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Random Systems

Equations of motion:

Mÿ(t) + Cẏ(t) + Ky(t) = p(t) (1)

where M, D and K are respectively the mass, damp-

ing and stiffness matrices, y(t) is the vector of gen-

eralized coordinates and p(t) is the applied forcing

function.

We consider randomness of the system matrices as

M = M + δM

C = C + δC

and K = K + δK.

(2)

Here, (•) and δ(•) denotes the nominal (determin-

istic) and random parts of (•) respectively.



Probabilistic Approach

1. Parametric modeling:

The Stochastic Finite Element Method (SFEM)

• Probability density function pq(q) of random

vectors q ∈ Rl have to be constructed from

the random fields describing the geometry,

boundary conditions and constitutive equa-

tions by discretization of the fields.

• Mappings q → G(q̄ + q);Rl → RN×N , where

G denotes M,C or K, have to be explic-

itly constructed. For an analytical approach,

this step often requires linearization of the

functions.

• For Monte-Carlo-Simulation:

Re-assembly of the element matrices is re-

quired for each sample.

2. Non-parametric modeling:

Direct construction of pdf of M,C and K with-

out having to determine the uncertain local pa-

rameters of a FE model.



Maximum Entropy Principle

What is entropy?

A measure of uncertainty.

For a continuous random variable x ∈ D, Shannon’s

Measure of Entropy (1948):

S(p(x)) = −
∫
D

p(x) ln p(x)dx

Constraint: ∫
D

p(x)dx = 1

Philosophy of Jayne’s Maximum Entropy Principle

(1957):

• Speak the truth and nothing but the truth

• Make use of all the information that is given and

scrupulously avoid making assumptions about

information that is not available.



Maximum Entropy Principle

Only mean is known:

Additional constraint:∫
D

xp(x)dx = m

Construct the Lagrangian as

L =−
∫
D

p(x) ln p(x)dx− λ0

[∫
D

p(x)dx− 1
]

− λ1

[∫
D

xp(x)dx−m

]
=
∫
D

g(p(x))dx

where

g(p(x)) = −p(x) ln p(x)−λ0p(x)−λ1xp(x)+λ0+mλ1

(3)



Maximum Entropy Principle

From the calculus of variation, for δL = 0 it is re-

quired that g(p(x)) must satisfy the Euler-Lagrange

equation

∂g(p(x))

∂p(x)
−

∂

∂x

[
∂g(p(x))

∂p(x)

]
= 0 (4)

Substituting g(p(x)) from (3), equation (4) results

− ln p(x)− 1− λ0 − λ1x + λ1 = 0

or p(x) = Ae−λ1x

That is, exponential distribution.

A and λ1 should be determined from the constraint

equations. The analysis can be extended to vector

valued random variables and random processes.

If mean is unknown then p(x) is constant, ie, uni-

form distribution. This is also known as the Laplace’s

principle of insufficient reason.



Maximum Entropy Principle

Mean and standard deviation is known:

Additional constraint:∫
D
(x−m)2p(x)dx = σ2

Following previous steps

p(x) = Ae−λ1x−λ2x2
(5)

That is, Gaussian distribution.



Soize Model (2000)

The probability density function of any system ma-

trix (say G) is defined as

p[G]([G]) = IM+
N(R)

([G])cG(det[G])λG−1

× exp

(
−

(N − 1 + 2λG)

2
Trace(G)

)
where

cG =
(2π)−N(N−1)/4

(
N − 1 + 2λG

2

)N(N−1+2λG)/2

{∏N
l=1 Γ

(
(N − 1 + 2λG)

2

)}
The ‘dispersion’ parameter

λG =
1

2δ2G

(
1− δ2G(N − 1) +

(Trace[G])2

Trace([G2])

)
and

δG =

{
E‖[G]− [G]‖

‖[G]‖

}1/2

IM+
N(R)

([G]) = 1 if [G] ∈ M+
N(R) otherwise 0. Here

M+
N(R) is the subspace of MN(R) constituted of all

N ×N positive definite symmetric real matrices.



