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Single cantilever based mass sensor C2EC
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Vibration based mass sensor: CNT

Natural frequency with the added mass:
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the stiffness calibration constant

The frequency-shift can be expressed using Eq. (22)
as
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and the mass calibration constant From this we Obtzm 1
Cm = I_ fon V1+e,AM
1 . . .
Rearranging gives the expression
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Vibration based mass sensor: CNT

Mass of a nano object can be detected from the frequency shift Af
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TABLE 1. The stiffness (¢x) and mass (¢m) calibration con-
stants for CNT based bio-nano sensor. The value of 7 indi-
cates the length of the mass as a fraction of the length of the

CNT.
Cantilevered CNT Bridged CNT

Mass x Cm ck Cm
size
Point 3.5160152 4.0 22.373285 2.522208547
mass
(y—=0)
v=0.1 3.474732666 2.486573805
v =0.2 3.000820053 2.383894805
7¥=0.3 2.579653837 2.226110255
¥y=04 2.212267400 2.030797235
v=05 1.898480438 1.818142650
v = 0.6 1.636330135 1.607531183

=07
v =0.8

1.421839146
1.249156270

1.414412512
1.248100151




Proposed approach

e Use two coupled cantilevers —
not one!

e Use eigenmodes and not
eigenfrequencies

e Motivation: Under certain
situations the eigenmodes may
prove to be more sensitive to
the changes In the mass than
the classical approach to
consider resonant frequency
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Two-degree-of-freedom model




Equivalent two-DOF model C2EC

Figl.(b)

Figl.(a)

The tip dynamics can be modeled by a 2-DOF spring-mass

system
Here: m,=m,=m=33M /140 and k,=k,=k=3EIl/L’

The coupling spring: k. =€k



Equivalent two-DOF model

Mode 1: symmetric

}\8’2: g+ 1 TV 82

Mode 2: Anti-symmetric

vp=[3]  vi=[1]
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Two-degree-of-freedom model
with added mass




Mathematical model

The equation of motion with added mass (2A) positioned at the
end of one of the cantilever becomes
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The resonance frequencies:
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The eigenmodes [1,U, ,] where
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Ao
o 0.0‘0.
XX

0%

The mode veering phenomenon C2EC
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Eigenvalues come close (closeness depends on the coupling
strength) - but they do not cross — experimentally shown in:

du Bois, J. L., Adhikari, S. and Lieven, N. A. J., "Mode veering in stressed framed structures", Journal
of Sound and Vibration, 322[4-5] (2009), pp. 1117-1124.



Extreme parametric sensitivity C2EC
of the eigenmodes in the veering range

Leissa (1974), Journal of Applied Mathematics and Physics
(ZAMP): -
the (eigenfunctions) must undergo violent change
— figuratively speaking, a dragonfly one instant, a
butterfly the next, and something indescribable in

between'.

Our aim is to exploit this parametric sensitivity and
turn it in to a sensor device



Resonance shift and eigen-mode shift C2EC

Eigenmodes are known by many names: eigenvectors, mode
shapes, eigenmodes, eigenfunctions or simply modes

The classical resonance shift is:
A — A

l
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We introduce a new quantify - eigenmode-shift or simply the

‘Mode-shift’
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Extreme parametric sensitivity c2EC
of the eigenmodes in the veering range
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Sensitivity of the eigenmodes depends on C2EC
coupling
Mode 1 £=0.1
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Mass detection from eigenmode-shift c2EC

Suppose ou is mode shift for the mass-loaded cantilever
in the second mode of vibration (the anti-symmetric
mode)

(UO-UZ )= 1_A+£A+B _
2 =

(1+2A)¢ ou

If we can measure the mode-shift du, the mass can be
identified from the above expressions as

_ 28ue+edu?
2(1+6u)(1-038u¢)




Finite Element Validation




Finite element model

* Two hollow cylindrical
cantilever beams

* The nodes at the end of
cantilever are the
eigenvectors

* The vector u,is obtained
by taking an average of all
the responses at the tip
(homogenization)
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Finite element modes C2EC
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Finite element model

* The mode-shift du is
obtained by taking the
difference in the second
eigenmode between no
mass (A =0) and mass
loaded case (A #0)

 We use ou as ‘input’ and
check if the original mass
used for simulation is
predicted by our sensing
equation




Validation results
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Validation results C2EC
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Conclusions and future challanges




Conclusions 2k

A system using two cantilevers coupled by a ‘light’ spring is
proposed

Only one of the cantilever loaded with the mass to be identified

Eigenmode-shift as opposed to conventional frequency-shift is
suggested as a measured quantity for mass sensing

5-10 times increase in relative sensitivity can be achieved
(depending on the coupling stiffness) — lower the coupling, the
higher the sensitivity)

The mode-shift du is obtained by taking the difference in the
second eigenmode between no mass (A =0) and the mass loaded
case (A #0)

We used du as ‘input’ and validate if the original mass used for
the simulation is predicted by our sensing equation using finite
element simulation - good agreement was found



Future challenges C2EC

Connect two identical cantilevers by a spring at the tip (we
suggest 5-15% of the tip stiffness)

The elastic coupling is the key! Without this, the technique
does not work....

Excite the system into the second mode (the anti-symmetric
mode)

Simultaneous readout of displacements of both the tips in the
second mode

Homogenization of the measured displacements at both the
tips

A point mass at the cantilever tip is assumed — the physical
size of the attached body might introduce some errors

Need to understand the role of Q-factor and noise
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