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Nanoscale structures

(a) DNA


(b) Zinc Oxide (
 ZnO
)
 nanowire


(
c
) Boron Nitride
 nanotube
  (
BNNT
 )

(d) Protein


Nanoscale systems have length-scale in the order of O(10−9)m.

Nanoscale systems, such as those fabricated from simple and complex
nanorods, nanobeams1 and nanoplates have attracted keen interest

among scientists and engineers.



Nanoscale structures

Examples of one-dimensional nanoscale objects include (nanorod and
nanobeam) carbon nanotubes2, zinc oxide (ZnO) nanowires and boron

nitride (BN) nanotubes, while two-dimensional nanoscale objects include
graphene sheets3 and BN nanosheets4.

These nanostructures are found to have exciting mechanical, chemical,

electrical, optical and electronic properties.

Nanostructures are being used in the field of nanoelectronics,

nanodevices, nanosensors, nano-oscillators, nano-actuators,
nanobearings, and micromechanical resonators, transporter of drugs,

hydrogen storage, electrical batteries, solar cells, nanocomposites and

nanooptomechanical systems (NOMS).

Understanding the dynamics of nanostructures is crucial for the

development of future generation applications in these areas.



Continuum mechanics at the nanoscale

Experiments at the nanoscale are generally difficult at this point of time.

On the other hand, atomistic computation methods such as molecular
dynamic (MD) simulations5 are computationally prohibitive for

nanostructures with large numbers of atoms.

Continuum mechanics can be an important tool for modelling,

understanding and predicting physical behaviour of nanostructures.

Although continuum models based on classical elasticity are able to

predict the general behaviour of nanostructures, they often lack the

accountability of effects arising from the small-scale.

To address this, size-dependent continuum based methods6–9 are

gaining in popularity in the modelling of small sized structures as they
offer much faster solutions than molecular dynamic simulations for

various nano engineering problems.

Currently research efforts are undergoing to bring in the size-effects
within the formulation by modifying the traditional classical mechanics.



Nonlocal continuum mechanics

One popularly used size-dependant theory is the nonlocal elasticity

theory pioneered by Eringen10, and has been applied to nanotechnology.

Nonlocal continuum mechanics is being increasingly used for efficient

analysis of nanostructures viz. nanorods11,12, nanobeams13,

nanoplates14,15, nanorings16, carbon nanotubes17,18, graphenes19,20,
nanoswitches21 and microtubules22. Nonlocal elasticity accounts for the

small-scale effects at the atomistic level.

In the nonlocal elasticity theory the small-scale effects are captured by

assuming that the stress at a point as a function of the strains at all points

in the domain:

σij (x) =

∫

V

φ(|x − x ′|, α)tij dV (x ′)

where φ(|x − x ′|, α) = (2πℓ2α2)K0(
√

x • x/ℓα)

Nonlocal theory considers long-range inter-atomic interactions and yields
results dependent on the size of a body.

Some of the drawbacks of the classical continuum theory could be
efficiently avoided and size-dependent phenomena can be explained by

the nonlocal elasticity theory.



Bending vibration of carbon nanotubes

Figure: Bending vibration of an armchair (5, 5), (8, 8) double-walled carbon nanotube

(DWCNT) with pinned-pinned boundary condition.



Bending vibration of nanobeams

For the bending vibration of a nonlocal damped beam, the equation of
motion can be expressed by

EI
∂4V (x , t)

∂x4
+ m

(
1 − (e0a)2 ∂2

∂x2

){
∂2V (x , t)

∂t2

}

=

(
1 − (e0a)2 ∂2

∂x2

)
{F (x , t)} (1)

In the above equation EI is the bending rigidity, m is mass per unit length,

e0a is the nonlocal parameter, V (x , t) is the transverse displacement and
F (x , t) is the applied force.

Considering the free vibration, i.e., setting the force to zero, and

assuming harmonic motion with frequency ω

V (x , t) = v(x)exp [iωt] (2)

from (1) we have

EI
d4v

dx4
− mω2

(
v − (e0a)2 d2v

dx2

)
= 0 (3)

or
d4v

dx4
+ b4(e0a)2 d2v

dx2
− b4v = 0 (4)



Bending vibration of nanobeams

Here

b4 =
mω2

EI
(5)

To obtain the characteristic equation, we assume

v(x) = exp [λx ] (6)

Substituting this in Eq. (4) we obtain

λ4 + b4(e0a)2λ2 − b4 = 0 (7)

or λ2 = b2

(
−b2(e0a)2 ±

√
4 + b4(e0a)4

)
/2 (8)



Bending vibration of nanobeams

Defining
γ = b2(e0a)2 (9)

the two roots can be expressed as

λ2 = −α2, β2 (10)

Here

α = b

√(√
4 + γ2 + γ

)
/2 (11)

and β = b

√(√
4 + γ2 − γ

)
/2 (12)

Therefore, the four roots of the characteristic equation can be expressed

as
λ = iα,−iα, β,−β (13)

where i =
√
−1.



