113-2_R1 = /home/opt/tutorials/Raw/113-2 $113_L001_R1_001.fastq
113-2_R2 = /home/opt/tutorials/Raw/113-2 $113_L001_R2_001.fastq

1‘|M)

Alias Absolute Path

[Settings]

analysis_settings = 2D,SLITer,default_default_20_no,default

Name ===

Forward Primer ===
Reverse Primer ===
Minimum Overlap —_—
Eliminate n===»"
Threads —_—

-
=]
E
b
S
=
o
b
o
o
w
=
]
=g

Quality Score Threshold —

Figure 2: Configuration File Diagram. The program takes a
configuration file which contains an alias for each sample and the
absolute path to their location. The user must also specify settings
within the setting section. These settings are given as a string that
Amplipyth parses and uses in the appropriate functions.

16

The pipeline begins by checking to ensure that the programs sickle,
USEARCH, PANDAseq, fastqc, SPAdes, mafft and FastTree are found on the
system. The program generates the analysis output directory provided by user in
the arguments. The python module ConfigParser then parses in the specified
configuration file. This configuration file contains an alias for each file found in the
“name” value. This name value is then used to make a single directory for each of the
sample pairs. These directories are referred to as the “main directory” for each
sample henceforth. Within each directory a directory named “Raw” is created. This
raw directory will contain the raw reads. The raw reads are then copied from their
location, given as the absolute path, found in the “value” value in the configuration
file, to the “Raw” directory of the appropriate directory.

Quality filtering is then performed using sickle. Briefly, each read has a
corresponding quality score. This quality score indicates the probability that the
base was called correctly during sequencing. The equation below describes this
(Equation 1) [23]

Quality (q) = —10log 10(p)

Equation 1: The formula for determining quality score.

The quality score used to determine trimmed reads is provided in the
“settings” section of the configuration file. Likewise the quality score system is
specified here as well. The quality score value is not variable and it is advised that
the user examine the quality information of the reads before analysis to select the

appropriate score. Sickle quality filtering generates files with the suffix

17

“

_trim.fastq” as well as the singlet file suffixed “singlet.fastq”. These files
are then used to produce a read length distribution graph for the forward and
reverse trimmed reads. These files are originally placed into the main directory
where the program itself is found but are moved into a collected outputs folder at a
later step.

The trimmed forward and reverse FASTQ files are then passed to SPAdes
which calls the BayesHammer program and performs error correction. The
SPAdes program takes no input from the configuration file and performs no
assembly. The SPAdes assembly function is not required for this program to
function. The SPAdes program, through BayesHammer, generates an output
directory named “corrected” within each main directory. Within this “corrected”
directory are the error-corrected forward, reverse and unpaired FASTQ files.
SPAdes produces a log, spades.log, which is deposited in the main directory. This
log contains information as to the error correction performed by BayesHammer.
This information is later used in downstream statistics.

Due to an issue with the BayesHammer program, identifying information
concerning the directionality of the reads is stripped from the reads (i.e., tags to tell
whether the read is a forward or a reverse reads) during BayesHammer error
correction. Without identifying information, downstream analysis with PANDAseq
is impossible. To correct for this a function was written to write a new file with the
correct information and overwrite the incorrect file.

The corrected forward and reverse reads are then processed with

PANDAseq which overlaps the paired end reads. The arguments used by PANDAseq

18

are found in the settings section of the configuration file. PANDAseq outputs an
overlap file located in the main directory for each sample.

Before the program can run UPARSE the overlap.fasta files for each sample
need to have a UPARSE formatted barcode labels for each read. This is
accomplished through a function that adds this required barcode to each read and
outputs the appropriate FASTA file.

At this point in the program, analysis within the Analysis Output Directory is
complete. The program next generates the OTU Output Directory. All further
analysis takes place within this directory.

In preparation for UPARSE analysis the overlap.fasta files from each sample
are then multiplexed into a single multiplexed.fasta file, linearized and dereplicated.
These three steps are the most time consuming and computationally intensive of the
entire program taking an average of six minutes.

