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Viscously Damped Systems

Equations of motion:

M
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Approximate Complex frequency and modes:
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� � : Undamped natural frequency, x $ : Undamped modes� �%$( 	 � )$ C �( are the elements of the damping matrix in

modal coordinates.
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Some General Questions of Interest

1. From experimentally determined complex modes can one
identify the underlying damping mechanism? Is it viscous or
non-viscous? Can the correct model parameters be found
experimentally?

2. Is it possible to establish experimentally the spatial
distribution of damping?

3. Is it possible that more than one damping model with
corresponding correct sets of parameters may represent the
system response equally well, so that the identified model
becomes non-unique?

4. Does the selection of damping model matter from an
engineering point of view? Which aspects of behaviour are
wrongly predicted by an incorrect damping model?
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Non-viscously Damped Systems

Equations of motion:

M
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(2)
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is
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matrix of kernel functions.
Approximate Complex frequency and modes:
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is the Fourier transform of
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Non-viscous Damping Identification

Damping model used for fitting:� ��� � 	 �� � � � C
Determine the complex natural frequencies,

� �� , and
complex mode shapes,

� � � , from a set of measured
transfer functions. Denote

��� 	 � ��� 	 � � � 
 ��  �

,��� 	 � � ���� � � &� � � � � � � � 
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.

Set
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,
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and
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Obtain the relaxation parameter
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Non-viscous Damping Identification

Obtain undamped modal matrix

��� 	 ��� '
�

� �
� � � ��� �

.

Evaluate the matrix

��� 	 � � � ) � � � �� ��� ) ���
.

From the
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matrix, get C
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Use
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to

get the coefficient matrix in physical coordinates.
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Simulation Example

N− th

. . .

uk uk um
uk um uk

g(t) g(t)
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Linear array of N spring-mass oscillators,

� 	 ��

,

��� 	 � ��� ,

�
� 	 	 � � � � 
 � � �.

Simplest case: the kernel functions have the form

� ��� � 	 C � ��� �

(3)

Here � ��� �

is some damping function and C is a positive

definite constant matrix.
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Models of Non-viscous Damping

MODEL 1 (exponential): � �� � ��� � 	 �� � � � ! �
MODEL 2 (Gaussian): � � & � ��� � 	 � � &

�
� � �� ��

The damping models are normalized such that the
damping functions have unit area when integrated to
infinity, i.e., �

�

�
� � � ��� � �� 	 � �
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Characteristic Time Constant

For each damping function the characteristic time
constant is defined via the first moment of � ��� �

as

� 	
�

�

� � ��� � �� �
Express

�

as:

� 	 � �� ��� .
The constant � is the non-dimensional characteristic
time constant and

�� ��� is the minimum time period.
Expect:

� � ��� near viscous

� 	 
 � � � � strongly non-viscous
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Viscous Damping Identification
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Viscous Damping Identification
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Non-viscous Damping Identification
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Non-viscous Damping Identification
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Non-viscous Damping Identification
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Experimental Setup

Damped free-free beam:

� � �

m, width =

� �
�
�

mm
thickness =

�
�
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mm
Clamped
damping
mechanism

Instrumented
hammer for
impulse
input
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Measured Transfer Functions
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Viscous Damping Fitting
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Non-viscous Damping Fitting
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Measured Complex Modes
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Summary and Conclusions

A method is proposed to identify a non-proportional
non-viscous damping model in vibrating systems
from complex modes and natural frequencies.

Numerical results show that the method generally
predicts the spatial location of the damping with
good accuracy.

If the fitted damping model is wrong, the procedure
yields a non-physical result by fitting a
non-symmetric coefficient matrix. That is, the
procedure gives an indication that a wrong model is
selected for fitting.
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Summary and Conclusions

It is possible that more than one damping model
with corresponding correct sets of parameters may
represent the system response equally well. This
means that by measuring transfer functions it is not
possible to identify the governing damping
mechanism uniquely.

Different damping models can be fitted with the
identified poles and residues of the transfer functions
so that they are approximated accurately by all
models.

Can the spatial distribution of damping be
measured? — Yes! – provided the complex modes
are known with sufficient accuracy.
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