
Waikiki, Hawaii, 24 April 2007

Uncertainty Propagation in
Linear Systems: An Exact

Solution Using random Matrix
Theory
S Adhikari

School of Engineering, University of Wales Swansea, Swansea, U.K.

Email: S.Adhikari@swansea.ac.uk

URL: http://engweb.swan.ac.uk/∼adhikaris

Inverse of a Random Matrix – p.1/36

mailto:S.Adhikari@swansea.ac.uk?subject=Enquiry regarding your paper
http://engweb.swan.ac.uk/~adhikaris


Waikiki, Hawaii, 24 April 2007

Outline

Motivation

Current methods for response-statistics calculation

Matrix variate probability density functions

Exact inverse of a general real symmetric random matrix

Exact response moments of linear systems

Numerical example

Conclusions

Inverse of a Random Matrix – p.2/36



Waikiki, Hawaii, 24 April 2007

Background

In many stochastic mechanics problems we need to solve
a system of linear stochastic equations:

Ku = f. (1)

K ∈ R
n×n is a n × n real non-negative definite random

matrix, f ∈ R
n is a n-dimensional real deterministic input

vector and u ∈ R
n is a n-dimensional real uncertain

output vector which we want to determine.

This typically arise due to the discretisation of stochastic
partial differential equations (eg. in the stochastic finite
element method)
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Background

In the context of linear structural mechanics, K is known
as the stiffness matrix, f is the forcing vector and u is the
vector of structural displacements.

Often, the objective is to determine the probability density
function (pdf) and consequently the cumulative
distribution function (cdf) of u. This will allow one to
calculate the reliability of the system.

It is generally difficult to obtain the probably density
function (pdf) of the response. As a consequence,
engineers often intend to obtain only the fist few
moments (typically the fist two) of the response quantity.
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Objectives

We propose an exact analytical method for the inverse of
a real symmetric (in general non-Gaussian) random
matrix of arbitrary dimension.

The method is based on random matrix theory and
utilizes the Jacobian of the underlying nonlinear matrix
transformation.

Exact expressions for the mean and covariance of the
response vector is obtained in closed-form.
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Current Approaches

The random matrix can be represented as

K = K0 + ∆K (2)

K0 ∈ R
n×n is the deterministic part and the random part:

∆K =
m

∑

j=1

ξjK
I
j +

m
∑

j=1

m
∑

l=1

ξjξlK
II
jl + · · · (3)

m is the number of random variables, KI
j ,K

II
jl ∈ R

n×n, ∀ j, l

are deterministic matrices and ξj, ∀ j are real random
variables.
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Perturbation based approach

Represent the response as

u = u0 + ξju
I
j +

m
∑

j=1

m
∑

l=1

ξjξlu
II
jl + · · · . (4)

where

u0 = K0−1

f (5)

uI
j = −K0−1

KI
ju

0, ∀ j (6)

and uII
jl = −K0−1

[KII
jl u

0 + KI
ju

I
l + KI

l u
I
j ], ∀ j, l. (7)
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Neumann expansion

Provided
∥

∥

∥
K0−1

∆K

∥

∥

∥

F
< 1,

K−1 =
[

K0(In + K0−1

∆K)
]−1

= K0−1

− K0−1

∆KK0−1

+ K0−1

∆KK0−1

∆KK0−1

+ · · · .

Therefore,

u = K−1f = u0 − Tu0 + T2u0 + · · · (8)

where T = K0−1

∆K ∈ R
n×n is a random matrix.
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Projection methods

Here one ‘projects’ the solution vector onto a complete
stochastic basis. Depending on how the basis is selected,
several methods are proposed.
Using the classical Polynomial Chaos (PC) projection scheme

u =
P−1
∑

j=0

ujΨj(ξ) (9)

where uj ∈ R
n, ∀j are unknown vectors and Ψj(ξ) are

multidimensional Hermite polynomials in ξr.
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A partial summary

Methods Sub-methods

1. Perturbation First and second order perturbation 1,2,

based methods Neumann expansion 3,4,

improved perturbation method 5.

2. Projection methods Polynomial chaos expansion6,

random eigenfunction expansion 4,

stochastic reduced basis method 7–9,

Wiener−Askey chaos expansion 10–12,

domain decomposition method 13,14.

3. Monte carlo simulation Simulation methods 15,16,

and other methods Analytical method in references 17–21,

Exact solutions for beams 22,23.
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Matrix variate distributions

The probability density function of a random
matrix can be defined in a manner similar to
that of a random variable.