The UPARSE program is then used to perform a series of functions within the
AMPLIpyth pipeline: abundance sorting, the discarding of singletons, OTU
clustering and de novo chimera removal. UPARSE is then used to remove chimeras
using a reference database. The sequences are then labeled with the
fasta_number.py python script created by Robert Edgar

http://drive5.com/python/python_scripts.tar.gz. This generates the otus.fa file.

UPARSE is then used to map the singletons back to the OTUs. Another of Robert
Edgar’s python scripts, uc2otutab.py, is then used to generate a tab-delimited
OTU table. This table is then converted to a CSV file for further analysis. Mafft is

then used to perform multisequence alignment on the representative OTU

19

sequences. FastTree is then used to generate a phylogenetic tree. The program
will then display to the user the statistics involved in the OTU construction step:
total reads, total reads dereplicated, total reads dereplicated and singletons
removed, OTUs after de novo chimera removal, OTUs after database assisted
chimera removal and the final OTUs after matching. This concludes the analytical
portion of the pipeline

AMPLIpyth produces a minimum of seven outputs: a read retention by step
graph, a changed bases graph, the percent of reads in OTUs graph, a stacked bar
graph showing the proportion of the total OTUs comprising the twenty most
common and all others, the phylogeny and a length distribution graphs for the
forward and reverse reads. These output are provided in an HTML output with
download links to the otus.fa, otus Taxonomy.csv, otus.tre and
otu_table.csv. The number of outputs will vary according to the samples as a

length distribution graph is produced for each samples forward and reverse reads.

Design Considerations

The use of a configuration file is ideal because it allows for the user to
prepare multiple different analysis sets and process them without making any
changes to AMPLIpyth itself. This also allows for jobs to run concurrently
assuming that there is sufficient space and processing power. The configuration file
also allows for an additional degree of reproducibility as it can be provided, run

with the pipeline and yield the same result.

20

The separation of the output directory and the OTU output is necessitated by
the program design. By keeping the analysis directory populated only by sample
data ensures that the code needed to process the data remains relatively small.
Additional functions and coding would have been required to accommodate the
additional contents resulting in negative impacts on the computational
requirements and time requirements.

The program is strictly divided between an analysis section and a
visualization section, the exception to this being the read length distribution graphs.
It was advantageous programmatically to have the read length distribution graphs
generated after quality filtering but before SPAdes. This prevented the need for
complicated functions to go back and access each of the folders individually to
generate the outputs.

Certain design choices were used to ensure that the graphical outputs
conveyed the most information possible with the least amount of clutter. The “Read
Retention by Analysis Step” graph does not provide the specific numbers of the
reads lost at each step but as a proportion of the whole. This was done to allow the
user to visualize all samples at once while still being able to gather meaningful
information from it. This choice was not carried over to the “Changed Bases” graph.
It was decided that understanding the actual number of changed bases was
important to the interpretation of the data. Visualizing the data in this method does
not detract from the readability of the graph as it would have done in the “Read

Retention by Analysis Step” graph.

21

The “Abundance Chart” which displays the twenty most abundant OTUs with
the rest grouped into an “Other_Otus” category was designed to provide a
substantial amount of detail and is tied for the most important output with the
phylogeny above it. Personal communication with Dr. ljaz led to the decision to
display the twenty most abundant OTUs as opposed to another amount. This
amount is arbitrary and is not readily editable for the user however as this is open-
source software a knowledgeable user would be able to edit the code to what ever
they would like. Future iterations of the program will add this as a user specifiable

option in the configuration file.

22

Evaluation
Testing

The sample dataset, described previously, was used to test the program at all
steps of development as well as its computational and time requirements. This
sample set, representing a modest amount of data takes between sixteen and sixty
minutes to run depending on server load. Program stability was determined
through thorough testing. Unexpected termination of the program was found to
occur when the user profile exceeded its memory allotment. It is therefore
recommended that the user ensure they have sufficient storage space before
running AMPLIpyth. Computational walls were never encountered during testing.

