Reliability Analysis in High Dimensions

S Adhikari

Department of Aerospace Engineering, University of Bristol, Bristol, U.K. Email: S.Adhikari@bristol.ac.uk
URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

Outline of the presentation

- Introduction to structural reliability analysis

■ Limitation of current methods in high dimension

- Asymptotic distribution of quadratic forms
- Strict asymptotic formulation

■ Weak asymptotic formulation

- Numerical result

■ Open problems \& discussions

Reliability analysis: basics

Probability of failure

$$
P_{f}=(2 \pi)^{-n / 2} \int_{g(\mathbf{X}) \leq 0} e^{-\mathbf{x}^{T} \mathbf{x} / 2} d \mathbf{x}
$$

$\mathrm{x} \in \mathbb{R}^{n}$: Gaussian parameter vector $g(\mathrm{x})$: failure surface
Maximum contribution comes from the neighborhood where $\mathbf{x}^{T} \mathbf{x} / 2$ is minimum subject to $g(\mathbf{x}) \leq 0$. The design point \mathbf{x}^{*} :
$\mathrm{x}^{*}: \min \left\{\left(\mathrm{x}^{T} \mathbf{x}\right) / 2\right\} \quad$ subject to $\quad g(\mathrm{x})=0$.

Graphical explanation

FORM/SORM approximations

$$
P_{f} \approx \operatorname{Prob}\left[y_{n} \geq \beta+\mathbf{y}^{T} \mathbf{A y}\right]=\operatorname{Prob}\left[y_{n} \geq \beta+U\right]
$$

where

$$
U: \mathbb{R}^{n-1} \mapsto \mathbb{R}=\mathbf{y}^{T} \mathbf{A y}
$$

is a quadratic form in Gaussian random variable. The eigenvalues of \mathbf{A}, say a_{j}, can be related to the principal curvatures of the surface κ_{j} as $a_{j}=\kappa_{j} / 2$. Considering $\mathbf{A}=\mathbf{O}$ in Eq. (1), we have the FORM:

$$
P_{f} \approx \Phi(-\beta)
$$

PIC 2004

SORM approximations

Breitung's asymptotic formula (1984):

$$
P_{f} \rightarrow \Phi(-\beta)\left\|\mathbf{I}_{n-1}+2 \beta \mathbf{A}\right\|^{-1 / 2} \quad \text { when } \quad \beta \rightarrow \infty
$$

Hohenbichler and Rackwitz's improved formula (1988):

$$
P_{f} \approx \Phi(-\beta)\left\|\mathbf{I}_{n-1}+2 \frac{\varphi(\beta)}{\Phi(-\beta)} \mathbf{A}\right\|^{-1 / 2}
$$

The curse of dimensionality

- If n, i.e. the dimension is large, the computation time to obtain P_{f} using any tools will be high (no magic is possible!)

The curse of dimensionality

\square If n, i.e. the dimension is large, the computation time to obtain P_{f} using any tools will be high (no magic is possible!)

- Question 1: What is a 'high dimension'?

The curse of dimensionality

- If n, i.e. the dimension is large, the computation time to obtain P_{f} using any tools will be high (no magic is possible!)
- Question 1: What is a 'high dimension'?
- Question 2: Suppose we have followed the 'normal route' and did all the calculations (i.e., x^{*}, β and A). Can we still trust the results from classical FORM/SORM in high dimension?

Numerical example

Consider a problem for which the failure surface is
exactly parabolic: $g=-y_{n}+\beta+\mathbf{y}^{T} \mathbf{A y}$

- We choose n and the value of Trace (A)

■ When Trace $(\mathbf{A})=0$ the failure surface is effectively linear. Therefore, the more the value of Trace (A), the more non-linear the failure surface becomes.

- It is assumed that the eigenvalues of \mathbf{A} are uniform random numbers.

