COMPLEX MODES IN LINEAR STOCHASTIC SYSTEMS

 S. Adhikari

 S. Adhikari}

Department of Engineering
University of Cambridge
Trumpington Street Cambridge CB2 1PZ (U.K.)

October, 2000

Outline of the Talk

- Introduction
- Viscously Damped Systems
- Complex frequencies and modes
- System Randomness
- Derivatives of Complex Eigensolutions
- Statistics of Complex Eigensolutions
- Numerical examples
- Summary and Conclusions

Viscously Damped Systems

$\mathbf{M} \ddot{\mathbf{q}}(t)+\mathbf{C}(t)+\mathbf{K q}(t)=\mathbf{0}$.
where \mathbf{M}, \mathbf{C} and \mathbf{K} are the mass, damping and stiffness matrices respectively. $\mathbf{q}(t)$ is the vector of generalized coordinates.

Complex Frequencies and Modes

The eigenvalue problem associated with equation (1) can be represented by

$$
\lambda_{k}^{2} \mathbf{M} \mathbf{u}_{k}+\lambda_{k} \mathbf{C} \mathbf{u}_{k}+\mathbf{K} \mathbf{u}_{k}=\mathbf{0}
$$

The eigenvalues, λ_{k}, are the roots of the characteristic polynomial

$$
\operatorname{det}\left[s^{2} \mathbf{M}+s \mathbf{C}+\mathbf{K}\right]=0
$$

The order of the polynomial is $2 N$ and the roots appear in complex conjugate pairs.

The eigenvalues are arranged as

$$
s_{1}, s_{2}, \cdots, s_{N}, s_{1}^{*}, s_{2}^{*}, \cdots, s_{N}^{*}
$$

Each complex mode satisfies the normalization relationship

$$
\mathbf{u}_{j}^{T}\left[2 s_{j} \mathbf{M}+\mathbf{C}\right] \mathbf{u}_{j}=\frac{1}{\gamma_{j}}, \quad \forall k=1, \cdots, 2 N
$$

System Randomness

Randomness of the system matrices has the following form:

$$
\begin{aligned}
\mathbf{M} & =\overline{\mathbf{M}}+\delta \mathbf{M}, \\
\mathbf{C} & =\overline{\mathbf{C}}+\delta \mathbf{C}, \\
\text { and } \quad \mathbf{K} & =\overline{\mathbf{K}}+\delta \mathbf{K} .
\end{aligned}
$$

Here, $\overline{(\bullet)}$ and $\delta(\bullet)$ denotes the nominal (deterministic) and random parts of (•) respectively. It is assumed that $\delta \mathbf{M}, \delta \mathbf{C}$ and $\delta \mathbf{K}$ are zeromean random matrices.

The random parts are small and also they are such that

1. symmetry of the system matrices is preserved,
2. the mass matrix \mathbf{M} is positive definite, and
3. \mathbf{C} and \mathbf{K} are non-negative definite.

Statistics of the Eigenvalues

If the random perturbations of the system matrices are small, s_{j} can be approximated by a first-order Taylor expansion as

$$
\begin{aligned}
s_{j}=\bar{s}_{j}+\sum_{r=1}^{N} \sum_{s=1}^{N} \frac{\partial s_{j}}{\partial K_{r s}} \delta K_{r s} & +\sum_{r=1}^{N} \sum_{s=1}^{N} \frac{\partial s_{j}}{\partial C_{r s}} \delta C_{r s} \\
& +\sum_{r=1}^{N} \sum_{s=1}^{N} \frac{\partial s_{j}}{\partial M_{r s}} \delta M_{r s}
\end{aligned}
$$

or in a matrix form as

$$
\mathbf{s}-\overline{\mathbf{s}}=\mathcal{D}_{\mathbf{s}}\left\{\begin{array}{c}
\delta \mathcal{K} \\
\delta \mathcal{C} \\
\delta \mathcal{M}
\end{array}\right\}
$$

where

$$
\mathcal{D}_{\mathbf{S}}^{T}=\left[\begin{array}{llll}
\frac{\partial s_{1}}{\partial \mathcal{K}} & \frac{\partial s_{2}}{\partial \mathcal{K}} & \cdots & \frac{\partial s_{N}}{\partial \mathcal{K}} \\
\frac{\partial s_{1}}{\partial \mathcal{C}} & \frac{\partial s_{2}}{\partial \mathcal{C}} & \cdots & \frac{\partial s_{N}}{\partial \mathcal{C}} \\
\frac{\partial s_{1}}{\partial \mathcal{M}} & \frac{\partial s_{2}}{\partial \boldsymbol{\mathcal { M }}} & \cdots & \frac{\partial s_{N}}{\partial \boldsymbol{\mathcal { M }}}
\end{array}\right] \in \mathbb{R}^{3 N^{2} \times N}
$$

