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Introduction

Nano mechanical sensors

Progress in nanotechnologies has brought about a number of highly

sensitive label-free biosensors.

These include electronic biosensors based on nanowires and nanotubes,

optical biosensors based on nanoparticles and mechanical biosensors

based on resonant micro- and nanomechanical suspended structures.

In these devices, molecular receptors such as antibodies or short DNA

molecules are immobilized on the surface of the micro-nanostructures.
The operation principle is that molecular recognition between the

targeted molecules present in a sample solution and the

sensor-anchored receptors gives rise to a change of the optical, electrical
or mechanical properties depending on the class of sensor used.

These sensors can be arranged in dense arrays by using established

micro- and nanofabrication tools.
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Introduction

Cantilever nano-sensor

Array of cantilever nano sensors (from http://www.bio-nano-consulting.com)
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Introduction

The mechanics behind nanomechanical sensors

(From Tamayo et. al.)
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Introduction

The need for identifying rotary inertia

Vibrating nano-mechanical cantilevers have received wide attention due
to the possibility of obtaining resonance frequency very accurately.

Existing approaches mainly focus on sensing of an attached mass to a

cantilever sensor by exploiting the shift in the first mode of vibration

The magnitude of the mass gives the basic information of an attached

object. But it gives no information about the shape of and size of such
objects.

Rotary inertia can give some further insights into its shape and size.

This work proposes a novel way by which both the mass and rotary

inertia of an object can be obtained simultaneously from frequency shifts.

With the additional information of the rotatory inertia, it may be possible
to infer more about the attached object to a cantilever nanosensor, which

is a key motivation for this work.
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Introduction

Mass and rotary inertia sensing - an inverse problem

This talk will focus on the detection of mass and rotary inertia based on
shifts in frequency.

Mass and rotary inertia sensing is an inverse problem.

The “answer” in general in non-unique. An added mass and rotary inertia
at a certain point on the sensor will produce unique frequency shifts.

However, for a given frequency shifts, there can be many possible
combinations of mass and rotary inertia values and locations.

Therefore, predicting the frequency shifts - the so called “forward

problem” is not enough for sensor development.

Advanced modelling and computation methods are available for the

forward problem. However, they may not be always readily suitable for the
inverse problem if the formulation is “complex” to start with.

Often, a carefully formulated simplified computational approach could be
more suitable for the inverse problem and consequently for reliable

sensing.
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Dynamics of nano-cantilevers with attached mass Equation of motion and boundary conditions

Single-walled carbon nanotube based sensors

A cantilevered carbon nanotube resonator with attached mass. The inertia effect

arises from ‘height’ of the attached object (DeOxy Thymidine used as an example). (a)

Original configuration with a point mass at the tip; (b) Mathematical idealisation with a

point mass at the tip.
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Dynamics of nano-cantilevers with attached mass Equation of motion and boundary conditions

Euler-Bernoulli beam thoery

The equation of motion of free-vibration using Euler-Bernoulli beam

bending theory can be expressed as

EI
∂4y(x , t)

∂x4
+ ρA

∂2y(x , t)

∂t2
= 0 (1)

where x is the coordinate along the length of the cantilever oscillator, t is
the time, y(x , t) is the transverse displacement of the cantilever oscillator,

E is the Young’s modulus, I is the second-moment of the cross-sectional
area A and ρ is the density of the material. Suppose the length of the

cantilever oscillator is L.

For the cantilevered oscillator without any attached mass, the resonance
frequencies can be obtained from

f0j
=

c0

2π
λ2

j , c0 =

√

EI

ρAL4
(2)
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Dynamics of nano-cantilevers with attached mass Equation of motion and boundary conditions

Free vibration of a cantilevered oscillator

The constants λj should be obtained by solving the following
transcendental equation

cosλ coshλ+ 1 = 0 (3)

The vibration mode shape can be expressed as

Yj(ξ) =
(
coshλjξ − cosλjξ

)
−
(

sinhλj − sinλj

coshλj + cosλj

)
(
sinhλjξ − sinλjξ

)
(4)

where ξ = x
L

is the normalised coordinate along the length of the

cantilever oscillator.