Two separate configuration files were used for the testing process. As noted
above, the absolute paths for each of the files was given as well as an alias. This alias
was the sample number followed by the abbreviation R1 or _R2. These
corresponded to whether the read was the forward (R1) or the reverse (R2). The
first configuration file contained all of the sample files while the second contained
only five sample files. The results of this second configuration file could not be
compared as described below and as such it was only used to ensure that changes to
the pipeline did not result in unexpected program failure.

As described previously, the program requires certain parameters to
be provided within the configuration file. For both the full and abridged sample files
the configuration parameters used for sickle were a quality score of twenty and a
quality score format of “Sanger”. For the PANDAseq configuration inputs the,

arguments passed to the subprocess were pandaseq —f

23

[forward fastq file] —r [reverse fastq file] —B -F —d
[bfsrk] —o [20] > [overlap fastq file]. Briefly, the —f and —r
arguments are the forward and reverse FASTQ files that PANDAseq requires. The -
B, -F and —d arguments allow PANDAseq to ignore missing barcodes or tags,
ensure that the output is in FASTQ format and limiting the output to the user
respectively. The bfsrk value details what kinds of information are displayed to
the user. The —o argument takes the overlap threshold. Finally, the last item is the
name of the output file. These values are passed to the function in which PANDAseq
is called.

The specification “default”, was set for the forward, reverse and threads
arguments. Default needs to be specified as part of the settings string. It cannot be
left blank or the program will not function. The program searches for the value
“default” and if detected, removes the argument that it is attached to from the
PANDAse(d call in the subprocess. The program is capable of accommodating all
arguments for PANDAsed. For the remaining PANDAseq options an overlap of 20
bases was specified and for n bases, the “eliminate n” option, was specified as no.
Setting the “eliminate n” option to no is also a value that the program searches for.
The “no” value causes the program to remove the —N argument from the
PANDAseq call in the subprocess.

To ensure that the program was functioning correctly the results of the
sample dataset analysis were compared to the results of the tutorial analysis
described previously. This tutorial allowed for the direct comparison of the results

of the pipeline to the results of an established pipeline. Practically, as each part of

24

the AMPLIpyth pipeline was coded, its corresponding tutorial section was run on
the command line and the results compared. The completed pipeline had a 1 to 1
result when compared to the tutorial outputs indicating the pipeline was
functioning correctly.

The tutorial however only allowed for the testing of the analytical section of
the pipeline. Testing the graphical outputs required separate verification steps that
consisted of adding code (now removed) to ensure that the contents of the graphs

were the correct translations of the results of the pipeline.

Testing Results

To determine the stability of the AMPLIpyth program and the
reproducibility of its results, the program was run 50 times. The sample dataset of
24 samples (48 FASTQ files) was successfully processed by AMPLIpyth each time.
The average run length of these tests was 17 minutes. The metadata was mined for
the initial reads, trimmed paired-end reads, paired-end reads with changed bases,
changed bases, failed bases, total bases, final paired-end reads and the number of
overlap reads wusing a script written by Dr. Ijaz and available at

www.tinyurl.com/JCBioinformatics. This data mining resulted in identical results

between tests and when compared to the tutorial data. Table 1 is an example

comparison of the tutorial result with a pipeline output.

25

‘s1aedagqunod yafdipdwy nay) 03 1Xau umoys
2B SIS [RLIOIN 2OUAIIIAI 21y Jo s3[nsad ay], auradid yaddidwy 11 Jo (NSt 2ANRIUASIIAAT B [IIM SI[NSII PAYSI[qRISa Jo uospieduio) (1 A[qe],

