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Introduction

Lattice based metamaterials

Metamaterials are artificial materials designed to outperform naturally

occurring materials in various fronts.

We are interested in mechanical metamaterials - here the main concern

is in mechanical response of a material due to applied forces

Lattice based metamaterials are abundant in man-made and natural
systems at various length scales

Among various lattice geometries (triangle, square, rectangle, pentagon,
hexagon), hexagonal lattice is most common

This talk is about in-plane elastic properties of 2D hexagonal lattice
materials - commonly known as “honeycombs”
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Introduction

Mechanics of lattice materials

Honeycombs have been modelled as a continuous solid with an
equivalent elastic moduli throughout its domain.

This approach eliminates the need of detail numerical (finite element)
modelling in complex structural systems like sandwich structures.

Extensive amount of research has been carried out to predict the
equivalent elastic properties of regular honeycombs consisting of

perfectly periodic hexagonal cells (Gibson and Ashby, 1999).

Analysis of two dimensional honeycombs dealing with in-plane elastic
properties are commonly based on the assumption of static forces

In this work, we are interested in in-plane elastic properties when the
applied forces are dynamic in nature

Dynamic forcing is relevant, for example, in helicopter/wind turbine

blades, aircraft wings where light weight and high stiffness is necessary
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Static homogenised properties

Equivalent elastic properties of regular honeycombs

Unit cell approach - Gibson and Ashby (1999)

(a) Regular hexagon (θ = 30◦) (b) Unit cell

We are interested in homogenised equivalent in-plane elastic properties

This way, we can avoid a detailed structural analysis considering all the
beams and treat it as a material
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Static homogenised properties

Equivalent elastic properties of regular honeycombs

The cell walls are treated as beams of thickness t, depth b and Young’s

modulus Es. l and h are the lengths of inclined cell walls having
inclination angle θ and the vertical cell walls respectively.

The equivalent elastic properties are:
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Static homogenised properties

Finite element modelling and verification

A finite element code has been developed to obtain the in-plane elastic

moduli numerically for honeycombs.

Each cell wall has been modelled as an Euler-Bernoulli beam element
having three degrees of freedom at each node.

For E1 and ν12: two opposite edges parallel to direction-2 of the entire

honeycomb structure are considered. Along one of these two edges,
uniform stress parallel to direction-1 is applied while the opposite edge is

restrained against translation in direction-1. Remaining two edges
(parallel to direction-1) are kept free.

For E2 and ν21: two opposite edges parallel to direction-1 of the entire

honeycomb structure are considered. Along one of these two edges,
uniform stress parallel to direction-2 is applied while the opposite edge is

restrained against translation in direction-2. Remaining two edges

(parallel to direction-2) are kept free.

For G12: uniform shear stress is applied along one edge keeping the

opposite edge restrained against translation in direction-1 and 2, while
the remaining two edges are kept free.
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Static homogenised properties

Finite element modelling and verification
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θ = 30◦, h/l = 1.5. FE results converge to analytical predictions after 1681
cells.
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Unit cell deformation using the stiffness matrix

The deformation of a unit cell

(a) Deformed shape and free body diagram under the application of stress in direction

- 1 (b) Deformed shape and free body diagram under the application of stress in

direction - 2 (c) Deformed shape and free body diagram under the application of shear

stress (The undeformed shapes of the hexagonal cell are indicated using blue colour

for each of the loading conditions.
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Unit cell deformation using the stiffness matrix

The element stiffness matrix of a beam

The equation governing the transverse deflection V (x) of the beam can

be expressed as

EI
d4V (x)

dx4
= f (x) (6)

It is assumed that the behaviour of the beam follows the Euler-Bernoulli

hypotheses

Using the finite element method, the element stiffness matrix of a beam
can be expressed as

A =
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Unit cell deformation using the stiffness matrix

Equivalent elastic properties

Young’s modulus E1:
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(•)v = vertical element; (•)s = slant element
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Dynamic homogenised properties

Dynamic equivalent proerties

(a) Typical representation of a hexagonal lattice structure in a dynamic environment

(e.g., the honeycomb as part of a host structure experiencing wave propagation). (b)

One hexagonal unit cell under dynamic environment (c) A dynamic element for the

bending vibration of a damped beam with length L. It has two nodes and four degrees

of freedom.
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Dynamic homogenised properties

Dynamic stiffness matrix

Individual elements of the lattice have been considered as damped
Euler-Bernoulli beams with the equation of motion
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Using the dynamic finite element method, the element stiffness matrix of
a beam can be expressed as

A =
EIb
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where

C = cosh(bL), c = cos(bL), S = sinh(bL) and s = sin(bL) (13)

b
4 =

mω2 (1 − iζm/ω)

EI (1 + iωζk )
; ζk = c1/(EI), ζm = c2/m (14)
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Dynamic homogenised properties

Equivalent dynamic elastic properties

Young’s modulus E1:
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Results

Frequency dependent Young’s modulus: E1

(c) h/l = 1 (d) h/l = 1.5

Figure: Frequency dependent Young’s modulus (E1) of regular hexagonal lattices with

θ = 30◦ and ζm = 0.05 and ζk = 0.002
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Results

Frequency dependent Young’s modulus: E2

(a) h/l = 1 (b) h/l = 1.5

Figure: Frequency dependent Young’s modulus (E2) of regular hexagonal lattices with

θ = 30◦ and ζm = 0.05 and ζk = 0.002
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Results

Frequency dependent shear modulus: G12

(a) h/l = 1 (b) h/l = 1.5

Figure: Frequency dependent shear modulus (G12) of regular hexagonal lattices with

θ = 30◦ and ζm = 0.05 and ζk = 0.002
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Results

Effect of variation in mass proportional damping factor

(a) E1 (b) E2

(c) G12
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Results

Effect of variation in stiffness proportional damping factor

(a) E1 (b) E2

(c) G12
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Conclusions

Conclusions

Equivalent dynamic homogenised elastic properties of damped cellular
metamaterials have been considered.

It is shown that the material is anisotropic with complex-valued equivalent
elastic moduli.

The two Young’s moduli and shear modulus are dependent on frequency
values. Two in-plane Poisson’s ratios depend only on structural geometry

of the lattice structure.

Using the principle of basic structural dynamics on a unit cell with a
dynamic stiffness technique, closed-form expressions have been

obtained for E1, E2, ν12, ν21 and G12.

The new results reduce to the classical formulae of Gibson and Ashby for

the special case when frequency goes to zero (static).

Future research will consider different types of unit cell geometries.
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Conclusions

Closed-form expressions: Dynamic Homogenisation
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In the limit, frequency ω → 0, they reduce to the classical ‘static’ homogenised

values.
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Conclusions
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