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Outline of the Talk

» Introduction

= Models of damping: Viscous and non-viscous
damping

m Complex frequencies and modes
= Theory of damping identification
= Numerical Results

= Experimental Results

= Conclusions
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Viscously Damped Systems

Equations of motion:
M3 (t) + Cy (t) + Ky(t) = 0. (2)
Approximate Complex frequency and modes:
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w;. Undamped natural frequency, x;: Undamped modes

', = x: Cx; are the elements of the damping matrix in
modal coordinates.
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Some General Questions of Interest

1. From experimentally determined complex modes can one
Identify the underlying damping mechanism? Is it viscous or
non-viscous? Can the correct model parameters be found
experimentally?

2. ls it possible to establish experimentally the spatial
distribution of damping?

3. Is it possible that more than one damping model with
corresponding correct sets of parameters may represent the
system response equally well, so that the identified model
becomes non-unique?

4. Does the selection of damping model matter from an
engineering point of view? Which aspects of behaviour are

wrongly predicted by an incorrect damping model?
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Non-viscously Damped Systems

Equations of motion:

/ Gt—1)y(r)dr +Ky(t) =0 (2

G(t) is N x N matrix of kernel functions.
Approximate Complex frequency and modes:

N /
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G(w) is the Fourier transform of G(¢), G}, (w;) =
XZG(wj)xl IN Modal COOrdiNAteS. can e spui issisionof bamping be Mesurecr 22



Non-viscous Damping Identification

m Damping model used for fitting:
G(t) = pe " C

= Determine the complex natural frequencies, )\ ;, and
complex mode shapes, z;, from a set of measured
transfer functions. Denote A = diag(A;) € C™™

7 = 21,29, - - - 2n] € CN*M.

-SetQ:%(A),ﬂ:%{Z} andV:%[Z}.

1 9TM S,
TM

= Obtain the relaxation parameter /i =

Can the Spatial Distribution of Damping be Measured? — p.6/22



Non-viscous Damping Identification

A

= Obtain undamped modal matrix X = U — {VQ} .

1

0
-~ “ 11 . .

= Evaluate the matrix B — {XTX} XTIV

A2~ A —1

= From the B matrix, get C' = BO - Q' BQ  and
dia8(C") = S(A)

U . N
= Use C — {(XTX> XT} o {(XTX) XT} to

get the coefficient matrix in physical coordinates.
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Simulation Example

! My K My K, m, K, m, K,

g(t) g(t) N- th
Linear array of N spring-mass oscillators, N = 30,
m, = 1Kgqg, k, =4 x x10°N/m.
Simplest case: the kernel functions have the form

G(t) = Cy(t) (3)

Here ¢(t) is some damping function and C is a positive
definite constant matrix.
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Models of Non-viscous Damping

= MoDEL 1 (exponential): g\V(t) = pje#
=« MODEL 2 (Gaussian): ¢ (t) = 2,/ 22e-net
I

The damping models are normalized such that the
damping functions have unit area when integrated to

Infinity, i.e.,
/ gV (t)dt = 1.
0
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Characteristic Time Constant

For each damping function the characteristic time
constant is defined via the first moment of ¢(¢) as

Hz/oootg(t)dt.

Expressfas: 0 =~T,.n
The constant v Is the non-dimensional characteristic

time constant and 7;,,;,, 1S the minimum time period.
EXpect:

v < 1: nearVISCous
v — O(1) : strongly non-viscous
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Fitted viscous damping matrix for v = 0.02, damping
model 2
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Fitted coefficient matrix of exponential model for v =
0.5, damping model 1;
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Fitted coefficient matrix of exponential model for v =
0.5, damping model 2;
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Imental Setup

] free-free beam:
, width = 39.0 mm Clamped
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Driving Point Transfer Fucntion
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Measured and fitted transfer function of the beam
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Fitted viscous damping matrix for damping between 4-5

n Od eS Can the Spatial Distribution of Damping be Measured? — p.18/22



eh(jC
o

|
a

=}
®)
S
8
+
c
(5]
c
o
o
x
(D)
=]
(<]
+
+—
y—
Y
o
+—
[
R
(S
Y—
—
(«b)
o

C

k—th DOF

Fitted coefficient matrix of exponential model for damping between
4-5 nodes;
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Imaginary parts of the identified complex modes
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A method Is proposed to identify a non-proportional
non-viscous damping model In vibrating systems
from complex modes and natural frequencies.

Numerical results show that the method generally

predicts the spatial location of the damping with
good accuracy.

If the fitted damping model is wrong, the procedure
yields a non-physical result by fitting a
non-symmetric coefficient matrix. That is, the
procedure gives an indication that a wrong model is
selected for fitting.
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It Is possible that more than one damping model
with corresponding correct sets of parameters may
represent the system response equally well. This
means that by measuring transfer functions it Is not
possible to identify the governing damping
mechanism uniquely.

Different damping models can be fitted with the
Identified poles and residues of the transfer functions
so that they are approximated accurately by all
models.

— Yes! — provided the complex modes
are known with sufficient accuracy.
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