26

S 3 3 3 08 08 95t 95t 0 0 0 0 3 3 I3 I3
££991 EE991 61691 61691 £5Y5ER L5HYSER J0S9581 J059581 CE9vL CE9VL L9kl L9kl 98691 98691 5T0L1 -89
S51L 6624 66T L BOS6ASE BOS6ASE 0IVIBLL OIvIBLL 5668 5661 IELL LEEL LEEL BSEL 129
O¥BZE 0yBZE 323 Arise 1E6ZL891 1E6ZL891 BrOISEE BLOLSEE E96L2 E96L27 SORLT SORLT 6615E 66158 THTLE 195
LT0SE LTOSE T9ESE (42313 PLSTTVLL PLSTTVLL IVLZE IVLZE Z9Z0E ZT920E E9¥SE E9VSE L6SSE
rESY YERY £L60 £L60 092 LAET 092 LAET 6L¥S 6L¥S Z66% 2661 L005 -5k
9¥E01 IPs0lL L9¥01L L9¥0L 9698818 96985818 6LEBG0E ZBLET ZRLET 66401 66401 LTS0L -8
59%¥ S9¥e yYese Y5 9¥rITIT 9¥¥ITIT LO96YSL 99£S 9988 Ga5L G950 985Y 985 L-TE
BE6TT #E677 PELET PEEET L58B6Y1T L58B6YLT LIGVEST LIGVGT 06E61 06E6T 0tds? 0tese 05¥se 05¥se LT
PELYS COvEs TO¥sS YLTER6IT YLTE669T 0155005 0152005 ELBEY ELHEY SOS1k SOS E6¥ES E6¥SS 96555 96555 102
6L6C1 6L6T1 aL0%1 8L0%t STI6LYYD STI6LYY SP0LBST SP0LBST E99L1 E99L1 £R8111 £R8111 0tIstl ntist DETSL DETsl [42
B9B1E #4981 192Z¢ 1922¢ J00SBLST D00SBLST SL6V0ZE SL6V0ZE 98087 98087 YLH9T ¥LA9T ETLTE #8Eze BHEZE I-E1
¥¥0ET LeOSL ILITL ILIET YO0 L0S9 ¥O0L0S9 6TSLSLT PeEdL PeEVL DISET dLTel aLIst 05t
LELIT LEL9T ¥9692 Y9692 DLYELTET DLVELTET YOVZOVE YOLZOVE CT697 TT692 96E5T ET0LT 98042 980LT i-BT1
PEIL YE91 L9971 L9991 PYBTLE LB £5901% £5901¢ 8902 §90¢ HL61 §L91 6691 6691 971
6856 6H56 £1L6 £1L6 YLOGLLY YLOGLLY DLELHST DLELHST TETLL TETLL 25501 Y¥ib6 YRL6 YBL6 071
T¥EET 158l 0ESEl 0ESEl 9619E99 961999 LOLYOYE LOLYIYE EQL6L EQLAL Z8e51 19551 91951 921951 6L1
260802 Z60E0T 66E50T 66E50T O¥61H9001 Q¥61H9001 S925050L S925050L LBLIEDT LBLEOT LLELS LLELS 05L50T 05L502 SE090T SEO90T Al
09%< 09%s BY5S BY5S ¥S18892 ¥S18897 LI00L6 LI00L6 262l 262l LLLY ¥a55 ¥ass SB55 5855 oSl
cove Z0%L £05L £05L ¥SH1695 ¥SH1695 YISLNEL PISLHEL YiL6 YiLb Atig Aatig B15L BISL GE5L 9E5L Al
9581 9581 L6801 {681 EVEBZH EVERZH L¥igvi L¥igvi 00%e 00%e 1812 1812 Y061 Y061 L061 L061 [=A1
EY98 £Y9E BILE BLLE ¥o0vEat ¥o0vEatL LEETED 0z 0ZHk 6ELY 6ELY LELE 1ELE S¥E S¥E
6R907 68902 Lo0te Lo0tz SSLELEDT SSLELE0T C56TEET C56TEET PASEL PASEL FO¥91 9991 58012 58012 59112 59112 [
98 2928 Z5E5 Z5€ES SOYEEIT SOYEEIT 160946 60946 £559 £559 0568 0568 BIES B9ES ZBES ZBES 601
Speay GUIIAQ sproy sosty paficy Tosty pesLryy Sosty peduryy Sotay puy Sproy

