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Stochastic SDOF systems
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Consider a normalised single degrees of freedom system (SDOF):

ü(t) + 2ζωn u̇(t) + ω2
n u(t) = f (t)/m (1)

Here ωn =
√

k/m is the natural frequency and ξ = c/2
√

km is the damping

ratio.

We are interested in understanding the motion when the natural

frequency of the system is perturbed in a stochastic manner.

Stochastic perturbation can represent statistical scatter of measured
values or a lack of knowledge regarding the natural frequency.



Frequency variability
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(a) Pdf: σa = 0.1
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(b) Pdf: σa = 0.2

Figure : We assume that the mean of r is 1 and the standard deviation is σa.

Suppose the natural frequency is expressed as ω2
n = ω2

n0
r , where ωn0

is

deterministic frequency and r is a random variable with a given

probability distribution function.



Frequency samples
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(a) Frequencies: σa = 0.1
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(b) Frequencies: σa = 0.2

Figure : 1000 sample realisations of the frequencies for the three distributions



Response in the time domain
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(a) Response: σa = 0.05
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(b) Response: σa = 0.1

Figure : Response due to initial velocity v0 with 5% damping



Response in the time domain
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(a) Response: σa = 0.15
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(b) Response: σa = 0.2

Figure : Response due to initial velocity v0 with 5% damping



Frequency response function
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(a) Response: σa = 0.05
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(b) Response: σa = 0.1

Figure : Normalised frequency response function with 5% damping |u/ust |
2, where

ust = f/k



Frequency response function
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(a) Response: σa = 0.15
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(b) Response: σa = 0.2

Figure : Normalised frequency response function with 5% damping |u/ust |
2, where

ust = f/k



Key observations

The mean response is significantly more damped compared to
deterministic response - ‘The ghost damping’!

The higher the randomness, the higher the “effective damping”.

The qualitative features are almost independent of the distribution the
random natural frequency.

We often use averaging to obtain more reliable experimental results - is it
always true?

Assuming uniform random variable, we aim to explain some of these

observations.



Equivalent damping

Assume that the random natural frequencies are ω2
n = ω2

n0
(1 + ǫx), where

x has zero mean and unit standard deviation.

The normalised harmonic response in the frequency domain

u(iω)

f/k
=

k/m

[−ω2 + ω2
n0
(1 + ǫx)] + 2iξωωn0

√
1 + ǫx

(2)

Considering ωn0
=
√

k/m and frequency ratio r = ω/ωn0
we have

u

f/k
=

1

[(1 + ǫx)− r2] + 2iξr
√

1 + ǫx
(3)



Equivalent damping

The squared-amplitude of the normalised dynamic response can be

obtained as

( |u|
f/k

)2

=
1

[(1 + ǫx)− r2]2 + 4ξ2r21 + ǫx
(4)

We are interested in the response at the resonance. Therefore

considering ω = ωn0
(that is r = 1) , we have

Û =

( |u|
f/k

)2

|r=1 =
1

ǫ2x2 + 4ξ2(1 + ǫx)
(5)

Since x is zero mean unit standard deviation uniform random variable, its
pdf is given by px (x) = 1/2

√
3,−

√
3 ≤ x ≤

√
3



Equivalent damping

The mean of Û is therefore

E

[

Û
]

=

∫

1

ǫ2x2 + 4ξ2(1 + ǫx)
px (x)dx

=
1

2
√

3

∫

√

3

−

√

3

1

ǫ2x2 + 4ξ2(1 + ǫx)
dx

=
1

4
√

3ǫξ
√

1 − ξ2
tan−1

( √
3ǫ

2ξ
√

1 − ξ2
− ξ
√

1 − ξ2

)

+
1

4
√

3ǫξ
√

1 − ξ2
tan−1

( √
3ǫ

2ξ
√

1 − ξ2
+

ξ
√

1 − ξ2

)

(6)



Equivalent damping

Note that for any δ we have

1

2

{

tan−1(a + δ) + tan−1(a − δ)
}

= tan−1(a) + O(δ2) (7)

Neglecting terms of the order O(ξ2) we have

E

[

Û
]

≈ 1

2
√

3ǫξ
√

1 − ξ2
tan−1

( √
3ǫ

2ξ
√

1 − ξ2

)

≈ tan−1(
√

3ǫ/2ξ)

2
√

3ǫξ
(8)



Equivalent damping

For small damping, the maximum amplitude at ω = ωn0
is 1/4ξ2

e where ξe

is the equivalent damping for the mean response

Therefore, the equivalent damping for the mean response is given by

(2ξe)
2 =

2
√

3ǫξ

tan−1(
√

3ǫ/2ξ)
(9)

From this we can obtain the equivalent damping factor as

ξe =
31/4

√
ǫξ

√

2 tan−1(
√

3ǫ/2ξ)
(10)



The ‘Ghost damping’

For small damping and randomness, ignoring higher-order terms in ǫ and

ξ we obtain

ξe =
31/4

√
ǫξ

√

2 tan−1(
√

3ǫ/2ξ)
≈ 31/4

√
π

√
ǫ
√

ξ (11)

The equivalent damping factor of the mean system is proportional to the

square root of the damping factor of the underlying baseline system



Equivalent frequency response function
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(a) Response: σa = 0.05
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(b) Response: σa = 0.1

Figure : Normalised frequency response function with equivalent damping (ξe = 0.05

in the ensembles). For the two cases ξe = 0.0551 and ξe = 0.0643 and respectively.



Equivalent frequency response function
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(a) Response: σa = 0.15
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(b) Response: σa = 0.2

Figure : Normalised frequency response function with equivalent damping (ξe = 0.05

in the ensembles). For the two cases ξe = 0.0735 and ξe = 0.0819 respectively.



What are implications - could this ‘Ghost Damping’ haunt us?

The mean response of a damped stochastic system is more damped
than the underlying baseline system

The ‘damping effect’ depends on the standard deviation of the resonance

frequency - the ‘random’ the system is, the more ‘damped’ the mean
response becomes

Any engineering design decision based on the mean result will NOT be a
conservative one! This is because the ‘sample response’ can be

significantly higher than the mean response.



Conclusions

The mean response of a damped stochastic system is more damped

than the underlying baseline system.

For small baseline damping factors, the equivalent damping for the mean

response is given by

ξe ≈ 31/4
√
ǫξ

√

2 tan−1(
√

3ǫ/2ξ)
≈ 31/4

√

ǫξ

π

where ǫ is the standard deviation of the squared natural frequency and ξ
is the damping factor of the baseline system.

Higher standard deviation of the resonance frequency will ‘dampen’ the
mean response.

Any computational approach, based on perturbation around the baseline

response, may have difficulty in predicting the statistical average when
the damping of the baseline system is low.
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