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Introduction Stochastic partial differential equations

Stochastic Partial Differential Equations

We consider the stochastic elliptic partial differential equation (PDE)

Lθ{a(r, θ),u(r, θ)} = p(r) (1)

The stochastic operator Lθ can be

Lθ ≡ ∂
∂x AE(x , θ) ∂

∂x axial deformation of rods

Lθ ≡ ∂2

∂x2 EI(x , θ) ∂2

∂x2 bending deformation of beams

Here a : Rd ×Θ → R is a random field, which can be viewed as a set

of random variables indexed by r ∈ R
d .

We assume the random field a(r, θ) to be stationary and square

integrable.

Based on the physical problem, the random field a(r, θ) can be

used to model different physical quantities (e.g., AE(x , θ),
EI(x , θ)).
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Introduction Stochastic partial differential equations

Discretized stochastic PDE

The random process a(r, θ) can be expressed in a generalized

fourier type of series known as the Karhunen-Loève expansion

a(r, θ) = a0(r) +

∞∑

i=1

√
νiξi(θ)ϕi(r) (2)

Here a0(r) is the mean function, ξi(θ) are uncorrelated standard

Gaussian random variables, νi and ϕi(r) are eigenvalues and

eigenfunctions satisfying the integral equation

∫

D

Ca(r1, r2)ϕj (r1)dr1 = νjϕj (r2), ∀ j = 1,2, · · · (3)
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Introduction Stochastic partial differential equations

Discrete equation for stochastic mechanics

Truncating the KL expansion upto the M-th term and discretising

the displacement field, the equation for static deformation can be

expresses as
[

A0 +
M∑

i=1

ξi(θ)Ai

]

u(θ) = f (4)

The aim is to efficiently solve for u(θ).

Note: Equation (4) can also be obtained with other considerations,

such as random variable models.
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Introduction Stochastic partial differential equations

Summary of solution techniques

First- and second-order perturbation methods

Neumann expansion method

linear algebra based methods

Spectral function approach

General response surface based methods

Polynomial chaos (PC) expansion

High dimensional model representation (HDMR)
Gaussian process emulator (GPE)
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Introduction Polynomial Chaos expansion

Polynomial Chaos expansion

Using the Polynomial Chaos expansion, the solution (a vector

valued function) can be expressed as

u(θ) = ui0h0 +

∞∑

i1=1

ui1h1(ξi1(θ))

+

∞∑

i1=1

i1∑

i2=1

ui1,i2h2(ξi1(θ), ξi2(θ))

+

∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

ui1i2i3h3(ξi1(θ), ξi2(θ), ξi3(θ))

+

∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

i3∑

i4=1

ui1i2i3i4 h4(ξi1(θ), ξi2(θ), ξi3(θ), ξi4(θ)) + . . . ,

Here ui1,...,ip ∈ R
n are deterministic vectors to be determined.
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Introduction Polynomial Chaos expansion

Polynomial Chaos expansion

After the finite truncation, concisely, the polynomial chaos

expansion can be written as

û(θ) =
P∑

k=1

Hk (ξ(θ))uk (5)

where Hk(ξ(θ)) are the polynomial chaoses.

The value of the number of terms P depends on the number of

basic random variables M and the order of the PC expansion r as

P =
r∑

j=0

(M + j − 1)!

j!(M − 1)!
(6)
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Introduction Polynomial Chaos expansion

Polynomial Chaos expansion

We need to solve a nP × nP linear equation to obtain all uk ∈ R
n.








A0,0 · · · A0,P−1

A1,0 · · · A1,P−1
...

...
...

AP−1,0 · · · AP−1,P−1














u0

u1
...

uP−1







=







f0

f1
...

fP−1







(7)

P increases exponentially with M:

M 2 3 5 10 20 50 100

2nd order PC 5 9 20 65 230 1325 5150

3rd order PC 9 19 55 285 1770 23425 176850
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Random eigen function expansion method (REFE) Motivation

Mathematical nature of the solution

The elements of the solution vector are not simple polynomials,

but ratio of polynomials in ξ(θ).

Remark

If all Ai ∈ R
n×n are matrices of rank n, then the elements of u(θ) are

the ratio of polynomials of the form

p(n−1)(ξ1(θ), ξ2(θ), . . . , ξM(θ))

p(n)(ξ1(θ), ξ2(θ), . . . , ξM(θ))
(8)

where p(n)(ξ1(θ), ξ2(θ), . . . , ξM(θ)) is an n-th order complete

multivariate polynomial of variables ξ1(θ), ξ2(θ), . . . , ξM(θ).
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Random eigen function expansion method (REFE) Motivation

Mathematical nature of the solution

Suppose we denote

A(θ) =

[

A0 +

M∑

i=1

ξi(θ)Ai

]

∈ R
n×n (9)

so that

u(θ) = A−1(θ)f (10)

From the definition of the matrix inverse we have

A−1 =
Adj(A)

det (A)
=

CT
a

det (A)
(11)

where Ca is the matrix of cofactors. The determinant of A contains a

maximum of n number of products of Akj and their linear combinations.