Pug-paditg [Tulg

IM spray
PEd palitd

“palitg paWwIEIZ]

Pug-paditg [cnryj

During each test, AMPLIpyth correctly identified the 498 distinct OTUs
identified in the reference tutorial. To ensure that the results were identical, the
otu_table.csv file was examined after each test. The otu_table.csv contains a list of
the identified OTUs along with the number of reads from each sample that were
identified as parts of that OTU. Each otu_table.csv file was compared to the reference
tutorial otu_table.csv file to ensure a match. The otu_table.csv file is available in
the HTML output folder provided with this report. Upon the completion of the
pipeline an HTML output was successfully generated containing a read retention by
step graph, a changed bases graph, the percent of reads in OTUs graph, a stacked bar
graph showing the proportion of the total OTUs comprising the twenty most
common and all others, the phylogeny and the length distribution graphs for the
forward and reverse reads. A HTML sample output is available on the attached CD.
Below is a walkthrough of a set of representative results.

The HTML output begins with the links to pertinent files (Figure 3). It then
displays the “Read Retention by Analysis Step” graph. During each step of the
pipeline a number of reads are lost. Based on the sample analysis, the largest loss in
reads occurs in the overlapping step. A representative sample of these types of

graph is displayed in figure 4.

27

[file:///Users/DavidMeltzer/Desktop/Amplipyth_Deliverables/HTML

Amplipyth Output Report

Links to Important Files

otus.fa
otus Taxonomy.csv
otus.tre
otu_table.csv

Read Retention at Each Step of the Pipeline

1.000

0.995

0.990

Paired-end Reads
o
o
==
w

Read_Retention_by Analysis_Step

11
1082
1102
N 1132

N\ 1142
1152
172
1192

1202
126-2
1282
131
130-2
1322
01
271

21
38-1
451
511
56-1
62:1
68-1

0.980
0975+
970 L
Initiol Reads Reads after Timming Final PE Reads Qverlap Reads
Pipeline Step
Changed Bases
121e7 Changed_Bases
10

Figure 3: The AMPLIpyth HTML output. This output is generated upon the completion of the
program and contains links to important files and outputs useful for analysis.

28

Read_Retention_by Analysis_Step

1.000 - I
\ 1-1 120-2 32-1
109-2 126-2 38-1
110-2 128-2 45-1
- 113-2 13-1 51-1
0.995} = 114-2 130-2 56-1
115-2 132-2 62-1
117-2 20-1 68-1
119-2 27-1 7-1
0.990 - i}
%)
he]
©
Q
oc
e
c 0.985} i}
¢
T
[}
—
©
(a8
0.980 |- i}
0.975 | i}
0.970 L I L .
Initial Reads Reads after Trimming Final PE Reads Overlap Reads
Pipeline Step

Figure 4: Read Retention by Analysis Step Graph. This graph displays the proportional read
retention by analysis step of the course of the pipeline. The sample alias is displayed in the key on the
upper right corner. The x-axis gives the pipeline step and the y-axis gives the proportion of the
paired-end reads lost.

This graph is followed by a changed bases graph. This graph gives
information on the number of bases changed during the data analysis for each of the

samples. As stated previously, this graph is not proportional (Figure 5).

29

1o le7 Changed_Base

1.0

o
©

o
o

Changed Bases

o
I

0.2

0.0

11 10921102 113-2 114-2 1132 117-2 119-2 120-2 126-2 128-2 13-1 1302 1322 201 27-1 -1 381 4.1 311 01 @1 &1 71

Samples

Figure 5: The Changed Bases Graph. This graph provides the user with information how many
changed bases occurred during the analysis.

Following this is a graph that gives the total amount of reads from each
sample that were identified as belonging to one of the identified OTUs (Figure 6).
This graph’s data is presented as percentages. As with the other graphs it is possible

to go to the source file, in this case out_tabe.csv, and determine the actual numbers.