The values of λ arising from the solution of equation (3) are be given by

λ1 = 1.8751, λ2 = 4.6941, λ3 = 7.8547, λ4 = 10.9954 and λ5 = 14.1371.

For j > 5, in general λj = (2j − 1)π/2.

For sensing applications, we are interested in the first few modes of

vibration only. In this paper the first two modes of vibration will be used.
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Dynamics of nano-cantilevers with attached mass Equation of motion and boundary conditions

Cantilevered oscillator with attached mass and rotary inertia

A

A

Section A-A

t d
i

L

h

Illustrative diagram of a cantilevered nanotube resonator with an attached

mass and rotary inertia at the tip.
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Dynamics of nano-cantilevers with attached mass Equation of motion and boundary conditions

Boundary conditions

Deflection at x = 0:

y(0, t) = 0 (5)

Slope at x = 0:

∂y(x , t)

∂x
= 0 (6)

Bending moment at x = L:

EI
∂2y(x , t)

∂x2
+ J

∂ÿ(x , t)

∂x
= 0

∣
∣
∣
∣
x=L

(7)

Shear force at x = L:

EI
∂3y(x , t)

∂x3
− Mÿ(x , t) = 0

∣
∣
∣
∣
x=L

(8)

Here ˙(•) denotes derivative with respective to t.
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Dynamics of nano-cantilevers with attached mass Equation of motion and boundary conditions

Cantilevered oscillator with attached mass and rotary inertia

Assuming harmonic solution we have

y(x , t) = Y (ξ)exp[iωt] (9)

where i is the unit imaginary number i =
√
−1 and ω is the frequency.

Substituting this in the equation of motion and the boundary conditions

∂4Y (ξ)

∂ξ4
− Ω2Y (ξ) = 0 (10)

Y (0) = 0,Y ′(0) = 0,Y ′′(1)− βΩ2Y ′(1) = 0 and Y ′′′(1) + αΩ2Y (1) = 0
(11)

Here (•)′ denotes derivative with respective to ξ and

Ω2 = ω2/c2
0 (nondimensional frequency parameter) (12)

α=
M

ρAL
(mass ratio) (13)

and β=
J

ρAL3
(inertia ratio) (14)
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Dynamics of nano-cantilevers with attached mass Frequency equation

Equation governing the natural freqnecues

Assuming a solution of the form

Y (ξ) = exp {λξ} (15)

and substituting in the equation of motion (10) results

λ4 − Ω2 = 0 or λ = ±iΩ, ±Ω (16)

In view of the roots in equation (16), the solution Y (ξ) can be expressed

as

Y (ξ) = a1 sinλξ + a2 cosλξ + a3 sinhλξ + a4 coshλξ

or Y (ξ) = sT (ξ)a
(17)

Here the vectors

s(ξ) = {sinλξ, cosλξ, sinh λξ, coshλξ}T
(18)

and a = {a1, a2, a3, a4}T
. (19)
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Dynamics of nano-cantilevers with attached mass Frequency equation

Equation governing the natural freqnecues

Applying the boundary conditions in equation (11) on the expression of
Y (ξ) in (17) we have

Ra = 0 (20)

where R is a 4 × 4 matrix.

The natural frequencies is given by

det {R} = 0 (21)

Simplifying this we have:

(
(1 − cos (λ) cosh (λ))λ3β − sin (λ) cosh (λ) + cos (λ) sinh (λ)

)
λα

− (cos (λ) sinh (λ) + sin (λ) cosh (λ))λ3β + [cos (λ) cosh (λ) + 1] = 0

(22)

Due to the nonlinearity of this transcendental equation, it needs to be

solved numerically.
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Energy approach for vibrational frequencies

Approximation based on assumed mode

The exact analytical frequency equation is complex enough so that a

simple relationship between the change in the mass and rotary inertia
and the shift in the frequency is not available.

As we have two unknowns α and β, two frequency shifts are necessary to
identify them.