Note from Eq. (9) that

Akj(θ) = A0kj
+

M∑

i=1

ξi(θ)Aikj
(12)

@ProfAdhikari (Swansea) Random Eigenfunction Expansion Method 8-11 April, 20113 11 / 40



Random eigen function expansion method (REFE) Motivation

Mathematical nature of the solution

Since all the matrices are of full rank, the determinant contains a

maximum of n number of products of linear combination of

random variables in Eq. (12). On the other hand, each entries of

the matrix of cofactors, contains a maximum of (n − 1) number of

products of linear combination of random variables in Eq. (12).

From Eqs. (10) and (11) it follows that

u(θ) =
CT

a f

det (A)
(13)

Therefore, the numerator of each element of the solution vector

contains linear combinations of the elements of the cofactor

matrix, which are complete polynomials of order (n − 1).

All the solution methods proposed for stochastic finite element

analysis essentially aim to approximate the ratio of the

polynomials given in Eq. (8).
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Random eigen function expansion method (REFE) Motivation

Possibilities of solution types

We are looking to solve the following equation for u(θ)

[

A0 +
M∑

i=1

ξi(θ)Ai

]

u(θ) = f (14)

Some possibilities include

u(θ) =

P1∑

k=1

Hk (ξ(θ))uk

or =

P2∑

k=1

Γk (ξ(θ))φk (ξ(θ))

or =

P3∑

k=1

akUk (ξ(θ)) . . . etc.

(15)
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Random eigen function expansion method (REFE) Response using random eigenfunctions

Motivation behind the proposed approach

In this paper we proposed the idea where both the coefficient

vectors and the associated function are random. This implies that

we are looking for a solution of the generic form

u(ω) =
P∑

k=1

Γk (ω)φk (ω) (16)

for some scaler functions Γk (ω) and vectors φk (ω).

The random symmetric matrix appearing in the discretized

stochastic finite element equation (14)

A(ω) = A0 +

M∑

i=1

ξi(ω)Ai (17)

@ProfAdhikari (Swansea) Random Eigenfunction Expansion Method 8-11 April, 20113 14 / 40



Random eigen function expansion method (REFE) Response using random eigenfunctions

Random eigen function expansion

The random eigenvalue problem associated with this matrix can

be defined as

A(ω)φk (ω) = λk (ω)φk (ω); k = 1,2, . . . n (18)

We assume that the eigenvalues are distinct so that φk for

k = 1,2, . . . n forms a complete orthonormal basis. For notational

convenience, define the matrix of eigenvalues and eigenvectors

Λ = diag [λ1, λ2, . . . , λn] ∈ R
n×n and Φ = [φ1,φ2, . . . ,φn] ∈ R

n×n

(19)

Eigenvalues are ordered in the ascending order so that

λ1 < λ2 < . . . < λn according to a chosen norm.
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Random eigen function expansion method (REFE) Response using random eigenfunctions

Random eigen function expansion

Since Φ is an orthogonal matrix we have Φ
−1 = Φ

T so that the

following identities involving the random matrices can be

established

Φ(ω)T A(ω)Φ(ω) = Λ(ω) (20)

A(ω) = Φ(ω)−T
Λ(ω)Φ(ω)−1 (21)

and A(ω)−1 = Φ(ω)Λ(ω)−1
Φ(ω)T (22)

The solution vector is given by

u(ω) =

[

A0 +

M∑

i=1

ξi(ω)Ai

]−1

f (23)
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Random eigen function expansion method (REFE) Response using random eigenfunctions

Random eigen function expansion

Using the modal identities and considering that the matrix of

eigenvalues is a diagonal matrix, we have

u(ω) = A−1(ω)f =
[

Φ(ω)Λ−1(ω)Φ(ω)T
]

f =
n∑

k=1

[

φT
k (ω)f

λk (ω)

]

︸ ︷︷ ︸

Γk (ω)

φk (ω)

(24)

This expression is ‘exact’ in the sense of probability 1. Comparing

this with the sought form proposed in Eq. (16) we obtain that the

random scalar functions are

Γk (ω) =
φT

k (ω)f

λk (ω)
, k = 1,2, · · · ,n (25)

and the vectors φk (ω) are the random eigenvectors corresponding

to the underlying random matrix A(ω).
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Random eigen function expansion method (REFE) Response using random eigenfunctions

Some observations

The eigenvalues increase in magnitude with increasing k and they

appear in the denominator. Therefore the series can be truncated

after a small number of terms, say r < n.