Derivatives of Complex Eigensolutions

From Adhikari (1999): [AIAA Journal, 37(11), pp. 1152-1158]

Derivative of the j-th complex eigenvalue

$$
\frac{\partial s_{j}}{\partial \alpha}=-\gamma_{j} \mathbf{u}_{j}^{T}\left[s_{j}^{2} \frac{\partial \mathbf{M}}{\partial \alpha}+s_{j} \frac{\partial \mathbf{C}}{\partial \alpha}+\frac{\partial \mathbf{K}}{\partial \alpha}\right] \mathbf{u}_{j} .
$$

Derivative of the j-th complex eigenvector

$$
\frac{\partial \mathbf{u}_{j}}{\partial \alpha}=\sum_{k=1}^{2 N} a_{j k}^{(\alpha)} \mathbf{u}_{k}
$$

where

$$
\begin{array}{r}
a_{j k}^{(\alpha)}=-\frac{\gamma_{j}}{s_{j}-s_{k}} \mathbf{u}_{k}^{T}\left[s_{j}^{2} \frac{\partial \mathbf{M}}{\partial \alpha}+s_{j} \frac{\partial \mathbf{C}}{\partial \alpha}+\frac{\partial \mathbf{K}}{\partial \alpha}\right] \mathbf{u}_{j} \\
\forall k=1,2, \cdots, 2 N, \neq j \\
\text { and } \quad a_{j j}^{(\alpha)}=-\frac{\gamma_{j}}{2} \mathbf{u}_{j}^{T}\left[2 s_{j} \frac{\partial \mathbf{M}}{\partial \alpha}+\frac{\partial \mathbf{C}}{\partial \alpha}\right] \mathbf{u}_{j} .
\end{array}
$$

Derivatives w.r.t. the System Matrices

For the eigenvalues:

$$
\begin{aligned}
\frac{\partial s_{j}}{\partial K_{r s}} & =-\gamma_{j}\left(U_{r j} U_{s j}\right) \\
\frac{\partial s_{j}}{\partial C_{r s}} & =s_{j} \frac{\partial s_{j}}{\partial K_{r s}} \\
\text { and } \frac{\partial s_{j}}{\partial M_{r s}} & =s_{j}^{2} \frac{\partial s_{j}}{\partial K_{r s}}
\end{aligned}
$$

For the eigenvectors:

$$
\begin{aligned}
\frac{\partial U_{l j}}{\partial K_{r s}} & =-\gamma_{j} \sum_{\substack{k=1 \\
k \neq j}}^{2 N} \frac{\left(U_{r k} U_{s j}\right)}{s_{j}-s_{k}} U_{l k} \\
\frac{\partial U_{l j}}{\partial C_{r s}} & =-\frac{\gamma_{j}}{2}\left(U_{r j} U_{s j}\right) U_{l j}+s_{j} \frac{\partial U_{l j}}{\partial K_{r s}} \\
\text { and } \frac{\partial U_{l j}}{\partial M_{r s}} & =-\gamma_{j} s_{j}\left(U_{r j} U_{s j}\right) U_{l j}+s_{j}^{2} \frac{\partial U_{l j}}{\partial K_{r s}} .
\end{aligned}
$$

Statistics of the Eigenvalues

The covariance matrix of the eigenvalues, $\Sigma_{\mathbf{s}}$ is obtained as

$$
\begin{aligned}
\boldsymbol{\Sigma}_{\mathbf{s}} & =<(\mathbf{s}-\overline{\mathbf{s}})(\mathbf{s}-\overline{\mathbf{s}})^{*^{T}}> \\
& =\mathcal{D}_{\mathbf{s}}\left\langle\left\{\begin{array}{c}
\delta \mathcal{K} \\
\delta \mathcal{C} \\
\delta \mathcal{M}
\end{array}\right\}\left\{\begin{array}{c}
\delta \mathcal{K} \\
\delta \mathcal{C} \\
\delta \mathcal{M}
\end{array}\right\}^{T}\right\rangle \mathcal{D}_{\mathbf{s}}^{*^{T}}=\mathcal{D}_{\mathbf{s}} \boldsymbol{\Sigma}_{k c m} \mathcal{D}_{\mathbf{s}}^{*^{T}}
\end{aligned}
$$

