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Random Eigenvalue Problem

The random eigenvalue problem of undamped or
proportionally damped linear systems:

K(x)φj = ω2
jM(x)φj (1)

ωj natural frequencies; φj eigenvectors;
M(x) ∈ R

N×N mass matrix and K(x) ∈ R
N×N

stiffness matrix.
x ∈ R

m is random parameter vector with pdf

px(x) = e−L(x)

−L(x) is the log-likelihood function.
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The Objectives

The aim is to obtain the joint probability density
function of the natural frequencies and the
eigenvectors

in this work we look at the joint statistics of the
eigenvalues

while several papers are available on the
distribution of individual eigenvalues, only
first-order perturbation results are available for
the joint pdf of the eigenvalues
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Exact Joint pdf

Without any loss of generality the original
eigenvalue problem can be expressed by

H(x)ψj = ω2
jψj (2)

where

H(x) = M
−1/2(x)K(x)M−1/2(x) ∈ R

N×N

and ψj = M
1/2φj
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Exact Joint pdf

The joint probability (following Muirhead, 1982)
density function of the natural frequencies of an
N -dimensional linear positive definite dynamic
system is given by

p Ω (ω1, ω2, · · · , ωN) =
πN2/2

Γ(N/2)

∏

i<j≤N

(
ω2

j − ω2
i

)

∫

O(N)

pH

(
ΨΩ

2
Ψ

T
)
(dΨ) (3)

where H = M
−1/2

KM
−1/2 & pH(H) is the pdf of H.
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Limitations of the Exact Method

the multidimensional integral over the
orthogonal group O(N) is difficult to carry out in
practice and exact closed-form results can be
derived only for few special cases

the derivation of an expression of the joint pdf of
the system matrix pH(H) is non-trivial even if
the joint pdf of the random system parameters
x is known
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Limitations of the Exact Method

even one can overcome the previous two
problems, the joint pdf of the natural
frequencies given by Eq. (3) is ‘too much
information’ to be useful for practical problems
because

it is not easy to ‘visualize’ the joint pdf in the
space of N natural frequencies, and
the derivation of the marginal density
functions of the natural frequencies from Eq.
(3) is not straightforward, especially when N
is large.
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Eigenvalues of GOE Matrices

Suppose the system matrix H is from a Gaussian
orthogonal ensemble (GOE). The pdf of H:

pH(H) = exp
(
−θ2Trace

(
H

2
)

+ θ1Trace (H) + θ0

)

The joint pdf of the natural frequencies:

p Ω (ω1, ω2, · · · , ωN) = exp

[
−
(

N∑

j=1

θ2ω
4
j − θ1ω

2
j − θ0

)]

∏

i<j

∣∣ω2
j − ω2

i

∣∣
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Perturbation Method

Taylor series expansion of ωj(x) about the mean
x = µ

ωj(x) ≈ ωj(µ) + d
T
ωj

(µ) (x − µ)

+
1

2
(x − µ)T

Dωj
(µ) (x − µ)

Here dωj
(µ) ∈ R

m and Dωj
(µ) ∈ R

m×m are respec-

tively the gradient vector and the Hessian matrix of

ωj(x) evaluated at x = µ.
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Joint Statistics

Joint statistics of the natural frequencies can be
obtained provided it is assumed that the x is
Gaussian. Assuming x ∼ N(µ,Σ), first few
cumulants can be obtained as

κ
(1,0)
jk = E [ωj] = ωj +

1

2
Trace

(
Dωj

Σ
)
,

κ
(0,1)
jk = E [ωk] = ωk +

1

2
Trace (Dωk

Σ) ,

κ
(1,1)
jk = Cov (ωj, ωk) =

1

2
Trace

((
Dωj

Σ
)
(Dωk

Σ)
)

+ d
T
ωj

Σdωk
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Multidimensional Integrals

We want to evaluate an m-dimensional integral over
the unbounded domain R

m:

