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Outline of the presentation

Introduction to structural reliability analysis

Limitation of current methods in high dimension

Asymptotic distribution of quadratic forms

Strict asymptotic formulation

Weak asymptotic formulation

Numerical result

Open problems & discussions
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Reliability analysis: basics

Probability of failure

Pf = (2π)−n/2

∫

g(x)≤0

e−x
Tx/2dx

x ∈ R
n: Gaussian parameter vector

g(x): failure surface
Maximum contribution comes from the
neighborhood where xTx/2 is minimum subject to
g(x) ≤ 0. The design point x∗:

x∗ : min{(xTx)/2} subject to g(x) = 0.
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Graphical explanation
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Failure domain
g(x) ≤ 0yn

x∗

β

Actual failure surface
g(x) = 0

SORM approximation

yn = β + yT Ay������) FORM approximation
yn = β��������9

•

x∗

β
= − ∇g

|∇g| = α
∗
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FORM/SORM approximations

Pf ≈ Prob
[

yn ≥ β + yTAy
]

= Prob [yn ≥ β + U ]

(1)
where

U : R
n−1 7→ R = yTAy,

is a quadratic form in Gaussian random variable.
The eigenvalues of A, say aj, can be related to the
principal curvatures of the surface κj as aj = κj/2.
Considering A = O in Eq. (1), we have the FORM:

Pf ≈ Φ(−β)
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SORM approximations

Breitung’s asymptotic formula (1984):

Pf → Φ(−β) ‖In−1 + 2βA‖−1/2 when β → ∞

Hohenbichler and Rackwitz’s improved formula
(1988):

Pf ≈ Φ(−β)

∥

∥

∥

∥

In−1 + 2
ϕ(β)

Φ(−β)
A

∥

∥

∥

∥

−1/2

Reliability analysis in high dimensions – p.6/30



PMC 2004

The curse of dimensionality

If n, i.e. the dimension is large, the
computation time to obtain Pf using any tools
will be high (no magic is possible!)
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The curse of dimensionality

If n, i.e. the dimension is large, the
computation time to obtain Pf using any tools
will be high (no magic is possible!)

Question 1: What is a ‘high dimension’?

Reliability analysis in high dimensions – p.7/30



PMC 2004

The curse of dimensionality

If n, i.e. the dimension is large, the
computation time to obtain Pf using any tools
will be high (no magic is possible!)

Question 1: What is a ‘high dimension’?

Question 2: Suppose we have followed the
‘normal route’ and did all the calculations (i.e.,
x∗, β and A). Can we still trust the results from
classical FORM/SORM in high dimension?
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Numerical example

Consider a problem for which the failure surface is

exactly parabolic: g = −yn + β + yTAy

We choose n and the value of Trace (A)

When Trace (A) = 0 the failure surface is
effectively linear. Therefore, the more the value
of Trace (A), the more non-linear the failure
surface becomes.

It is assumed that the eigenvalues of A are
uniform random numbers.
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Pf for small n
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Asymptotic: β → ∞ (Breitung, 84)
Hohenbichler & Rackwitz, 88
Exact (MCS)

Failure probability for n − 1 = 3, Trace (A) = 1

Reliability analysis in high dimensions – p.9/30



PMC 2004

Pf for large n
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Asymptotic: β → ∞ (Breitung, 84)
Hohenbichler & Rackwitz, 88
Exact (MCS)

Failure probability for n − 1 = 100, Trace (A) = 1
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Asymptotic distribution of
quadratic forms

Moment generating function:

MU(s) = ‖In−1 − 2sA‖−1/2 =
n−1
∏

k=1

(1 − 2sak)
−1/2

Now construct a sequence of new random variables
q = U/

√
n. The moment generating function of q:

Mq(s) = MU(s/
√

n) =
n−1
∏

k=1

(

1 − 2sak/
√

n
)−1/2
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Asymptotic distribution

Truncating the Taylor series expansion:

ln (Mq(s)) ≈ Trace (A) s/
√

n +
(

2 Trace
(

A2
))

s2/2n

We assume n is large such that the following
conditions hold

2

n
Trace

(

A2
)