An arbitrary j-th natural frequency of a cantilever oscillator can be
expressed as

fj =
1

2π

√

keqj

meqj

, j = 1, 2, 3 · · · (23)

Here keqj
and meqj

are respectively equivalent stiffness and mass of the

cantilever oscillator in the j-th mode of vibration.

The equivalent mass meq j
changes depending on the mass and inertia of

the attached object.

Suppose Yj is the assumed displacement function for the j-th mode of
vibration. We consider this to be the vibration mode of the cantilever only.
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Energy approach for vibrational frequencies

Kinetic and potential energy of the system

The kinetic energy of the system contributes to meq j
while the potential

energy contributes to keqj
.

The total kinetic energy comes from three components, namely, the

kinetic energy of the cantilever, kinetic energy of the attached mass due
to linear velocity and kinetic energy of the attached mass due to rotational

velocity.

Assuming harmonic motion, the overall equivalent mass meq j
can be

expressed as

meq j
= ρAL

∫ 1

0

Y 2
j (ξ)dξ + MY 2

j (1) + J

(
∂Yj

∂x

)2
∣
∣
∣
∣
∣
ξ=1

(24)

= ρAL

∫ 1

0

Y 2
j (ξ)dξ + MY 2

j (1) +
J

L2
Yj

′2(1) (25)

= ρAL








∫ 1

0

Y 2
j (ξ)dξ

︸ ︷︷ ︸

I1

+αY 2
j (1) + βYj

′2(1)








(26)
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Energy approach for vibrational frequencies

Kinetic and potential energy of the system

From the potential energy, the equivalent stiffness keqj
can be obtained as

keqj
=

EI

L3

∫ 1

0

Y
′′2

j (ξ)dξ

︸ ︷︷ ︸

I2

(27)

From these equations we have

keqj

meqj

=

(
EI

ρAL4

)
I2

I1 + αY 2
j (1) + βYj

′2(1)
(28)

Using the expression of the natural frequency we have

fj =
1

2π

√

keqj

meqj

=
c0

2π

γ1j
√

1 + γ2j
α+ γjβ

, j = 1, 2, 3, · · · (29)
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Energy approach for vibrational frequencies

Approximate frequency equation

The mode dependent constants can be evaluated exactly as

γ1j
=

√

I2

I1
=

√
√
√
√

∫ 1

0
Y

′′2

j (ξ)dξ
∫ 1

0
Y 2

j (ξ)dξ
= λ2

j

γ2j
=

Y 2
j (1)

I1
=

Y 2
j (1)

∫ 1

0
Y 2

j (ξ)dξ
= 4 (for all j)

and γj =
Yj

′2(1)

I1
=

Yj
′2(1)

∫ 1

0
Y 2

j (ξ)dξ

(30)

In view of the above expressions we have

fj =
1

2π

√

keqj

meq j

=
c0

2π

λ2
j

√
1 + 4α+ γjβ

, j = 1, 2, 3, · · · (31)

Since we have two parameters to identify, only the first two modes are
necessary. For these two modes γ1 = 7.579069394 and

γ2 = 91.42336885.
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Derivation of sensor equations

Sensor equations

Combining equation (2) and (31) the relationship between the resonance
frequencies with and without the attached mass can be obtained as

fj =
f0j

√
1 + 4α+ γjβ

(32)

The frequency-shift can be expressed using Eq. (32) as

∆fj = f0j
− fj = f0j

−
f0j

√
1 + 4α+ γjβ

(33)

From this we can obtain the relative frequency shift as

δj =

(
∆fj

f0j

)

= 1 − 1
√

1 + 4α+ γjβ
(34)

Rearranging gives the expression

1
√

1 + 4α+ γjβ
=

(
1 − δj

)
or

(
1 + 4α+ γjβ

)
=

1
(
1 − δj

)2
, j = 1, 2

(35)
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Derivation of sensor equations

Sensor equations

These two equations arising for two values of j completely relate the

change in mass and rotary inertia with the two relative frequency-shifts.
Solving these equations and after some simplifications we have

β =
(2 − δ1 − δ2)(δ2 − δ1)

(1 − δ1)
2 (1 − δ2)