If A is an n × m real random matrix, the matrix
variate probability density function of A ∈ Rn,m,
denoted as pA(A), is a mapping from the
space of n × m real matrices to the real line,
i.e., pA(A) : Rn,m → R.
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Gaussian random matrix

The random matrix X ∈ Rn,p is said to have a matrix variate
Gaussian distribution with mean matrix M ∈ Rn,p and
covariance matrix Σ⊗Ψ, where Σ ∈ R

+
n and Ψ ∈ R

+
p provided

the pdf of X is given by

pX (X) = (2π)−np/2 |Σ|−p/2 |Ψ|−n/2

etr

{

−
1

2
Σ−1(X − M)Ψ−1(X − M)T

}

(10)

This distribution is usually denoted as X ∼ Nn,p (M,Σ ⊗ Ψ).
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Symmetric Gaussian matrix

If Y ∈ R
n×n is a symmetric Gaussian random matrix then its

pdf is given by

pY (Y) = (2π)−n(n+1)/4
∣

∣BT
n (Σ ⊗ Ψ)Bn

∣

∣

−1/2

etr

{

−
1

2
Σ−1(Y − M)Ψ−1(Y − M)T

}

. (11)

This is denoted as Y = YT ∼ SNn,n

(

M,BT
n (Σ ⊗ Ψ)Bn

)

. The

elements of the translation matrix Bn ∈ R
n2×n(n+1)/2 are:

(Bn)ij,gh =
1

2
(δigδjh + δihδjg) , i ≤ n, j ≤ n, g ≤ h ≤ n, (12)
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Matrix variate Gamma
distribution

A n× n symmetric positive definite matrix random W is said to
have a matrix variate gamma distribution with parameters a

and Ψ ∈ R
+
n , if its pdf is given by

pW (W) =
{

Γn (a) |Ψ|−a}−1
|W|a−

1
2
(n+1) etr {−ΨW} ; ℜ(a) >

1

2
(n−1)

This distribution is usually denoted as W ∼ Gn(a,Ψ). Here
the multivariate gamma function:

Γn (a) = π
1
4
n(n−1)

n
∏

k=1

Γ

[

a −
1

2
(k − 1)

]

; forℜ(a) > (n − 1)/2
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Wishart matrix

A n × n symmetric positive definite random matrix S is said to
have a Wishart distribution with parameters p ≥ n and
Σ ∈ R

+
n , if its pdf is given by

pS (S) =

{

2
1
2
np Γn

(

1

2
p

)

|Σ|
1
2
p

}−1

|S|
1
2
(p−n−1)etr

{

−
1

2
Σ−1S

}

(13)

This distribution is usually denoted as S ∼ Wn(p,Σ).
Note: Gn(a,Ψ) = Wn(2a,Ψ−1/2), so that Gamma and Wishart
are equivalent distributions.
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Inverse of a scalar

ku = f (14)

where k, u, f ∈ R. Suppose the pdf k is pk(k) and we are interested in deriving the pdf of

h = k−1. (15)

The Jacobian of the above transformation

J =

˛

˛

˛

˛

∂h

∂k

˛

˛

˛

˛

=
˛

˛−k−2
˛

˛ = |k|−2 . (16)

Using the Jacobian, the pdf of h can be obtained as

ph(h)(dh) = pk(k)(dk) (17)

or ph(h) =
1

˛

˛

˛

∂h
∂k

˛

˛

˛

pk(k) (18)

or ph(h) =
1

J (k = h−1)
pk

`

k = h−1
´

= |h|−2 pk

`

h−1
´

. (19)
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The case of n × n matrices

Suppose the matrix variate probability density function of
the non-singular matrix K is given by pK (K) : R

n×n → R.
Our interest is in the pdf (i.e joint pdf of the elements) of

H = K−1 ∈ R
n×n. (20)

The elements of H are complicated non-linear function of
the elements of K (i.e. even if the elements of K are joint
Gaussian, the elements of H will not be joint Gaussian).