P_{f} for small n

Failure probability for $n-1=3$, Trace $(\mathbf{A})=1$

P_{f} for large n

Failure probability for $n-1=100$, Trace $(\mathbf{A})=1$

Asymptotic distribution of quadratic forms

Moment generating function:

$$
M_{U}(s)=\left\|\mathbf{I}_{n-1}-2 s \mathbf{A}\right\|^{-1 / 2}=\prod_{k=1}^{n-1}\left(1-2 s a_{k}\right)^{-1 / 2}
$$

Now construct a sequence of new random variables $q=U / \sqrt{n}$. The moment generating function of q :

$$
M_{q}(s)=M_{U}(s / \sqrt{n})=\prod_{k=1}^{n-1}\left(1-2 s a_{k} / \sqrt{n}\right)^{-1 / 2}
$$

Asymptotic distribution

Truncating the Taylor series expansion:

$$
\ln \left(M_{q}(s)\right) \approx \operatorname{Trace}(\mathbf{A}) s / \sqrt{n}+\left(2 \operatorname{Trace}\left(\mathbf{A}^{2}\right)\right) s^{2} / 2 n
$$

We assume n is large such that the following conditions hold

$$
\begin{aligned}
& \frac{2}{n} \operatorname{Trace}\left(\mathbf{A}^{2}\right)<\infty \\
& \text { and } \frac{2^{r}}{n^{r / 2} r} \operatorname{Trace}\left(\mathbf{A}^{r}\right) \rightarrow 0, \forall r \geq 3
\end{aligned}
$$

Asymptotic distribution

Therefore, the moment generating function of $U=q \sqrt{n}$ can be approximated by:

$$
M_{U}(s) \approx e^{\operatorname{Trace}(\mathbf{A}) s+\left(2 \operatorname{Trace}\left(\mathbf{A}^{2}\right)\right) s^{2} / 2}
$$

From the uniqueness of the Laplace Transform pair it follows that U asymptotically approaches a Gaussian random variable with mean Trace (A) and variance $2 \operatorname{Trace}\left(\mathrm{~A}^{2}\right)$, that is
$U \simeq \mathbb{N}_{1}\left(\operatorname{Trace}(\mathbf{A}), 2 \operatorname{Trace}\left(\mathbf{A}^{2}\right)\right) \quad$ when $\quad n \rightarrow \infty$

Minimum number of random variables

The error in neglecting higher order terms:

$$
\frac{1}{r}\left(\frac{2 s}{\sqrt{n}}\right)^{r} \operatorname{Trace}\left(\mathbf{A}^{r}\right), \text { for } r \geq 3
$$

Using $s=\beta$ and assuming there exist a small real number ϵ (the error) we have

$$
\frac{1}{r} \frac{(2 \beta)^{r}}{n^{r / 2}} \operatorname{Trace}\left(\mathbf{A}^{r}\right)<\epsilon \text { or } n>\frac{4 \beta^{2}}{\sqrt[r]{r^{2} \epsilon^{2}}}\left(\sqrt[r]{\operatorname{Trace}\left(\mathbf{A}^{r}\right)}\right)^{2}
$$

Strict asymptotic formulation

We rewrite (1):

$$
P_{f} \approx \operatorname{Prob}\left[y_{n} \geq \beta+U\right]=\operatorname{Prob}\left[y_{n}-U \geq \beta\right]
$$

Since U is asymptotically Gaussian, the variable $z=y_{n}-U$ is also Gaussian with mean $(-\operatorname{Trace}(\mathbf{A}))$ and variance $\left(1+2 \operatorname{Trace}\left(\mathbf{A}^{2}\right)\right)$. Thus,

$$
P_{f_{\text {strict }}} \rightarrow \Phi\left(-\beta_{1}\right), \beta_{1}=\frac{\beta+\operatorname{Trace}(\mathbf{A})}{\sqrt{1+2 \operatorname{Trace}\left(\mathbf{A}^{2}\right)}}, n \rightarrow \infty
$$

Graphical explanation

$$
m=\operatorname{Trace}(\mathbf{A}), \sigma^{2}=2 \operatorname{Trace}\left(\mathbf{A}^{2}\right)
$$

Failure surface: $y_{n}-U \geq \beta$. Using the standardizing transformation $Y=(U-m) / \sigma$, modified failure surface $\frac{y_{n}}{\beta+m}+\frac{Y}{-\frac{\beta+m}{\sigma}} \geq 1$.
From $\triangle \mathrm{AOB}, \sin \theta=\frac{\tan \theta}{\sqrt{1+\tan ^{2} \theta}}=\frac{\sigma}{\sqrt{1+\sigma^{2}}}$.
Therefore, from $\triangle \mathrm{OB} y^{*}$:
$\beta_{1}=\frac{\beta+m}{\sigma} \sin \theta=\frac{\beta+m}{\sqrt{1+\sigma^{2}}}=\frac{\beta+\operatorname{Trace}(\mathbf{A})}{\sqrt{1+2 \operatorname{Trace}\left(\mathbf{A}^{2}\right)}}$.
If n is small, m, σ will be small. When $m, \sigma \rightarrow 0$, AB rotates clockwise and eventually becomes parallel to the Y -axis with a shift of $+\beta$. In this situation $y^{*} \rightarrow x^{*}$ in the y_{n}-axis and $\beta_{1} \rightarrow \beta$ as expected. This explains why classical F/SORM approximations based on the original design point x^{*} do not work well when a large number of random variables are considered.