30

100 Percent of Reads in OTUs

80 |+

60

40 -

Percent of Reads

20+

11 10921102 113-2 114-2 1132 117-2 119-2 120-2 126-2 128-2 13-1 1302 1322 201 27-1 -1 381 4.1 311 01 @1 &1 71

Samples

Figure 6: The Percent of Reads in OTUs Graph. This graph provides the user with information on
what percentage of the reads were identified as part of an OTU.

Well over 90% of reads were identified as mapping to OTUs. This appeared
to be an error at first but discussion with Dr. Ijaz determined that this was not an
uncommon result. The next figure is the phylogenetic tree generated from the

identified OTU data (figure 7).

31

Phylogenetic Tree

Figure 7: Phylogenetic Tree. The phylogenetic tree is generated using the OTU data. It shows the
relationships between the identified OTUs.

The phylogenetic tree was by far the largest file to be output by the
AMPLIpyth program. The output image has the resolution required to examine the
phylogenetic relationships however this is not readily observable on the HTML
output.

The next output displays the proportional abundance of the twenty most
common OTUs identified within the entire study, for each of the samples. As
previously stated, any OTU not specified in this list was lumped into an Other_Otus

category (figure 8).

32

Proportional Abundance of the Twnety Most Common OTUs

1'2 1 I I 1 I I I I 1 I I I I 1 I I I I 1 I I 1 I
- ol [C3otu2 C3otu7 [E3oTul W otu_l0 N OTU8
C3ofu3 [C3J0oTu4 3 OTU_15 =3 OTU6 B OTU_11 B OTU 24
CJorul4a [ortu287 [oOTus5 [OTU 155 [OTU 12 B Other Otus
CJou9 [0TU18 3 OTU 13
©
©
[
o
“— =]
o =
< ccM B R EEBEREN I EREBEENTAEEEHNENR
£
o - -
8. u | —_
| -
— = - - =
co4flH M BB EBEN I AEBERIHI{HHETERHE-
] - — | B
- L - u L B
p—
- = - =
0.0
NN NN N NN NN SN N oo o
OO M<ST N M™~NOOO VWO MONOMNSNMNOBWMMAHOMN O™
O A A A A A N NNAMMANNMM S 00N ©
H oA A A A A A A A —

Figure 8: Proportional Abundance of the Twenty Most Common OTUs. The twenty most
common OTUs identified by the study were graphed against the remained of the OTUs clustered into
a single Other_Otus category.

The final output or outputs depending on the number of samples are the read
distribution by length graphs. The graphs give quantitative information on the
lengths of the reads after quality trimming. Two graphs are generated for pair-end
reads: one for the forward read and one for the reverse read. For the sample data
set of 24 samples in the test data, 48 read length distribution graphs were produced.

A representative pair is shown in figure 9.

33

Counts

Representative Read Length Distribution Graphs

1-1 Forward Read Length Distribution 200000 1-1 Reverse Read Length Distribution

200000

150000 f+

100000+

50000

150000 f+

100000+

Counts

50000

250 300 0 50 100 150 200 250

50 100 150 200
Sequence Length (bp)

Sequence Length (bp)

Figure 9. Representative Read Length Distribution Graphs. These graphs show the distribution
of lengths observed after quality trimming.

The graphs provide valuable information on what effect quality trimming has
had on the overall length of the reads. In this sample data, the majority of the reads
were of high enough quality to not require trimming. This is evidenced by the

majority of the reads being 250 bp.

34

300

Discussion

The goal of this project was to construct an automated pipeline for
metagenomic analysis that required minimal human interaction outside the initial
setup. This was successfully accomplished with the creation of the AMPLIpyth
program. This python based program uses a configuration file to specify the files for
analysis and settings, desired by the user, for the dependent tools. The configuration
file is given as part of three required arguments passed to the program by the user.
Once the program is initiated, no further input is required from the user. Extensive
testing was done to ensure program stability and reproducibility of results. In all
testing program failure was only observed twice, both a function of hitting available
space walls. Results were absolutely consistent both between tests and compared to
an external reference. The program successfully output he desired HTML page.