H may not have any banded structure even if K is of
banded nature.
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Pdf transforation in matrix space

The procedure to obtain the pdf of H is very similar to that of
the univariate case:

pH (H) (dH) = pK(K)(dK) (21)

or pH (H) =
1

∣

∣

∣

dH
dK

∣

∣

∣

pK(K) (22)

or pH (H) =
1

J
(

K = H−1
)pK

(

K = H−1
)

(23)

= |H|−(n+1) pK
(

H−1
)

. (24)

For the univariate case (n = 1) Eq. (24) reduces to the familiar
equivalent expression obtained in Eq. (19).
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Derivation of the Jacobian - 1

We have

KK−1 = KH = In. (25)

Taking the matrix differential

(dK)H + K (dH) = On or (dH) = −K−1 (dK)K−1. (26)

Treat (dH) , (dK) ∈ R
n×n as variables and K as constant

since it does not contain (dH) or (dK). Taking the vec of Eq.
(26)

vec (dH) = −vec
(

K−1 (dK)K−1
)

= −
(

K−1 ⊗ K−1
)

vec (dK) .

(27)
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Derivation of the Jacobian - 2

Because (dH) and (dK) are symmetric matrices we need to
eliminate the ‘duplicate’ variables appearing in the preceding
linear transformation. This can be achieved in a systematic
manner by using the translation matrix Bn as

vecp (dH) = B†
nvec (dH) = −

[

B†
n

(

K−1 ⊗ K−1
)

Bn

]

vecp (dK) .

(28)

The Jacobian associated with the above linear transformation
is simply the determinant of the matrix B†

n

(

K−1 ⊗ K−1
)

Bn,
that is

J =
∣

∣B†
n

(

K−1 ⊗ K−1
)

Bn

∣

∣ = |K|−(n+1) . (29)
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RM model for stiffness matrix

If the mean of K is K, then K ∼ Wn (p,Σ), where

p = n + 1 + θ

Σ = K/α

θ =
1

δ2
K

{

1 + {Trace
(

K
)

}2/Trace
(

K
2
)}

− (n + 1)

and α =
√

θ(n + 1 + θ).

δK is the normalized standard-deviation of K:

δ2
K =

E
[

‖K − E [K] ‖2
F

]

‖E [K] ‖2
F

. (30)
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Pdf of K−1

The pdf H = K−1, that is, the joint pdf of all the elements of H

can be obtained as

pH (H) = |H|−(n+1) pK
(

H−1
)

= |H|−(n+1)

{

2
1
2
np Γn

(

1

2
p

)

|Σ|
1
2
p

}−1
∣

∣H−1
∣

∣

1
2
(p−n−1)

etr

{

−
1

2
Σ−1H−1

}

= |H|−(n+1+p)/2

{

2
1
2
np Γn

(

1

2
p

)

|Σ|
1
2
p

}−1

etr

{

−
1

2
Σ−1H−1

}

.

(31)

Using this exact pdf, the moments of the inverse matrix can be
obtained.
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Inverted Wishart matrix

A n × n symmetric positive definite random matrix V is said to
have an inverted Wishart distribution with parameters m and
Ψ ∈ R

+
n , if its pdf is given by

pV (V) =
2−

1
2
(m−n−1)n|Ψ|

1
2 (m−n−1)

Γn

(

1
2
(m − n − 1)

)

|V|m/2
etr

{

−
1

2
V−1Ψ

}

; m > 2n, Ψ > 0.

(32)

This distribution is usually denoted as V ∼ IWn(m,Ψ).

We can show that K−1 ∼ IWn(θ + 2n + 2, αK
−1

).
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Moments of K−1

The first moment (mean), second-moment and the elements
of the covariance tensor of K−1 can be obtained24 exactly in
closed-form as

E
[

K−1
]

=
Ψ

m − 2n − 2
=

α

θ
K

−1
(33)

E
[

K−2
]

=
Trace (Ψ)Ψ + (m − 2n − 2)Ψ2

(m − 2n − 1)(m − 2n − 2)(m − 2n − 4)

E
[

K−1AK−1
]

=
Trace (AΨ)Ψ + (m − 2n − 2)ΨAΨ

(m − 2n − 1)(m − 2n − 2)(m − 2n − 4)

=
α2

(

Trace
(

AK
−1

)

K
−1

+ θK
−1

AK
−1

)

θ(θ + 1)(θ − 2)
.

(34)
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Response Moments - 1

The complete response vector is

u = K−1f. (35)

In many practical problems only few elements of u or
linear combinations of some elements of u may be of
interest. Therefore, we are interested in the quantity

y = Ru = RK−1f; R ∈ R
r×n (36)

The matrix R can be also selected to ‘extract’ other
physical quantities such as the stress components within
one element or a group of elements.
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Response Moments - 2

The mean of y:

ȳ = E [y] = E
[

RK−1f
]

= R E
[

K−1
]

f =
α

θ
RK

−1
f. (37)

The complete covariance matrix of y:

cov (y,y) = E
[

(y − ȳ)(y − ȳ)T
]

= E
[

yyT
]

− ȳȳT

= R E
[

K−1ffTK−1
]

RT − ȳȳT

=
α2Trace

(

ffTK
−1

)

RK
−1

RT + θ(θ + 2)ȳȳT

θ(θ + 1)(θ − 2)
.