J =

∫

R
m

e−f(x) dx

Assume f(x) is smooth and at least twice
differentiable

The maximum contribution to this integral
comes from the neighborhood where f(x)
reaches its global minimum, say θ ∈ R

m
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Multidimensional Integrals

Therefore, at x = θ

∂f(x)

∂xk
= 0,∀k or df (θ) = 0

Expand f(x) in a Taylor series about θ:

J =

∫

R
m

e
−
{

f(θ)+ 1

2(x−θ)
T
Df(θ)(x−θ)+ε(x,θ)

}

dx

= e−f(θ)
∫

R
m

e−
1

2(x−θ)
T
Df(θ)(x−θ)−ε(x,θ) dx
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Multidimensional Integrals

The error ε(x,θ) depends on higher derivatives of
f(x) at x = θ. If they are small compared to f (θ)
their contribution will negligible to the value of the
integral. So we assume that f(θ) is large so that

∣∣∣∣
1

f (θ)
D(j)(f (θ))

∣∣∣∣→ 0 for j > 2

where D(j)(f (θ)) is jth order derivative of f(x) eval-

uated at x = θ. Under such assumptions ε(x,θ) →
0.
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Multidimensional Integrals

Use the coordinate transformation:

ξ = (x − θ)D−1/2
f (θ)

The Jacobian: ‖J‖ = ‖Df (θ)‖−1/2

The integral becomes:

J ≈ e−f(θ)
∫

R
m
‖Df (θ)‖−1/2 e

− 1

2

(
ξ

T
ξ
)

dξ

or J ≈ (2π)m/2e−f(θ) ‖Df (θ)‖−1/2
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Moments of Single Eigenvalues

An arbitrary rth order moment of the natural
frequencies can be obtained from

µ
(r)
j = E

[
ωr

j (x)
]

=

∫

R
m

ωr
j (x)px(x) dx

=

∫

R
m

e−(L(x)−r lnωj(x)) dx, r = 1, 2, 3 · · ·

Previous result can be used by choosing
f(x) = L(x) − r ln ωj(x)

Random Matrix Eigenvalue Problems – p.16/36



2 June 2005

Moments of Single Eigenvalues

After some simplifications

µ
(r)
j ≈ (2π)m/2ωr

j (θ)e
−L(θ)

∥∥∥∥DL(θ) +
1

r
dL(θ)dL(θ)T − r

ωj(θ)
Dωj

(θ)

∥∥∥∥
−1/2

r = 1, 2, 3, · · ·

θ is obtained from:

dωj
(θ)r = ωj(θ)dL(θ)
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Maximum Entropy pdf

Constraints for u ∈ [0,∞]:
∫ ∞

0

pωj
(u)du = 1

∫ ∞

0

urpωj
(u)du = µ

(r)
j , r = 1, 2, 3, · · · , n

Maximizing Shannon’s measure of entropy
S = −

∫∞
0 pωj

(u) ln pωj
(u)du, the pdf of ωj is

pωj
(u) = e−{ρ0+

∑n

i=1
ρiu

i} = e−ρ0e−
∑n

i=1
ρiu

i

, u ≥ 0

Random Matrix Eigenvalue Problems – p.18/36



2 June 2005

Maximum Entropy pdf

Taking first two moments, the resulting pdf is a
truncated Gaussian density function

pωj
(u) =

1√
2πσj Φ (ω̂j/σj)

exp

{
−(u − ω̂j)

2

2σ2
j

}

where σ2
j = µ

(2)
j − ω̂2

j

Ensures that the probability of any natural
frequencies becoming negative is zero
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Joint Moments of Two
Eigenvalues

Arbitrary r − s-th order joint moment of two natural
frequencies

µ
(rs)
jl = E

[
ωr

j (x)ωs
l (x)

]

=

∫

R
m

exp {− (L(x) − r ln ωj(x) − s ln ωl(x))} dx,

r = 1, 2, 3 · · ·

Choose f(x) = L(x) − r ln ωj(x) − s ln ωl(x)
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Joint Moments of Two
Eigenvalues