Sample data testing was covered previously, however it is important to note
that what was observed here may not be observed with other data sets. The largest
percentage of read loss occurred during the overlapping step but it is entirely
possible that this could occur at any other step. Likewise the percentage of reads
mapped to OTUs could be lower or higher. When using the sample data to evaluate
this program it is vital to remember that it was used to show the program'’s
functionality not to display the results of an experiment.

The use of the python module ConfigParser and a configuration file
meant that the settings for the pipeline tools would need to be contained within the
configuration file. Initially a loop was implemented that went through each of the

name:value pairs in the settings sections and passed those arguments to the

35

appropriate functions. It became evident early on that there was an issue which
resulted in the order of the settings not being observed by the program and the
wrong settings were being called at the wrong time. To circumvent this, a single
name “settings” had a value given as a string that contained all of the settings
separated by underscores. This solution, while not ideal, worked and was kept
during the development of the program.

A cursory examination of the source code will reveal hardcoding in several
areas. As with any program, user input had to be balanced with ease of use. Many
aspects of this program could have had user input but did not necessarily require it.
In these areas hard coding was deferred to as the overall goal of the project was to
develop a program that required minimal intervention.

The read length distribution graphs incorrectly display some of their data
through the overlap of the bars on the histogram. To clarify, the data they display is
not incorrect; rather the incrementation on the x-axis is not providing sufficient
space to allow for all of the bars to be displayed where they should be resulting in
overlap. This issue was unable to be resolved in the current iteration of the program

however it will be fixed in future releases.

36

Conclusions/Future Work

The AMPLIpyth program is a ready-to-use solution for metagenomic
analysis. It uses tools that are widely available and well documented. It can be easily
incorporated into existing workflows without the need to substantially change other
procedures. The program design was the benefit of substantial research performed
previously by Dr. Ijaz and his collaborators. This led to a “good value for money”
situation by which the efficacy of design could be assured. This however is a double-
edged sword. The program design while backed by empirical research, is optimized
for Illumina sequencing technology. For the foreseeable future this will suffice
however with recent advances in third generation sequencing technology, it is very
likely that the pipeline will have to be expanded to include these new technologies
and the tools for analyzing their data.

The current program is only designed to use a single core which, while not a
problem for the sample dataset, would result in a problem for much larger datasets.
As such the next iteration of the program will include the capability to take
advantage of multiple cores.

The configuration file is an integral part of the program functionality.
Currently the settings are passed in the form of a string for reasons discussed
previously. This is not ideal since programmatically it is more appropriate for each
setting to be passed as a name:value pair. Future iterations of the program will have
this implemented.

Future iterations of AMPLIpyth will contain changes to the HTML outputs. A

proportionality graph for the changed bases data will be added. It is possible that

37

with some datasets the differences in read count will be so great that the resolution
on a purely quantitative graph would suffer. A second proportional graph will
provide additional context.

The current version of AMPLIpyth outputs a significant amount of text to the
user. This is a result of the normal course of function for each of the tools being
called. Future iterations of the program will have a verbose function added so that

the user may suppress these outputs.

38

10

11

12

References

Deutschbauer, A. M., Chivian, D. and Arkin, A. P. (2006) Genomics for
environmental microbiology. Curr. Opin. Biotechnol. 17, 229-235.

Schloss, P. D. and Handelsman,]. (2005) Metagenomics for studying
unculturable microorganisms: cutting the Gordian knot. Genome Biol. 6, 229.

Simon, C. and Daniel, R. (2011) Metagenomic analyses: Past and future trends.
Appl. Environ. Microbiol. 77, 1153-1161.

Mardis, E. R. (2008) Next-generation DNA sequencing methods. Annu. Rev.
Genomics Hum. Genet. 9, 387-402.

