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Viscously Damped Systems

Mq̈(t) + Cq̇(t) + Kq(t) = 0. (1)

where M, C and K are the mass, damping

and stiffness matrices respectively. q(t) is the

vector of generalized coordinates.



Complex Frequencies and Modes

The eigenvalue problem associated with equa-

tion (1) can be represented by

λ2
kMuk + λkCuk + Kuk = 0.

The eigenvalues, λk, are the roots of the char-

acteristic polynomial

det
[
s2M + sC + K

]
= 0.

The order of the polynomial is 2N and the

roots appear in complex conjugate pairs.

The eigenvalues are arranged as

s1, s2, · · · , sN , s∗1, s∗2, · · · , s∗N .

Each complex mode satisfies the normalization

relationship

uT
j

[
2sjM + C

]
uj =

1

γj
, ∀k = 1, · · · ,2N



System Randomness

Randomness of the system matrices has the

following form:

M = M + δM,

C = C + δC,

and K = K + δK.

Here, (•) and δ(•) denotes the nominal (deter-

ministic) and random parts of (•) respectively.

It is assumed that δM, δC and δK are zero-

mean random matrices.

The random parts are small and also they are

such that

1. symmetry of the system matrices is pre-

served,

2. the mass matrix M is positive definite, and

3. C and K are non-negative definite.



Statistics of the Eigenvalues

If the random perturbations of the system ma-

trices are small, sj can be approximated by a

first-order Taylor expansion as

sj = s̄j +
N∑

r=1

N∑
s=1

∂sj

∂Krs
δKrs +

N∑
r=1

N∑
s=1

∂sj

∂Crs
δCrs

+
N∑

r=1

N∑
s=1

∂sj

∂Mrs
δMrs

or in a matrix form as

s− s̄ = Ds


δK
δC

δM


where

DT
s =



∂s1
∂K

∂s2
∂K

· · ·
∂sN

∂K
∂s1
∂C

∂s2
∂C

· · ·
∂sN

∂C
∂s1
∂M

∂s2
∂M

· · ·
∂sN

∂M

 ∈ R3N2×N



Derivatives of Complex Eigensolutions

From Adhikari (1999): [AIAA Journal, 37(11),

pp. 1152–1158]

Derivative of the j-th complex eigenvalue

∂sj

∂α
= −γju

T
j

[
s2j

∂M

∂α
+ sj

∂C

∂α
+

∂K

∂α

]
uj.

Derivative of the j-th complex eigenvector

∂uj

∂α
=

2N∑
k=1

a
(α)
jk uk

where

a
(α)
jk = −

γj

sj − sk
uT

k

[
s2j

∂M

∂α
+ sj

∂C

∂α
+

∂K

∂α

]
uj

∀k = 1,2, · · · ,2N, 6= j

and a
(α)
jj = −

γj

2
uT

j

[
2sj

∂M

∂α
+

∂C

∂α

]
uj.



Derivatives w.r.t. the System Matrices

For the eigenvalues:

∂sj

∂Krs
= −γj

(
UrjUsj

)
∂sj

∂Crs
= sj

∂sj

∂Krs

and
∂sj

∂Mrs
= s2j

∂sj

∂Krs
.

For the eigenvectors:

∂Ulj

∂Krs
= −γj

2N∑
k=1
k 6=j

(
UrkUsj

)
sj − sk

Ulk

∂Ulj

∂Crs
= −

γj

2

(
UrjUsj

)
Ulj + sj

∂Ulj

∂Krs

and
∂Ulj

∂Mrs
= −γjsj

(
UrjUsj

)
Ulj + s2j

∂Ulj

∂Krs
.



Statistics of the Eigenvalues

The covariance matrix of the eigenvalues, Σs
is obtained as

Σs =< (s− s̄) (s− s̄)∗
T

>

= Ds

〈
δK
δC

δM




δK
δC

δM


T 〉

D∗T

s = DsΣkcmD∗T

s .

Σkcm ∈ R3N2×3N2
, the joint covariance matrix

of M, C and K is defined as

Σkcm =

 < δKδKT > < δKδCT > < δKδMT >

< δCδKT > < δCδCT > < δCδMT >

< δMδKT > < δMδCT > < δMδMT >

 .



Statistics of the Eigenvectors

For small random perturbations of the system

matrices, uj can be approximated by a first-

order Taylor expansion

uj − ūj = Duj


δK
δC

δM

 .

Duj
, the matrix containing derivatives of uj

with respect to elements of the system matri-

ces, is given by

DT
uj

=



∂U1j

∂K
∂U2j

∂K
· · ·

∂UNj

∂K
∂U1j

∂C
∂U2j

∂C
· · ·

∂UNj

∂C
∂U1j

∂M
∂U2j

∂M
· · ·

∂UNj

∂M

 ∈ R3N2×N

The covariance matrix of j-th and k-th eigen-

vectors

Σujuk
=<

(
uj − ūj

)
(uk − ūk)

∗T
>= Duj

ΣkcmD∗T

uk
.



Numerical example

. . .

uk uk um
uk um uk um ukum

c cuu

Linear array of 8 spring-mass oscillators;

nominal system: mu = 1 Kg, ku = 10 N/m

and cu = 0.1 Nm/s



Statistics of the Eigenvalues
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Statistics of the Eigenvectors

1 2 3 4 5 6 7 8

0

0.5
Mode: 1

1 2 3 4 5 6 7 8

0

0.5
Mode: 2

1 2 3 4 5 6 7 8

0

0.5
Mode: 3

1 2 3 4 5 6 7 8

0

0.5
Mode: 4

1 2 3 4 5 6 7 8

0

0.5
Mode: 5

1 2 3 4 5 6 7 8

0

0.5
Mode: 6

1 2 3 4 5 6 7 8

0

0.5
Mode: 7

1 2 3 4 5 6 7 8

0

0.5
Mode: 8

Real part of mean of the complex modes,

‘X-axis’ DOF; ‘—’ Analytical; ‘-.- -’ MCS



Statistics of the Eigenvectors
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Summary and Conclusions

• An approach has been proposed to obtain

the second-order statistics of complex eigen-

values and eigenvectors of non-proportionally

damped linear stochastic systems.

• It is assumed that the randomness is small

so that the first-order perturbation method

can be applied.

• The covariance matrices of the complex

eigensolutions are expressed in terms of the

covariance matrices of the system proper-

ties and derivatives of the eigensolutions

with respect to the system parameters.

• The proposed method does not require con-

version of the equations of motion into the

first-order form.