< ∞

and
2r

nr/2 r
Trace (Ar) → 0,∀r ≥ 3
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Asymptotic distribution

Therefore, the moment generating function of
U = q

√
n can be approximated by:

MU(s) ≈ e
Trace(A)s+

(

2 Trace
(

A
2
))

s2/2

From the uniqueness of the Laplace Transform pair
it follows that U asymptotically approaches a
Gaussian random variable with mean Trace (A) and
variance 2Trace

(

A2
)

, that is

U ≃ N1

(

Trace (A) , 2 Trace
(

A2
))

when n → ∞
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Minimum number of random
variables

The error in neglecting higher order terms:

1

r

(

2s√
n

)r

Trace (Ar) , for r ≥ 3.

Using s = β and assuming there exist a small real
number ǫ (the error) we have

1

r

(2β)r

nr/2
Trace (Ar) < ǫ or n >

4β2

r
√

r2ǫ2

(

r
√

Trace (Ar)
)2

Reliability analysis in high dimensions – p.14/30



PMC 2004

Strict asymptotic formulation

We rewrite (1):

Pf ≈ Prob [yn ≥ β + U ] = Prob [yn − U ≥ β]

Since U is asymptotically Gaussian, the vari-

able z = yn − U is also Gaussian with mean

(−Trace (A)) and variance (1 + 2 Trace
(

A2
)

). Thus,

PfStrict
→ Φ (−β1) , β1 =

β+Trace(A)
√

1+2 Trace
(

A
2
)

, n → ∞
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Graphical explanation

m = Trace (A), σ2 = 2Trace
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θ

(β + m)/σ

B

A(β + m)

y∗

β1

Failure
domain

β

SORM approximation

yn = β + yT Ay

original
design point x∗

•
XXXy

modified
design point

•
XXXz

Failure surface: yn−U ≥ β. Using the standard-
izing transformation Y = (U − m)/σ, modified

failure surface yn

β+m
+ Y

−
β+m

σ

≥ 1 .

From △AOB, sin θ = tan θ√
1+tan2 θ

= σ√
1+σ2

.

Therefore, from △OBy∗:

β1 = β+m

σ
sin θ = β+m√

1+σ2
=

β+Trace(A)r
1+2 Trace

�
A2

� .

If n is small, m, σ will be small. When m, σ → 0,
AB rotates clockwise and eventually becomes
parallel to the Y-axis with a shift of +β. In this sit-
uation y∗ → x∗ in the yn-axis and β1 → β as ex-
pected. This explains why classical F/SORM ap-
proximations based on the original design point
x∗ do not work well when a large number of ran-
dom variables are considered.
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Weak asymptotic formulation

Pf ≈ Prob [yn ≥ β + U ]

=

∫

R

{
∫ ∞

β+u

ϕ(yn)dyn

}

pU(u)du = E [Φ(−β − U)]

Noticing that u ∈ R
+ as A is positive definite we

rewrite

Pf ≈
∫

R
+
eln[Φ(−β−u)]+ln[pU (u)] du
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Weak asymptotic formulation

For the maxima of the integrand (say at point u∗)

∂

∂u
{ln [Φ(−β − u)] + ln [pU(u)]} = 0

Recalling that

pU(u) = (2π)−1/2σ−1e−(u−m)2/(2σ2)

we have
ϕ(β + u)

Φ(−(β + u))
=

m − u

σ2
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Weak asymptotic formulation

Because this relationship holds at the optimal point
u∗, define a constant η as

η =
ϕ(β + u∗)

Φ(−(β + u∗))
=

m − u∗

σ2

Taking a first-order Taylor series expansion of
ln [Φ(−β − u)] about u = u∗:

Φ(−β − u) ≈ eln[Φ(−(β+u∗))]− ϕ(β+u∗)
Φ(−(β+u∗)) (u−u∗)
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Weak asymptotic formulation