Handelsman, J. (2004) Metagenomics : Application of Genomics to Uncultured
Microorganisms Metagenomics : Application of Genomics to Uncultured
Microorganisms. Microbiol. Mol. Biol. Rev. 68, 669-685.

Bik, H. M., Porazinska, D. L., Creer, S., Caporaso,]. G., Knight, R. and Thomas, W.
K. (2012) Sequencing our way towards understanding global eukaryotic
biodiversity. Trends Ecol. Evol., Elsevier Ltd 27, 233-243.

Edgar, R. C. (2010) Search and clustering orders of magnitude faster than
BLAST. Bioinformatics 26, 2460-2461.

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R, Hartmann, M., Hollister, E.
B., Lesniewski, R. a.,, Oakley, B. B., Parks, D. H., Robinson, C.]., et al. (2009)
Introducing mothur: Open-source, platform-independent, community-

supported software for describing and comparing microbial communities.
Appl. Environ. Microbiol. 75, 7537-7541.

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D.,
Costello, E. K,, Fierer, N., Pefia, A. G., Goodrich,]. K., Gordon, J. I, et al. (2010)
QIIME allows analysis of high- throughput community sequencing data
Intensity normalization improves color calling in SOLiD sequencing. Nat. Publ.
Gr., Nature Publishing Group 7, 335-336.

QIIME Development Team. (2015) QIIME.org.

Schloss, P. and Deparment of Microbiology & Immunology at The University of
Michigan. (2015) mothur.org.

Schirmer, M., ljaz, U. Z., D’Amore, R., Hall, N., Sloan, W. T. and Quince, C. (2015)

Insight into biases and sequencing errors for amplicon sequencing with the
[llumina MiSeq platform. Nucleic Acids Res 1-16.

39

13

14

15

16

17

18

19

20

21

22

23

Thayer, A. M. (2014, August) Next-Gen Sequencing Is A Numbers Game. Chem.
Eng. News.

Joshi, N. and Fass, J. (2011) Sickle: A sliding-window, adaptive, quality-based
trimming tool for FastQ files.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. a., Dvorkin, M., Kulikov, A. S.,
Lesin, V. M., Nikolenko, S. I, Pham, S., Prjibelski, A. D., et al. (2012) SPAdes: A
New Genome Assembly Algorithm and Its Applications to Single-Cell
Sequencing.]. Comput. Biol. 19, 455-477.

Nikolenko, S. I., Korobeynikov, A. I. and Alekseyev, M. a. (2013)
BayesHammer: Bayesian clustering for error correction in single-cell
sequencing. BMC Genomics, BioMed Central Ltd 14 Suppl 1, S7.

Masella, A. P, Bartram, A. K., Truszkowski,]. M., Brown, D. G. and Neufeld,]. D.
(2012) PANDAseq: paired-end assembler for illumina sequences. BMC
Bioinformatics, BioMed Central Ltd 13, 31.

Katoh, K., Misawa, K., Kuma, K. and Miyata, T. (2002) MAFFT: a novel method
for rapid multiple sequence alignment based on fast Fourier transform.
Nucleic Acids Res. 30, 3059-3066.

Katoh, K. and Standley, D. M. (2013) MAFFT multiple sequence alignment
software version 7: Improvements in performance and usability. Mol. Biol.
Evol. 30, 772-780.

Price, M. N,, Dehal, P. S. and Arkin, A. P. (2009) Fasttree: Computing large
minimum evolution trees with profiles instead of a distance matrix. Mol. Biol.
Evol. 26, 1641-1650.

Wang, Q., Garrity, G. M., Tiedje,]. M. and Cole,]. R. (2007) Naive Bayesian
classifier for rapid assignment of rRNA sequences into the new bacterial
taxonomy. Appl. Environ. Microbiol. 73, 5261-5267.

JetBrains s.r.o. (2015) PyCharm Professional Edition, JetBrains s.r.o.

Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces
using phred. II. Error probabilities. Genome Res. 8, 186-94.

40