Gaussian Orthogonal Ensembles (GOE)

1. The ensemble (say H) is invariant under every

transformation H → WTHW where W is any

orthogonal matrix.

2. The various elements Hjk, k ≤ j are statistically

independent.

3. Standard deviation of diagonals are twice that

of the off-diagonal terms, σHjj
= 2σHjk

= σ,

∀j 6= k, where σ is some constant.

The probability density function

pH(H) = exp
(
−aTrace(H2) + bTrace(H) + c

)

Probability density function of the eigenvalues of H

p(x1, x2, · · · , xN) = CN exp

−1

2

N∑
j=1

x2
j

∏ |xj − xk|



GOE in structural dynamics

The equations of motion describing free vibration

of a linear undamped system in the state-space

Ay = 0

where A ∈ R2N×2N is the system matrix. Trans-

forming into the modal coordinates

Au = 0

where A ∈ R2N×2N is a diagonal matrix.

Suppose the system is now subjected to n con-

straints of the form

(C− I)

[
u1
u2

]
= 0

where C ∈ Rn×(2N−n) constraint matrix, I is the

n× n identity matrix, u1 and u1 are partition of u.

If the entries of C are independent, then it can

be shown (Langley, 2001) that the random part of

the system matrix of the constrained system ap-

proaches to GOE.



Random Rod

Equations of motion:

∂

∂x

[
AE(x)

∂U

∂x

]
= m(x)

∂2U

∂t2
(6)

Boundary condition: fixed-fixed (U(0)=U(L)=0)

m(x) = m0 [1 + ε1f1(x)]

AE(x) = AE0 [1 + ε2f2(x)]

fi(x) are zero mean random fields.

Deterministic mode shapes:

φk(x) = a sin(kπx/L) where a =
√

2/Lm0

Consider the mass matrix in the deterministic modal

coordinates:

m′
jk =

∫ L

0
φj(x)m0φk(x)dx + ε1

∫ L

0
φj(x)f1(x)φk(x)dx

= m′
0jk

+ ε1∆m′
jk

The random part

∆m′
jk =

∫ L

0
φj(x)f1(x)φk(x)dx

< ∆m′
jk∆m′

rs >=∫ L

0

∫ L

0
φj(x1)φk(x1)φr(x2)φs(x2)Rf1(x1, x2)dx1dx2
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Random Rod

Case 1: f1(x) is δ-correlated (white noise):

Rf1(x1, x2) = Q1δ(x1 − x2)

Results:

• < ∆m′
jj∆m′

rr >=
1

4
a4Q1L, j 6= r

• < ∆m′
jj∆m′

jj >=
3

8
a4Q1L

• < ∆m′
kj∆m′

kj >=
1

4
a4Q1L, k 6= j

• < ∆m′
kj∆m′

rs >= 0

• < ∆m′
kk∆m′

kr >= 0, k 6= r



Random Rod

Case 2: f1(x) is fully correlated:

Rf1(x1, x2) = Q2 for x1, x2 ∈ [0, L]

Results:

• < ∆m′
jj∆m′

rr >=
1

4
a4Q2L2, j 6= r

• < ∆m′
jj∆m′

jj >=
3

8
a4Q2L2

• < ∆m′
kj∆m′

kj >= 0, k 6= j

• < ∆m′
kj∆m′

rs >= 0

• < ∆m′
kk∆m′

kr >= 0, k 6= r



Conclusions and Future Research

• Although mathematically optimal given knowl-
edge of only the mean values of the matrices,
it is not entirely clear how well the results ob-
tained from Soize model will match the statis-
tical properties of a physical system.

• Analytical works show that GOE may be a pos-
sible model for the random system matrices in
the modal coordinates for very large and com-
plex systems.

• The random rod analysis has shown that the
system matrices in the modal coordinates is
close to GOE (but not exactly GOE) rather
than the Soize model.

• Future research will address more complicated
systems and explore the possibility of using GOE
(or close to that, due to non-negative definite-
ness) as a model of the random system matri-
ces. Such a model would enable us to develop
a general Monte-Carlo simulation technique to
be used in conjunction with FE methods.


