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Application of MEMS devices

Automotive (MEMS pressure sensors)

Biomedical (smart pills)

Wireless and optical communications

Optical displays

Chemical
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Types of actuation mechanism in MEMS

Electrostatic
Thermal
Pneumatic
Piezoelectric

Pull-in: the voltage
at which the
system becomes
unstable
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Motivation- the objective of this work

The objective of this study is:

to minimize the vibration amplitude of a MEMS device by
controlling the resonance frequency of the system.

To this end,

DC voltages are applied to the electrodes to change the
resonance frequency of the system.

Applying DC voltages to the system makes the system non-
linear. To solve the non-linear system of equations,

the non-linearity is parametrised by a set of ’non-linear control
parameters’ such that the dynamic system is effectively linear
for zero values of these parameters and non-linearity increases
with increasing values of these parameters.
’non-linear control parameters’ are the applied DC voltages in
this problem as when they are zeros, the system is linear.
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Incremental non-linear control parameters (1)

The idea is to develop an extended harmonic balance method
for the steady-state solution of non-linear multiple-degree-of-
freedom dynamic problems based on incremental non-linear con-
trol parameters.

The method only requires the solution of linear equations for
the non-linear problem

It also provides the sensitivities of the solution with respect to
non-linear control parameters.

The non-linear control parameters are those with which the
non-linearity in the model is triggered.
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Incremental non-linear control parameters (2)

This property of the non-linear control parameters can be ex-
ploited in the solution of a non-linear problem.

They are incremented from zero to one (note that the parame-
ters are normalised so that the maximum values are unity) and
a linear equation giving the sensitivities of the responses with
respect to the parameters is obtained at each increment.

Using these sensitivities, the solution at each step can be cal-
culated through the solution at the previous increment.

The method starts from the linear system and continues until
all non-linear control parameters reach unity.
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Description of the method

Consider the model of a MEMS cantilever beam with electrodes
(shown in the figure below)
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Mathematical model

The equation of motion of the beam can be expressed as:
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The nondimensionalized equation of the micro-beam

The electrostatic force functions in Eq.(1) may be expressed in
terms of its Taylor series.

Therefore the nondimensionalised form of Eq.(1) with the trun-
cated cubic terms of electrostatic force becomes
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Is cubic order accurate enough?

This depends on the amplitude of excitation frequency and
damping
If the beam is excited at its first non-dimensionalized resonance
frequency and V1 = V2 = 7 V and z0 = 0.1 µm, the electro-
static force can be estimated by its third-order Taylor series
with a reasonable degree of accuracy. This is shown in the
figure below
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How the method works

When the voltages are zeros, the system is linear and therefore
the solution of linear system can be assumed as

ŵ0 =
N
∑

j=1

Yj (x)
(

Q0jexp
(

iΩ̂t̂
)

+ cc.
)

(3)

where Q0j , the components of vector q0 ∈ R
N , are obtained

from the following equation

q0 =
[

−Ω̂2M + iΩ̂C + K
]

−1
F (4)
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Linear system

The non-linear control parameters are normalised in which θi =
Vi

Vpi
(Vpi is pull-in voltage (the maximum voltage that can be

applied to the system)

If all the normalised non-linear parameters are perturbed by δθ,
the steady state solution of weakly non-linear system may be
expressed by

ŵ1 = ŵ0 +
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)

δθ + O
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)
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Perturbation

Substituting ŵ1 = ŵ0 + ´̂w1δθ into the governing equation of
the beam and neglecting the higher order terms of δθ yield

(

∂4 ´̂w1

∂x4
+ c

∂ ´̂w1

∂t̂
+

∂2 ´̂w1

∂t̂2
+ α1 (θ) ´̂w1

)

δθ+

α1 (θ) ŵ0 + α3 (θ)
(

ŵ0
3 + 3ŵ0

2 ´̂w1δθ
)

= 0 (6)

The above partial differential equation is a linear function in
terms of ´̂w1 and standard discretization methods (such as Galerkin)
can be used to obtain the solution of ´̂w1.
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Non-linear solution (1)

The steady state solution of ´̂w1 includes primary and higher
harmonics of the excitation frequency. One may ignore the
higher harmonics and assume

´̂w1 =
m
∑

j=1

Yj(x)
(

Q́1jexp
(

iΩ̂t̂
)

+ cc.
)

(7)

Balancing the harmonic terms and applying standard Galerkin
projection gives

A1q́1 = b1 (8)

where q́1 =
{

Q́1j

}

∈ R
N
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Non-linear solution (2)

The same assumption, i.e. ŵk+1 = ŵk + ´̂wkδθ, can be made
for the following iterations and obtain the following recursive
linear system of equations

Ak q́k = bk (9)

where q́1 =
{

Q́1j

}

∈ R
N . This will continue until the non-

dimensionalised non-linear control parameters reach unity.
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Validation by numerical integration

Validation of the results. Left figure: mode 1 and right figure:
mode 2.
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Frequency Response function

Frequency and phase responses of beam-tip displacement
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Sensitivities

Sum of sensitivities of frequency and phase responses of beam-
tip displacement with respect to V1 and V2
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Vibration suppression of MEMS devices (1)

Vibration suppression using the applied voltages in case 1 when
V1 = V2. Left figure: mode 1 and right figure: mode 2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Frequency Ω̂

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
ip

d
is
p
la
ce
m
en
t
|ŵ
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Vibration suppression of MEMS devices (2)

Vibration suppression using the applied voltages in case 2 when
V2 = 4V1 Left figure: mode 1 and right figure: mode 2.
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Comparison between case 1 and 2

In both cases, at frequency points about the first resonance, the
proposed method is capable of reducing the vibration level of
the MEMS device to acceptable level, i.e. 0.01 (non-dimensionalised
displacement).

However, the system requires 17% less total voltages in case 2
to obtain this objective.

the vibration level at frequency points around the second mode
did not reach the acceptable vibration level in neither of the
two cases, albeit it significantly reduced as shown in the table
of next slide. Interestingly, the reductions in case 2 are greater
than case 1.

The main observation is that the initial selection of V1/V2 can
have significant effect on the efficiency of the system in terms
of required voltages for vibration control.
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Comparison between case 1 and 2

Micro-beam tip Displacement (Disp.) at different excitation
frequencies and the applied DC voltages

Frequency Tip Disp. at V1 = V2 = 0 Tip Disp. at V1 = V2 = V Tip Disp. at V2 = 4V1 = V

3.32 0.035 0.01 at V = 8.4 V 0.01 at V = 11.04 V

3.52 0.062 0.01 at V = 8.88 V 0.01 at V = 11.68 V

3.72 0.039 0.01 at V = 9.36 V 0.01 at V = 12.16 V

21.73 0.097 0.077 at V = 12 V 0.036 at V = 16 V

22.02 0.22 0.044 at V = 12 V 0.026 at V = 16 V

22.43 0.073 0.026 at V = 12 V 0.018 at V = 16 V
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Conclusions and Future Works

A formulation for calculation of the steady state responses of
non-linear dynamic systems and their sensitivities with respect
to non-linear control parameters is shown.

This formulation is exploited in vibration suppression of a MEMS
device.

It was observed that the performance of vibration control de-
pends on the initial choice of the relation between voltage
sources.

This highlights the importance of performing an optimisation
problem to achieve the best performance.

Future work will be focused on the solution to an optimization
problem that find the optimal relation between the voltages in
which the total voltage required for control is minimized.
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