Boundary conditions

The displacement function within the beam can be expressed by linear

superposition as

v(x) =

4∑

j=1

cj exp[λjx ] (14)

Here the unknown constants cj need to be obtained from the boundary

conditions.
Using Eq. (14), the natural frequency of the system can be obtained by
imposing the necessary boundary conditions23. For example, the
bending moment and shear force are given by:

Bending moment at x = 0 or x = L:

EI
d2v(x)

dx2
= 0 (15)

Shear force at x = 0 or x = L:

EI
d3v(x)

dx3
+ mω

2(e0a)2 dv(x)

dx
= 0 or

d3v(x)

dx3
+ b

4(e0a)2 dv(x)

dx
= 0 (16)



Pinned-pinned nonlocal beams

Undamped nonlocal natural frequencies of pinned-pinned nonlocal

beams can be obtained11 as

λj =
β2

j√
1 + β2

j (e0a)2

√
EI

m
where βj = jπ/L, j = 1, 2, · · · (17)

Asymptotic behaviour: For higher order modes j → ∞ we can show that

λj →
βj

(e0a)

√
EI

m
j = 1, 2, · · · (18)

Unlike conventional ‘local beams’ where frequencies increase as square
of the mode count j, for nonlocal beams the frequencies increase linearly

with j1.

1Lei, Y., Murmu, T., Adhikari, S. and Friswell, M. I., “Asymptotic frequencies of damped
nonlocal beams and plates”, Mechanics Research Communication, to appear.



Finite element method for nonlocal beams

Conventional finite element method for nonlocal
beams



Nonlocal element matrices

We consider an element of length ℓe with bending stiffness EI and mass

per unit length m.

1
 2

l

e


Figure: A nonlocal element for the bending vibration of a beam. It has two nodes

and four degrees of freedom. The displacement field within the element is

expressed by cubic shape functions.

This element has four degrees of freedom and there are four shape

functions.



Element stiffness matrix

The shape function matrix for the bending deformation24 can be given by

N(x) = [N1(x),N2(x),N3(x),N4(x)]
T

(19)

where

N1(x) = 1 − 3
x2

ℓ2
e

+ 2
x3

ℓ3
e

, N2(x) = x − 2
x2

ℓe
+

x3

ℓ2
e

,

N3(x) = 3
x2

ℓ2
e

− 2
x3

ℓ3
e

, N4(x) = −x2

ℓe
+

x3

ℓ2
e

(20)

Using this, the stiffness matrix can be obtained using the conventional
variational formulation25 as

Ke = EI

∫ ℓe

0

d2N(x)

dx2

d2NT (x)

dx2
dx =

EI

ℓ3
e




12 6ℓe −12 6ℓe

6ℓe 4ℓ2
e −6ℓe 2ℓ2

e

−12 −6ℓe 12 −6ℓ2
e

6ℓe 2ℓ2
e −6ℓe 4ℓ2

e




(21)



Nonlocal element mass matrix

The mass matrix for the nonlocal element can be obtained as

Me = m

∫ ℓe

0

N(x)NT (x)dx + m(e0a)2

∫ ℓe

0

dN(x)

dx

dNT (x)

dx
dx

=
mℓe

420




156 22ℓe 54 −13ℓe

22ℓe 4ℓ2
e 13ℓe −3ℓ2

e

54 13ℓe 156 −22ℓe

−13ℓe −3ℓ2
e −22ℓe 4ℓ2

e




+

(
e0a

ℓe

)2
mℓe

30




36 3ℓe −36 3ℓe

3ℓe 4ℓ2
e −3ℓe −ℓ2

e

−36 −3ℓe 36 −3ℓe

3ℓe −ℓ2
e −3ℓe 4ℓ2

e




(22)

For the special case when the beam is local, the mass matrix derived
above reduces to the classical mass matrix24,25 as e0a = 0.



Bending vibration of a double-walled carbon nanotube

A double-walled carbon nanotube (DWCNT) is considered.