(38)
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Steps for complete analysis

Obtain normalized standard deviation

δ2
G =

E
h

‖K−E[K] ‖
2

F

i

‖E[K] ‖
2

F

=
Trace(cov(vec(K)))

Trace

„

K
2

« .

Calculate the constants

θ =
1

δ2
K

{

1 + {Trace
(

K
)

}2/Trace
(

K
2
)}

− (n + 1),

p = n + 1 + θ, α =
√

θ(n + 1 + θ) and Σ = K/α.

The mean: ȳ =
α

θ
RK

−1
f.

The covariance:

cov (y,y) =
α2Trace

(

ffTK
−1

)

RK
−1

RT + θ(θ + 2)ȳȳT

θ(θ + 1)(θ − 2)
.
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Example: A cantilever Plate
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Fixed edge

A steel cantilever plate with a slot; Ē = 200 × 109N/m2, µ̄ = 0.3, t̄ = 7.5mm, Lx = 1.2m,

Ly = 0.8m; 25 × 15 elements resulting n = 1200.
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Stochastic Properties

The Young’s modulus, Poissons ratio and thickness are
random fields of the form

E(x) = Ē (1 + ǫEf1(x)) (39)

µ(x) = µ̄ (1 + ǫµf2(x)) (40)

and t(x) = t̄ (1 + ǫtf4(x)) (41)

The strength parameters are: ǫE = 0.15, ǫµ = 0.10, and
ǫt = 0.15.

The random fields fi(x), i = 1, 2, 3 are delta-correlated
homogenous Gaussian random fields.
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Response calculation

The value of δk (calculated using a 5000-sample Monte
Carlo simulation of the random fields) is obtained as
δK = 0.2616.

From the 1200 × 1200 stiffness matrix we obtain

Trace
(

K
)

= 5.5225×109 and Trace
(

K
2
)

= 9.6599×1016.

and

θ = 3.4274 × 103 and α = 3.9827 × 103.
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Comparison of results

The mean and standard deviation of the response vector. The
numbers in the parenthesis correspond to the percentage
error in the Monte Carlo Simulation (with 1000 samples)
results with respect to the exact analytical results.

Response Analytical MSC Analytical standard MSC standard
quantity mean (mm) mean (mm) deviation (mm) deviation (mm)

y1 = u112 5.5058 5.5178 (0.218 %) 0.1438 0.1459 (1.436 %)

y2 = u325 2.6420 2.6475 (0.208 %) 0.0734 0.0740 (0.818 %)

y3 = u658 10.2265 10.2485 (0.216 %) 0.2537 0.2561 (0.972 %)

y4 = u1045 12.6039 12.6317 (0.221 %) 0.3294 0.3313 (0.570 %)

y5 = u868 5.9608 5.9725 (0.197 %) 0.1586 0.1604 (1.155 %)

y6 = u205 10.2951 10.3169 (0.212 %) 0.2507 0.2547 (1.580 %)
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Convergence of results - 1
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Convergence of results - 2
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Summary - 1

The probabilistic characterization of the response of
linear stochastic systems requires inverse of a real
symmetric random matrix (an outstanding problem for
more than four decades).

An exact and simple closed-form expression of the joint
probability density function of the elements of the inverse
of a symmetric random matrix is derived.

A matrix itself is treated like a variable, as opposed to
view it as a collection of many variables. This outlook
significantly simples the calculation of the Jacobian
involved in the non-linear matrix transformation.
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Summary - 2

The random matrices considered are in general
non-Gaussian and of arbitrary dimensions.

Moments of the response do not require a
series/perturbation/PC expansion.

The numerical implementation is straight-forward and
non-intrusive.
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Open Issues

Any real matrix pdf can be used for pK(K) and the pdf of
H = K−1 can be obtained. However, obtaining the
response pdf (requires further transformation) or
response moments from pH(H) is a not trivial task.

Selecting a matrix variate pdf to matrix data is a
challenging task itself (topic of my Thursdays paper).

The inverse of a complex symmetric random matrix
cannot be obtained easily from the proposed formulation.

As a result, it is applicable to static or undamped systems
only and therefore is of somewhat limited applicability.
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