$\Sigma_{k c m} \in \mathbb{R}^{3 N^{2} \times 3 N^{2}}$, the joint covariance matrix of \mathbf{M}, \mathbf{C} and \mathbf{K} is defined as
$\boldsymbol{\Sigma}_{k c m}=\left[\begin{array}{ccc}<\delta \mathcal{K} \delta \mathcal{K}^{T}> & <\delta \mathcal{K} \delta \mathcal{C}^{T}> & <\delta \mathcal{K} \delta \mathcal{M}^{T}> \\ <\delta \mathcal{C} \delta \mathcal{K}^{T}> & <\delta \mathcal{C} \delta \mathcal{C}^{T}> & <\delta \mathcal{C} \delta \mathcal{M}^{T}> \\ <\delta \boldsymbol{M} \delta \mathcal{K}^{T}> & <\delta \boldsymbol{M} \delta \mathcal{C}^{T}> & <\delta \boldsymbol{\mathcal { M }} \delta \mathcal{M}^{T}>\end{array}\right]$.

Statistics of the Eigenvectors

For small random perturbations of the system matrices, \mathbf{u}_{j} can be approximated by a firstorder Taylor expansion

$$
\mathbf{u}_{j}-\overline{\mathbf{u}}_{j}=\mathcal{D}_{\mathbf{u}_{j}}\left\{\begin{array}{c}
\delta \mathcal{K} \\
\delta \mathcal{C} \\
\delta \mathcal{M}
\end{array}\right\} .
$$

$\mathcal{D} \mathbf{u}_{j}$, the matrix containing derivatives of \mathbf{u}_{j} with respect to elements of the system matrices, is given by

$$
\mathcal{D}_{\mathbf{u}_{j}}^{T}=\left[\begin{array}{llll}
\frac{\partial U_{1 j}}{\partial \mathcal{K}} & \frac{\partial U_{2 j}}{\partial \mathcal{K}} & \cdots & \frac{\partial U_{N j}}{\partial \mathcal{K}} \\
\frac{\partial U_{1 j}}{\partial \mathcal{C}} & \frac{\partial U_{2 j}}{\partial \mathcal{C}} & \cdots & \frac{\partial U_{N j}}{\partial \mathcal{C}} \\
\frac{\partial U_{1 j}}{\partial \boldsymbol{\mathcal { M }}} & \frac{\partial U_{2 j}}{\partial \boldsymbol{\mathcal { M }}} & \cdots & \frac{\partial U_{N j}}{\partial \boldsymbol{\mathcal { M }}}
\end{array}\right] \in \mathbb{R}^{3 N^{2} \times N}
$$

The covariance matrix of j-th and k-th eigenvectors

$$
\boldsymbol{\Sigma}_{\mathbf{u}_{j} \mathbf{u}_{k}}=<\left(\mathbf{u}_{j}-\overline{\mathbf{u}}_{j}\right)\left(\mathbf{u}_{k}-\overline{\mathbf{u}}_{k}\right)^{*^{T}}>=\mathcal{D}_{\mathbf{u}_{j}} \boldsymbol{\Sigma}_{k c m} \mathcal{D}_{\mathbf{u}_{k}}^{*^{T}} .
$$

Numerical example

Linear array of 8 spring-mass oscillators;
nominal system: $m_{u}=1 \mathrm{Kg}, k_{u}=10 \mathrm{~N} / \mathrm{m}$ and $c_{u}=0.1 \mathrm{Nm} / \mathrm{s}$

Statistics of the Eigenvalues

(a)

(b)

(a) Absolute value of mean of complex natural frequencies
(b) Standard deviation of complex natural frequencies; 'X-axis' Mode number; '-' Analytical; ‘-.-.-’ MCS

Statistics of the Eigenvectors

Mode: 1

Mode: 7

Mode: 2

Real part of mean of the complex modes,
'X-axis’ DOF; ‘--' Analytical; '-.- -' MCS

Statistics of the Eigenvectors

Standard deviation of the complex modes, ‘X-axis’ DOF; ‘-_' Analytical; ‘-.-.-’ MCS

Summary and Conclusions

- An approach has been proposed to obtain the second-order statistics of complex eigenvalues and eigenvectors of non-proportionally damped linear stochastic systems.
- It is assumed that the randomness is small so that the first-order perturbation method can be applied.
- The covariance matrices of the complex eigensolutions are expressed in terms of the covariance matrices of the system properties and derivatives of the eigensolutions with respect to the system parameters.
- The proposed method does not require conversion of the equations of motion into the first-order form.