An armchair (5, 5), (8, 8) DWCNT with Young’s modulus E = 1.0 TPa,
L = 30 nm, density ρ = 2.3×103 kg/m3 and thickness t = 0.35 nm is used

The inner and the outer diameters of the DWCNT are respectively

0.68nm and 1.1nm.

We consider pinned-pinned boundary condition.

For the finite element analysis the DWCNT is divided into 100 elements.
The dimension of each of the system matrices become 200 × 200, that is

n = 200.



Nonlocal natural frequencies of DWCNT
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Equation of motion of damped nonlocal beams

For the bending vibration of a nonlocal damped beam, the equation of
motion can be expressed by

EI
∂4V (x , t)

∂x4
+ m

(
1 − (e0a)2 ∂2

∂x2

){
∂2V (x , t)

∂t2

}

+ ĉ1
∂5V (x , t)

∂x4∂t
+ ĉ2

∂V (x , t)

∂t
=

(
1 − (e0a)2 ∂2

∂x2

)
{F (x , t)} (23)

In the above equation EI is the bending rigidity, m is mass per unit length,

e0a is the nonlocal parameter, V (x , t) is the transverse displacement and
F (x , t) is the applied force.

The constant ĉ1 is the strain-rate-dependent viscous damping coefficient

and ĉ2 is the velocity-dependent viscous damping coefficient.

Following the damping convention in dynamic analysis23, we consider

stiffness and mass proportional damping. Therefore, we express the

damping constants as

ĉ1 = ζ1(EI) and ĉ2 = ζ2(m) (24)

where ζ1 and ζ2 are stiffness and mass proportional damping factors.



Damped vibration of nonlocal beams

Considering the free vibration, i.e., setting the force to zero, and
assuming harmonic motion with frequency ω

V (x , t) = v(x)exp [iωt] (25)

from Eq. (23) we have

EI
d4v

dx4
− mω2

(
v − (e0a)2 d2v

dx2

)
+ iωĉ1

d4v

dx4
+ iωĉ2v = 0 (26)

Using the damping factors, from Eq. (26) we have

EI (1 + iωζ1)
d4v

dx4
+ mω2(e0a)2 d2v

dx2
− mω2 (1 − iζ2/ω) v = 0 (27)

or
d4v

dx4
+ b̄4(e0a)2 d2v

dx2
− b̄4θv = 0 (28)

where we define b̄ and introduce θ as

b̄4 =
mω2

EI (1 + iωζ1)
and θ = (1 − iζ2/ω) (29)



Damped vibration of nonlocal beams

To obtain the characteristic equation, we assume

v(x) = exp [λx ] (30)

Substituting this in Eq. (28) we obtain

λ4 + b̄4(e0a)2λ2 − b̄4θ = 0 (31)

Defining

γ = b̄2(e0a)2 (32)

the two roots can be expressed as

λ2 = −α2, β2 (33)



Damped vibration of nonlocal beams

The expressions of α and β are given by

α = b̄

√(√
4θ + γ2 + γ

)
/2 (34)

and β = b̄

√(√
4θ + γ2 − γ

)
/2 (35)

Therefore, the four roots of the characteristic equation can be expressed

as
λ = iα,−iα, β,−β (36)

where i =
√
−1.



Nonlocal element matrix

We consider an element of length L with bending stiffness EI and mass

per unit length m.
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Figure: A nonlocal element for the bending vibration of a beam. It has two nodes

and four degrees of freedom. The displacement field within the element is

expressed by complex frequency dependent functions.



Dynamic shape functions

The undimmed dynamic stiffness matrix can be obtained using the

displacement and force boundary conditions using Banerjee’s method26

We propose an approach using complex shape functions which is

suitable for damped systems

Similarly to the classical finite element method, assume that the

frequency-dependent displacement within an element is interpolated from

the nodal displacements as

ve(x , ω) = NT (x , ω)v̂e(ω) (37)

Here v̂e(ω) ∈ C
n is the nodal displacement vector N(x , ω) ∈ C

n is the

vector of frequency-dependent shape functions and n = 4 is the number

of the nodal degrees-of-freedom.

Suppose the sj(x , ω) ∈ C, j = 1, · · · , 4 are the basis functions which
exactly satisfy Eq. (28). It can be shown that the shape function vector

can be expressed as
N(x , ω) = Γ(ω)s(x , ω) (38)

where the vector s(x , ω) =
{

sj(x , ω)
}T

, ∀ j = 1, · · · , 4 and the complex

matrix Γ(ω) ∈ C
4×4 depends on the boundary conditions.



