Ultra Sensitive sensor using coupled cantilevers

Ezra Clarke and Sondipon Adhikari

Zienkiewicz Centre for Computational Engineering College of Engineering, Swansea University, UK

College of Engineering

www.swansea.ac.uk/engineering

Outline of the Talk

- Background & Motivation
- Coupled cantilevers
- Two-degree-of-freedom model
 - System without added mass
 - System with added mass
- Frequency sensitivity vs eigenmode sensitivity
- Sensor equations
- Validation: Finite element simulations
- Conclusions

Single cantilever based mass sensor

Chowdhury, R., Adhikari, S. and Mitchell, J., "Vibrating carbon nanotube based bio-sensors", Physica E: Low-dimensional Systems and Nanostructures, 42[2] (2009), pp. 104-109.

Adhikari, S. and Chowdhury, R., "The calibration of carbon nanotube based bio-nano sensors", *Journal of Applied Physics*, 107[12] (2010), pp. 124322:1-8

Vibration based mass sensor: CNT

Natural frequency with the added mass:

$$f_n = \frac{1}{2\pi} \sqrt{\frac{k_{eq}}{m_{eq}}} = \frac{\beta}{2\pi} \frac{c_k}{\sqrt{1 + c_m \Delta M}}$$

where

$$\beta = \sqrt{\frac{EI}{\rho A L^4}}$$

the stiffness calibration constant

$$c_k = \sqrt{\frac{I_3}{I_1}}$$

and the mass calibration constant

$$c_m = \frac{I_2}{I_1}$$

Identification of the added mass

$$f_n = \frac{f_{0_n}}{\sqrt{1 + c_m \Delta M}} \tag{22}$$

The frequency-shift can be expressed using Eq. (22) as

$$\Delta f = f_{0_n} - f_n = f_{0_n} - \frac{f_{0_n}}{\sqrt{1 + c_m \Delta M}}$$
(23)

From this we obtain

$$\frac{\Delta f}{f_{0_n}} = 1 - \frac{1}{\sqrt{1 + c_m \Delta M}} \tag{24}$$

Rearranging gives the expression

$$\Delta M = \frac{1}{c_m \left(1 - \frac{\Delta f}{f_{0_n}}\right)^2} - \frac{1}{c_m} \tag{25}$$

Vibration based mass sensor: CNT

$$M = \frac{\rho AL}{c_m} \frac{(c_k^2 \beta^2)}{(c_k \beta - 2\pi \Delta f)^2} - \frac{\rho AL}{c_m}$$

$$I_1 = \int_0^1 Y_j^2(\xi) \mathrm{d}\xi = 1.0$$

$$I_2 = \frac{1}{\gamma} \int_{\xi=1-\gamma}^1 Y_j^2(\xi) \mathrm{d}\xi; \quad 0 \le \gamma \le 1$$

$$I_3 = \int_0^1 Y_j^{''^2}(\xi) \mathrm{d}\xi = 12.3624$$

$$c_k = \sqrt{\frac{I_3}{I_1}} = 3.5160$$
 and $c_m = \frac{I_2}{I_1}$

Adhikari, S. and Chowdhury, R., "The calibration of carbon nanotube ba bio-nano sensors", *Journal of Applied Physics*, **107**[12] (2010), pp. 124322:1-8

TABLE I. The stiffness (c_k) and mass (c_m) calibration constants for CNT based bio-nano sensor. The value of γ indicates the length of the mass as a fraction of the length of the CNT.

	Cantilevered CNT		Bridged CNT	
Mass	c_k	c_m	c_k	c_m
size				
Point	3.5160152	4.0	22.373285	2.522208547
mass				
$(\gamma ightarrow 0)$				
$\gamma = 0.1$		3.474732666		2.486573805
$\gamma = 0.2$		3.000820053		2.383894805
$\gamma = 0.3$		2.579653837		2.226110255
$\gamma = 0.4$		2.212267400		2.030797235
$\gamma=0.5$		1.898480438		1.818142650
$\gamma=0.6$		1.636330135		1.607531183
$\gamma = 0.7$		1.421839146		1.414412512
$\gamma = 0.8$		1.249156270		1.248100151

Proposed approach

- Use two coupled cantilevers not one!
- Use eigenmodes and not eigenfrequencies
- Motivation: Under certain situations the eigenmodes may prove to be more sensitive to the changes in the mass than the classical approach to consider resonant frequency

Two-degree-of-freedom model

College of Engineering

www.swansea.ac.uk/engineering

Equivalent two-DOF model

The tip dynamics can be modeled by a 2-DOF spring-mass system Here: $m_1=m_2=m=33M_c/140$ and $k_1=k_2=k=3EI/L^3$ The coupling spring: $k_c = \varepsilon k$

Equivalent two-DOF model

Mode 1: symmetric $\lambda_{1,2}^0 = \varepsilon + 1 \pm \sqrt{\varepsilon^2}$

Mode 2: Anti-symmetric

$$U_1^0 = \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \end{bmatrix} \qquad U_2^0 = \begin{bmatrix} \mathbf{1} \\ -\mathbf{1} \end{bmatrix}$$