Using η we have

Φ(−β − u) ≈ Φ(−β2)e
ηu∗

e−ηu (1)

where the modified reliability index

β2 = β + u∗

Taking the expectation of (1) and using the
expression of the moment generating function:

Pf ≈ E [Φ(−β − U)] = Φ(−β2)e
ηu∗ ‖In−1 + 2 η A‖−1/2
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Weak asymptotic formulation

Considering the asymptotic expansion of the ratio

η =
ϕ(β + u∗)

Φ(−(β + u∗))
≈ (β + u∗) = β2 ≈

m − u∗

σ2

We obtain

u∗ ≈ m − βσ2

1 + σ2
, β2 = β+u∗ ≈ β + m

1 + σ2
=

β + Trace (A)

1 + 2 Trace
(

A2
)

Since η ≈ β2, u∗ can be expressed in terms of β2 as

u∗ ≈ −
(

β2σ
2 − m

)

= −
(

2β2Trace
(

A2
)

− Trace (A)
)
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Weak asymptotic formulation

Using the expression of η and u∗, the failure
probability using weak asymptotic formulation:

PfWeak
→ Φ (−β2) e

−
(

2β2
2Trace

(

A
2
)

−β2Trace(A)
)

√

‖In−1 + 2β2A‖
,

where β2 =
β + Trace (A)

1 + 2 Trace
(

A2
) when n → ∞

For the small n case, Trace (A) , Trace
(

A2
)

→ 0 and it can be
seen that PfWeak

approaches to Breitung’s formula.
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Pf from asymptotic analysis
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Asymptotic: β → ∞ (Breitung, 84)
Hohenbichler & Rackwitz, 88
Strict asymptotic, n → ∞
Weak asymptotic, n → ∞
Exact (MCS)

Failure probability for n − 1 = 35, Trace (A) = 1 [nmin = 176]
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Pf from asymptotic analysis
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Asymptotic: β → ∞ (Breitung, 84)
Hohenbichler & Rackwitz, 88
Strict asymptotic, n → ∞
Weak asymptotic, n → ∞
Exact (MCS)

Failure probability for n − 1 = 200, Trace (A) = 1
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Summary & conclusions

Geometric analysis shows that the classical
design point should be modified in high
dimension. This also explains why classical
FORM/SORM work poorly in high dimension.
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Summary & conclusions

Geometric analysis shows that the classical
design point should be modified in high
dimension. This also explains why classical
FORM/SORM work poorly in high dimension.

PfStrict
→ Φ (−β1) , β1 =

β+Trace(A)
√

1+2 Trace
(

A
2
)

, n → ∞

The strict asymptotic formula can viewed as

the ‘correction’ needed to the existing FORM
formula in high dimension.
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Summary & conclusions

PfWeak
→ Φ (−β2) e

−
(

2β2
2Trace

(

A
2
)

−β2Trace(A)
)

√

‖In−1 + 2β2A‖
,

where β2 =
β + Trace (A)

1 + 2 Trace
(

A2
) when n → ∞

The weak asymptotic formula can viewed as the

correction needed to the existing SORM formula in
high dimension.
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Some doubts...

Why the design points for the two asymptotic
formulations are different?
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Some doubts...

Why the design points for the two asymptotic
formulations are different?

Any geometric interpretation for the weak
formulation?

Why these asymptotic results degrade as β
becomes high?
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Some doubts...

Why the design points for the two asymptotic
formulations are different?

Any geometric interpretation for the weak
formulation?

Why these asymptotic results degrade as β
becomes high?

Any expression of nmin for the weak
formulation?
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Open Questions

The broad picture:

-

6M
e
t
h
o
d
s

n

Present
FORM/SORM

n1(100/200 ??)

-

Weak asymptotic
formulation

n2 =
4β2

3
√

9ǫ2

�
3

q
Trace

�
A3

��2

-

Strict asymptotic
formulation

β ↓, n ↓ X β ↑, n ↓ X(Asymptotic: β → ∞)

β ↓, n ↑ X(Asymptotic: n → ∞) β ↑, n ↑ ×(Joint asymptotic: n, β → ∞ ?)
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