Dynamic shape functions

The elements of s(x , ω) constitutes exp[λj x ] where the values of λj are

obtained from the solution of the characteristics equation as given in Eq.
(36).

An element for the damped beam under bending vibration is shown in 3.

The degrees-of-freedom for each nodal point include a vertical and a
rotational degrees-of-freedom.

In view of the solutions in Eq. (36), the displacement field with the
element can be expressed by linear combination of the basic functions

e−iαx , eiαx , eβx and e−βx .

Therefore, in our notations s(x , ω) =
{

e−iαx , eiαx , eβx , e−βx
}T

.



Dynamic shape functions

We can also express s(x , ω) in terms of trigonometric functions.

Considering e±iαx = cos(αx)± i sin(αx) and

e±βx = cosh(βx)± i sinh(βx), the vector s(x , ω) can be alternatively
expressed as

s(x , ω) =





sin(αx)
cos(αx)
sinh(βx)
cosh(βx)





∈ C
4 (39)

The displacement field within the element can be expressed as

v(x) = s(x , ω)T ve (40)

where ve ∈ C
4 is the vector of constants to be determined from the

boundary conditions.



Dynamic shape functions

The relationship between the shape functions and the boundary conditions
can be represented as in 1, where boundary conditions in each column give

rise to the corresponding shape function.

N1(x , ω) N2(x , ω) N3(x , ω) N4(x , ω)
y(0) 1 0 0 0
dy

dx
(0) 0 1 0 0

y(L) 0 0 1 0
dy

dx
(L) 0 0 0 1

Table: The relationship between the boundary conditions and the shape functions for

the bending vibration of beams.



Closed-form expressions of the elements

The stiffness and mass matrices can be obtained similarly to the static
finite element case discussed before.

Note that for this case all the matrices become complex and

frequency-dependent. It is more convenient to define the dynamic
stiffness matrix as

De(ω) = Ke(ω)− ω2Me(ω) (41)

The equation of dynamic equilibrium is

De(ω)v̂e(ω) = f̂(ω) (42)

In Eq. (41), the frequency-dependent stiffness and mass matrices can be
obtained as

Ke(ω) = EI

∫ L

0

d2N(x , ω)

dx2

d2NT (x , ω)

dx2
dx (43)

and Me(ω) = m

∫ L

0

N(x , ω)NT (x , ω)dx (44)



Closed-form expressions of the elements

After some algebraic simplifications27,28 it can be shown that the dynamic
stiffness matrix is given by the following closed-form expression

De(ω) = EI∆×



−αβ (cSβ + Csα) β (cαC − α− sSβ) αβ (Sβ + sα) − (C − c)αβ
β (cαC − α− sSβ) −sCβ + cαS (C − c)αβ −αS + sβ

αβ (Sβ + sα) (C − c)αβ −αβ (cSβ + Csα) α (sαS − β + cCβ)
− (C − c)αβ −αS + sβ α (sαS − β + cCβ) −sCβ + cαS




where

∆ =
(α2 + β2)

sS(α2 − β2)− 2αβ(1 − cC)
(45)

with

C = cosh(βL), c = cos(αL), S = sinh(βL) and s = sin(αL) (46)

These are frequency dependent complex quantities because α and β are

functions of ω and damping factors.



Dynamic response analysis
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Figure: Amplitude of the normalised frequency response of the DWCNT v(ω) at the

right-end (ζ2 = 0.05 and ζ1 = 10−4).



Dynamic response analysis
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Figure: Amplitude of the normalised frequency response of the DWCNT v(ω) at the

right-end (ζ2 = 0.05 and ζ1 = 10−4).



Conclusions

A dynamic finite element approach for bending vibration of damped

nonlocal beams is proposed.

Strain rate dependent viscous damping and velocity dependent viscous

damping are considered. Damped and undamped dynamics are

discussed.

Frequency dependent complex-valued shape functions are used to obtain

the dynamic stiffness matrix in closed-form.

The proposed method is numerically applied to the bending vibration of

an armchair (5, 5), (8, 8) double-walled carbon nanotube with

pinned-pinned boundary condition.

The natural frequencies and the dynamic response obtained using the

conventional finite element approach were compared with the results
obtained using the dynamic stiffness method.

Good agreement between conventional finite element with 100 elements

and proposed dynamic finite element with only 1 element was found.

This demonstrated the accuracy and computational efficiency of the

proposed dynamic stiffness method in the context of nano scale
structures.
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