After some simplifications

µ
(rs)
jl ≈ (2π)m/2ωr

j (θ)ω
s
l (θ) exp {−L (θ)} ‖Df (θ)‖−1/2

where θ is obtained from:

dL(θ) =
r

ωj(θ)
dωj

(θ) +
s

ωl(θ)
dωl

(θ)

and Df (θ) = DL(θ) + r

ω2

j(θ)
dωj

(θ)dωj
(θ)T −

r

ωj(θ)
Dωj

(θ) + s

ω2

l (θ)
dωl

(θ)dωl
(θ)T − s

ωl(θ)
Dωl

(θ)
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Joint Moments of Multiple
Eigenvalues

We want to obtain

µ
(r1r2···rn)
j1j2···jn

=

∫

R
m

{
ωr1

j1
(x)ωr2

j2
(x) · · ·ωrn

jn
(x)
}

px(x) dx

It can be shown that

µ
(r1r2···rn)
j1j2···jn

≈ (2π)m/2
{
ωr1

j1
(θ) ωr2

j2
(θ) · · ·ωrn

jn
(θ)
}

exp {−L (θ)} ‖Df (θ)‖−1/2
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Joint Moments of Multiple
Eigenvalues

Here θ is obtained from

dL(θ) =
r1

ωj1(θ)
dωj1

(θ)+
r2

ωj1(θ)
dωj2

(θ)+· · · rn

ωjn
(θ)

dωjn
(θ)

and the Hessian matrix is given by

Df (θ) = DL(θ)+

jn,rn∑

j = j1, j2, · · ·
r = r1, r2, · · ·

r

ω2
j (θ)

dωj
(θ)dωj

(θ)T − r

ωj (θ)
Dωj

(θ)
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Example System

Undamped three degree-of-freedom random
system:

m1

m2

m3
k4 k5k1 k3

k2

k6

mi = 1.0 kg for i = 1, 2, 3; ki = 1.0 N/m for i =

1, · · · , 5 and k6 = 3.0 N/m
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Example System

mi = mi (1 + ǫmxi), i = 1, 2, 3

ki = ki (1 + ǫkxi+3), i = 1, · · · , 6

Vector of random variables: x = {x1, · · · , x9}T ∈ R
9

x is standard Gaussian, µ = 0 and Σ = I

Strength parameters ǫm = 0.15 and ǫk = 0.20
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Computational Methods

Following four methods are compared

1. First-order perturbation

2. Second-order perturbation

3. Asymptotic method

4. Monte Carlo Simulation (15K samples) - can be
considered as benchmark.

The percentage error:

Error =
(•) − (•)MCS

(•)MCS
× 100
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Scatter of the Eigenvalues
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Error in the Mean Values
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Error in Covariance Matrix
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Mean and Covariance

Using the asymptotic method, the mean and
covariance matrix of the natural frequencies are
obtained as

µΩ = {0.9962, 2.0102, 3.0312}T

and ΣΩ =




0.5319 0.5643 0.7228

0.5643 2.5705 0.9821

0.7228 0.9821 8.7292



× 10−2

Individual pdf and joint pdf of the natural frequencies

are computed using these values.
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Individual pdf
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Analytical Joint pdf

Joint pdf using asymptotic method
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Joint pdf from MCS

Joint pdf from Monte Carlo Simulation
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Contours of the joint pdf
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Conclusions

Statistics of the natural frequencies of linear
stochastic dynamic systems has been
considered

usual assumption of small randomness is not
employed in this study.

a general expression of the joint pdf of the
natural frequencies of linear stochastic systems
has been given
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Conclusions

a closed-form expression is obtained for the
general order joint moments of the eigenvalues

it was observed that the natural frequencies are
not jointly Gaussian even they are so
individually

future studies will consider joint statistics of the
eigenvalues and eigenvectors and dynamic
response analysis using eigensolution
distributions
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