Two-degree-of-freedom model with added mass

College of Engineering

www.swansea.ac.uk/engineering

Mathematical model

The equation of motion with added mass (2Δ) positioned at the end of one of the cantilever becomes

$$m\begin{bmatrix} 1 & 0\\ 0 & 1+2\Delta \end{bmatrix} \ddot{\mathbf{x}} + k\begin{bmatrix} 1+\varepsilon & -\varepsilon\\ -\varepsilon & 1+\varepsilon \end{bmatrix} \mathbf{x} = 0$$

The resonance frequencies:

$$\lambda_{1,2} = \frac{1 + \Delta + \varepsilon + \epsilon \Delta \pm \sqrt{(\Delta^2 \varepsilon^2 + \Delta^2 + 2\varepsilon \Delta^2 + \varepsilon^2 + 2\varepsilon^2 \Delta^2)}}{1 + 2\Delta}$$

The eigenmodes
$$[1, U_{1,2}]$$
 where $U_{1,2} = \frac{\Delta + \varepsilon \Delta \pm \beta}{(1+2\Delta)\varepsilon}$

Where
$$\beta = \sqrt{(\Delta^2 \in \varepsilon^2 + \Delta^2 + 2\varepsilon\Delta^2 + \varepsilon^2 + 2\varepsilon^2\Delta)}$$

The mode veering phenomenon

Eigenvalues come close (closeness depends on the coupling strength) - but they do not cross – experimentally shown in:

du Bois, J. L., Adhikari, S. and Lieven, N. A. J., "Mode veering in stressed framed structures", Journal of Sound and Vibration, 322[4-5] (2009), pp. 1117-1124.

Extreme parametric sensitivity of the eigenmodes in the veering range

Leissa (1974), *Journal of Applied Mathematics and Physics* (ZAMP): -

the (eigenfunctions) must undergo violent change – figuratively speaking, a dragonfly one instant, a butterfly the next, and something indescribable in between'.

Our aim is to exploit this parametric sensitivity and turn it in to a sensor device

Eigenmodes are known by many names: eigenvectors, mode shapes, eigenmodes, eigenfunctions or simply modes

The classical resonance shift is:

$$\Delta \lambda = \frac{\lambda_i^0 - \lambda_i}{\lambda_i^0}$$

We introduce a new quantify - eigenmode-shift or simply the 'Mode-shift'

$$|\Delta u_i| = \frac{u_i^0 - u_i}{u_i^0}$$

Extreme parametric sensitivity of the eigenmodes in the veering range

Sensitivity of the eigenmodes depends on coupling

Mass detection from eigenmode-shift

Suppose $\underline{\delta u}$ is mode shift for the mass-loaded cantilever in the second mode of vibration (the anti-symmetric mode)

$$(U_2^0 - U_2 =) = 1 - \frac{\Delta + \varepsilon \Delta + \beta}{(1 + 2\Delta)\varepsilon} = \delta u$$

If we can measure the mode-shift $\overline{\delta u},$ the mass can be identified from the above expressions as

$$\Delta = \frac{2\delta u\varepsilon + \varepsilon \delta u^2}{2(1+\delta u)(1-\delta u\varepsilon)}$$

Finite Element Validation

College of Engineering

www.swansea.ac.uk/engineering

C²EC

Finite element model

- Two hollow cylindrical cantilever beams
- The nodes at the end of cantilever are the eigenvectors
- The vector u₂ is obtained by taking an average of all the responses at the tip (homogenization)

Finite element modes

Finite element model

- The mode-shift δu is obtained by taking the difference in the second eigenmode between no mass (Δ =0) and mass loaded case (Δ ≠0)
- We use δu as 'input' and check if the original mass used for simulation is predicted by our sensing equation

Validation results

Theoretical Δ	F.Ε Δ
0.0016	0.0017
0.0032	0.0033
0.0048	0.005
0.0064	0.0067
0.008	0.0083
0.0096	0.01
0.0112	0.0116
0.0128	0.0133
0.0144	0.015
0.016	0.0166

Validation results

Theoretical δΔ	FE A
0.0016	0.0012
0.0032	0.0025
0.0048	0.0038
0.0064	0.005
0.008	0.0063
0.0096	0.0075
0.0112	0.0087
0.0128	0.0099
0.0144	0.011
0.016	0.0122

Conclusions and future challanges

College of Engineering

www.swansea.ac.uk/engineering

Conclusions

- A system using two cantilevers coupled by a 'light' spring is proposed
- Only one of the cantilever loaded with the mass to be identified
- Eigenmode-shift as <u>opposed</u> to conventional frequency-shift is suggested as a measured quantity for mass sensing
- 5-10 times increase in relative sensitivity can be achieved (depending on the coupling stiffness) – lower the coupling, the higher the sensitivity)
- The mode-shift δu is obtained by taking the difference in the second eigenmode between no mass (Δ =0) and the mass loaded case (Δ ≠0)
- We used δu as 'input' and validate if the original mass used for the simulation is predicted by our sensing equation using finite element simulation - good agreement was found

Future challenges

- Connect two identical cantilevers by a spring at the tip (we suggest 5-15% of the tip stiffness)
- The elastic coupling is the key! Without this, the technique does not work....
- Excite the system into the second mode (the anti-symmetric mode)
- Simultaneous readout of displacements of both the tips in the second mode
- Homogenization of the measured displacements at both the tips
- A point mass at the cantilever tip is assumed the physical size of the attached body might introduce some errors
- Need to understand the role of Q-factor and noise

Future challenges

Acknowledgement

CELEBRATING 350 YEARS