2 (γ2 − γ1)
(36)

and α =
1

4

[

1

(1 − δ1)
2
− 1 − γ1β

]

(37)

These are the general equations which completely relate the added mass

and rotary inertia and the frequency shifts. In the special case, when the
rotary inertia is neglected, substituting β = 0, expanding in a Taylor

series and keeping only the linear term, we have

α ≈ δ1

2
or

M

ρAL
≈ 1

2

(
∆f1

f01

)

(38)

which is the widely-used classical relationship between the added tip
mass and the frequency-shift.
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Numerical validation

Cantilevered SWCNT with mass at the tip

A zigzag (7, 0) SWCNT with Young’s modulus E = 1.0 TPa, L = 20nm,
density ρ = 9.517 × 103 kg/m3 and thickness t = 0.08nm is uses as

example.

The diameter of the SWCNT is 0.55nm. Using these, the cross-sectional

area A and area moment of inertia I can be obtained as

A ≈ πdi t and I ≈ π

8
d3

i t (39)

To consider realistic values of the rotary inertia, we assume that the

attached mass is a straight vertical linear object of height h. The mass
moment of inertia of such an object is given by

J = Mh2/3 (40)

Therefore

β =
J

ρAL3
=

Mh2/3

ρAL3
=

M

ρAL

1

3

(
h

L

)2

=
α

3

(
h

L

)2

(41)

This implies that for physically realistic objects, α and β are not
independent quantities.
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Numerical validation

Error due to neglecting the rotary inertia effect
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Numerical validation

Finite element model

Equations (36) and (37) give closed-form expression to detect added

mass and rotary inertia from the first two frequency shifts.

Consider that the frequency shifts corresponding to the two modes,

namely

δ1 =

(
∆f1

f01

)

=

(
f01

− f1

f01

)

and δ2 =

(
∆f2

f02

)

=

(
f02

− f2

f02

)

(42)

are available from experiment.

These quantities can then be used as an ‘input’ to equations (36) and
(37) to identify the added mass and rotary inertia.

In the absence of experimental results in this work, we generate the

‘experimentally measured frequencies’ from a completely independent
finite element model (in Nastran)
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Numerical validation

Finite element modes
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Numerical validation

Comparisons of the frequencies
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Numerical validation

Error is mass indetification
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Numerical validation

Error is rotary inertia indetification
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Summary and conclusions

Summary of the main derivations

Exact equation governing the frequencies

(
(1 − cos (λ) cosh (λ))λ3β − sin (λ) cosh (λ) + cos (λ) sinh (λ)

)
λα

− (cos (λ) sinh (λ) + sin (λ) cosh (λ))λ3β + [cos (λ) cosh (λ) + 1] = 0

Approximate frequency equation

fj =
1

2π

√

keqj

meq j

=
c0

2π

λ2
j

√
1 + 4α+ γjβ

, j = 1, 2, 3, · · ·

Sensor equations

β =
(2 − δ1 − δ2)(δ2 − δ1)

(1 − δ1)
2
(1 − δ2)

2
(γ2 − γ1)

and α =
1

4

[

1

(1 − δ1)
2
− 1 − γ1β

]
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Summary and conclusions

Main conclusions

The sensing of mass and rotary inertia of an attached object in the context of

cantilever nano-mechanical sensors has been considered.

Using Euler-Bernoulli cantilever beam theory, the exact equation governing the

natural frequencies of the sensor with the attached mass and its rotary inertia

effect has been derived.

Therefore, using an energy approach, approximate simple closed-form

expressions for the identified mass and rotary inertia from the first two frequency

shifts have been derived.

It was proved that the classical equation to obtain the attached mass from the first

frequency shift is a special case of the general equations derived in this paper.

Some of the highlights of this paper are:
1 Prediction of the second natural frequency can be very inaccurate if the

rotary inertial effect is completely ignored.
2 The proposed approximate closed-form expression for both the natural

frequencies give acceptable numerical accuracy when compared to the

exact analytical solution.
3 The new sensor equations expressed in terms of the first two frequency

shifts gives an excellent estimate for the attached mass and relatively less

accurate estimate for the rotary inertia.
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