Weak asymptotic formulation

$$
\begin{aligned}
P_{f} & \approx \operatorname{Prob}\left[y_{n} \geq \beta+U\right] \\
& =\int_{\mathbb{R}}\left\{\int_{\beta+u}^{\infty} \varphi\left(y_{n}\right) d y_{n}\right\} p_{U}(u) d u=\mathrm{E}[\Phi(-\beta-U)]
\end{aligned}
$$

Noticing that $u \in \mathbb{R}^{+}$as \mathbf{A} is positive definite we rewrite

$$
P_{f} \approx \int_{\mathbb{R}^{+}} e^{\ln [\Phi(-\beta-u)]+\ln \left[p_{U}(u)\right]} d u
$$

Weak asymptotic formulation

For the maxima of the integrand (say at point u^{*})

$$
\frac{\partial}{\partial u}\left\{\ln [\Phi(-\beta-u)]+\ln \left[p_{U}(u)\right]\right\}=0
$$

Recalling that

$$
p_{U}(u)=(2 \pi)^{-1 / 2} \sigma^{-1} e^{-(u-m)^{2} /\left(2 \sigma^{2}\right)}
$$

we have

$$
\frac{\varphi(\beta+u)}{\Phi(-(\beta+u))}=\frac{m-u}{\sigma^{2}}
$$

Weak asymptotic formulation

Because this relationship holds at the optimal point u^{*}, define a constant η as

$$
\eta=\frac{\varphi\left(\beta+u^{*}\right)}{\Phi\left(-\left(\beta+u^{*}\right)\right)}=\frac{m-u^{*}}{\sigma^{2}}
$$

Taking a first-order Taylor series expansion of $\ln [\Phi(-\beta-u)]$ about $u=u^{*}$:

$$
\Phi(-\beta-u) \approx e^{\ln \left[\Phi\left(-\left(\beta+u^{*}\right)\right)\right]-\frac{\varphi\left(\left(\beta+u^{*}\right)\right.}{\Phi\left(-\left(\beta+u^{*}\right)\right)}\left(u-u^{*}\right)}
$$

Weak asymptotic formulation

Using η we have

$$
\begin{equation*}
\Phi(-\beta-u) \approx \Phi\left(-\beta_{2}\right) e^{\eta u^{*}} e^{-\eta u} \tag{1}
\end{equation*}
$$

where the modified reliability index

$$
\beta_{2}=\beta+u^{*}
$$

Taking the expectation of (1) and using the expression of the moment generating function:

$$
P_{f} \approx \mathrm{E}[\Phi(-\beta-U)]=\Phi\left(-\beta_{2}\right) e^{\eta u^{*}}\left\|\mathbf{I}_{n-1}+2 \eta \mathbf{A}\right\|^{-1 / 2}
$$

Weak asymptotic formulation

Considering the asymptotic expansion of the ratio

$$
\eta=\frac{\varphi\left(\beta+u^{*}\right)}{\Phi\left(-\left(\beta+u^{*}\right)\right)} \approx\left(\beta+u^{*}\right)=\beta_{2} \approx \frac{m-u^{*}}{\sigma^{2}}
$$

We obtain
$u^{*} \approx \frac{m-\beta \sigma^{2}}{1+\sigma^{2}}, \beta_{2}=\beta+u^{*} \approx \frac{\beta+m}{1+\sigma^{2}}=\frac{\beta+\operatorname{Trace}(\mathbf{A})}{1+2 \operatorname{Trace}\left(\mathbf{A}^{2}\right)}$
Since $\eta \approx \beta_{2}, u^{*}$ can be expressed in terms of β_{2} as $u^{*} \approx-\left(\beta_{2} \sigma^{2}-m\right)=-\left(2 \beta_{2} \operatorname{Trace}\left(\mathbf{A}^{2}\right)-\operatorname{Trace}(\mathbf{A})\right)$

Weak asymptotic formulation

Using the expression of η and u^{*}, the failure probability using weak asymptotic formulation:

$$
\begin{aligned}
& P_{f_{\text {Weak }}} \rightarrow \frac{\Phi\left(-\beta_{2}\right) e^{-\left(2 \beta_{2}^{2} \operatorname{Trace}\left(\mathbf{A}^{2}\right)-\beta_{2} \operatorname{Trace}(\mathbf{A})\right)}}{\sqrt{\left\|\mathbf{I}_{n-1}+2 \beta_{2} \mathbf{A}\right\|}} \\
& \quad \text { where } \beta_{2}=\frac{\beta+\operatorname{Trace}(\mathbf{A})}{1+2 \operatorname{Trace}\left(\mathbf{A}^{2}\right)} \text { when } n \rightarrow \infty
\end{aligned}
$$

For the small n case, Trace (A), Trace (\mathbf{A}^{2}) $\rightarrow 0$ and it can be seen that $P_{f_{\text {weak }}}$ approaches to Breitung's formula.

PMC 2004

P_{f} from asymptotic analysis

Failure probability for $n-1=35$, $\operatorname{Trace}(\mathbf{A})=1\left[n_{\min }=176\right]$

P_{f} from asymptotic analysis

Failure probability for $n-1=200$, $\operatorname{Trace}(\mathbf{A})=1$

Summary \& conclusions

- Geometric analysis shows that the classical design point should be modified in high dimension. This also explains why classical FORM/SORM work poorly in high dimension.

Summary \& conclusions

- Geometric analysis shows that the classical design point should be modified in high dimension. This also explains why classical FORM/SORM work poorly in high dimension.
- $P_{f_{\text {strict }}} \rightarrow \Phi\left(-\beta_{1}\right), \beta_{1}=\frac{\beta+\operatorname{Trace}(\mathbf{A})}{\sqrt{1+2 \operatorname{Trace}\left(\mathbf{A}^{2}\right)}}, n \rightarrow \infty$

The strict asymptotic formula can viewed as the 'correction' needed to the existing FORM formula in high dimension.

PMC 2004

Summary \& conclusions

$$
\begin{aligned}
& P_{f_{\text {Weak }}} \rightarrow \frac{\Phi\left(-\beta_{2}\right) e^{-\left(2 \beta_{2}^{2} \operatorname{Trace}\left(\mathbf{A}^{2}\right)-\beta_{2} \operatorname{Trace}(\mathbf{A})\right)}}{\sqrt{\left\|\mathbf{I}_{n-1}+2 \beta_{2} \mathbf{A}\right\|}} \\
& \quad \text { where } \beta_{2}=\frac{\beta+\operatorname{Trace}(\mathbf{A})}{1+2 \operatorname{Trace}\left(\mathbf{A}^{2}\right)} \text { when } n \rightarrow \infty
\end{aligned}
$$

The weak asymptotic formula can viewed as the correction needed to the existing SORM formula in high dimension.

Some doubts...

- Why the design points for the two asymptotic formulations are different?

Some doubts...

- Why the design points for the two asymptotic formulations are different?

■ Any geometric interpretation for the weak formulation?

Some doubts...

- Why the design points for the two asymptotic formulations are different?
- Any geometric interpretation for the weak formulation?
■ Why these asymptotic results degrade as β becomes high?

PMC 2004

Some doubts...

- Why the design points for the two asymptotic formulations are different?
- Any geometric interpretation for the weak formulation?

■ Why these asymptotic results degrade as β becomes high?

- Any expression of $n_{\text {min }}$ for the weak formulation?

PMC 2004

Open Questions

The broad picture:

$\beta \downarrow, n \downarrow \checkmark \quad \beta \uparrow, n \downarrow \checkmark($ Asymptotic: $\beta \rightarrow \infty)$
$\beta \downarrow, n \uparrow \checkmark($ Asymptotic: $n \rightarrow \infty) \quad \beta \uparrow, n \uparrow \times($ Joint asymptotic: $n, \beta \rightarrow \infty$?)

References

Breitung, K. 1984. Asymptotic approximations for multinormal integrals. Journal of Engineering Mechanics, ASCE, 110(3), 357-367.

Hohenbichler, M., and Rackwitz, R. 1988. Improvement of second-order reliability estimates by importance sampling. Journal of Engineering Mechanics, ASCE, 14(12), 2195-2199.