Although the coefficient functions and the associated vectors are

identified uniquely, the main difficulty in this approach is the

solution of the random eigenvalue problem.

In order to use the solution given here in a efficient manner, it is

necessary to calculate the random eigensolutions.
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The random eigenvalue problem

The random eigenvalue problem

The random eigenvalue problem is a research area in its own

Several papers exist on this topic

A number of techniques, such as, perturbation method,

polynomial chaos, asymptotic method, reduced basis approach,

random polynomials, hybrid perturbation-polynomial chaos

method have been proposed

We use the first-order methods for simplicity - but any existing

techniques can be used
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The random eigenvalue problem

Random eigenvalues

The eigenvalue problem corresponding to the deterministic

stiffness matrix is given by

A0φ0k
= λ0k

φ0k
; k = 1,2, . . . n (26)

Here λ0k
and φ0k

are the eigenvalues and eigenvectors

corresponding the to deterministic system.

The first order perturbation of the k-th eigenvalue is given by

λk = λ0k
+

M∑

i=1

ξi
∂λk

∂ξi
where

∂λk

∂ξi
= φT

0k

∂A

∂ξi
φ0k

(27)

For our A matrix, ∂A/∂ξi = Ai
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The random eigenvalue problem

Random eigenvectors

The expression for the first-order perturbation of the eigenvector

can be given by

φk = φ0k
+

M∑

i=1

ξi
∂φk

∂ξi
(28)

The deterministic eigenvectors satisfy the following properties

φT
0k
φ0k

= 1 and φT
0k

∂φk

∂ξi
= 0 (29)

Different methods have been developed to calculate the

derivatives of the eigenvectors. One of these methods expands

the derivative of eigenvectors as a linear combination of

deterministic eigenvectors

∂φk

∂ξi
=

n∑

m=1, 6=k

αkimφm0 where αkim =
1

λ0k
− λ0m

φT
0m

∂A

∂ξi
φ0k

(30)
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The random eigenvalue problem

Random eigenvalues and eigenvectors

Different expression need to be used when one more eigenvalues

are repeated - we don’t consider that case here.

Summarising, random eigenvalues and eigenvectors can be

explicitly expressed in closed-form as

λk (ω) = λ0k
+

M∑

i=1

ξi(ω)φ
T
0k

Aiφ0k
(31)

φk (ω) = φ0k
+

M∑

i=1

ξi(ω)

n∑

m=1, 6=k

[

φT
0m

Aiφ0k

λ0k
− λ0m

]

φ0m
(32)

Since these expressions are based on the first-order perturbation,

they lead to errors in the eigenvalues and the eigenvectors.

Consequently, when they are used, the proposed series

expression becomes erroneous.

We use thel Galerkin approach to address this error.
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Error minimisation using the Galerkin approach

The Galerkin approach

We consider the inner product norm

〈u(ω),v(ω)〉 =
∫

Ω P(dω)uT (ω)v(ω).

Tthe approximate solution is expressed by the reduced series

expansion

û(ω) =
r∑

k=1

{

ck +
φT

k (ω)f

λk (ω)

}

φk (ω) (33)

The unknown constants ck need to be obtained such that the error

in series expansion in minimised according to our selected L2

norm.

The number of terms r < n can be selected based on the spectral

properties of the matrix A(ω).
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Error minimisation using the Galerkin approach

The Galerkin approach

Substituting the approximate expression of in the governing

equation, the error vector can be obtained as

ε(ω) = A(ω)
r∑

k=1

{

ck +
φT

k (ω)f

λk (ω)

}

φk (ω)− f ∈ R
n (34)

We wish to obtain the coefficients ck such that the error norm

χ2 = 〈ε(ω), ε(ω)〉 is minimum. This can be achieved using the

Galerkin approach so that the error is made orthogonal to the

basis functions, that is, mathematically

ε(ω)⊥φj(ω) or
〈
φj(ω), ε(ω)

〉
= 0 ∀ j = 1,2, . . . , r (35)

Imposing this condition and using the expression of ε(ω)

E

[

φT
j (ω)A(ω)

r∑

k=1

{

ck +
φT

k (ω)f

λk (ω)

}

φk (ω)− φT
j (ω)f

]

= 0, ∀ j

(36)
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Error minimisation using the Galerkin approach

The Galerkin approach

Interchanging the E [•] and summation operations, and after some

algebra the coefficients cj can be obtained in closed-form as

ck =
1

E [λk (ω)]






E
[

φT
k (ω)f

]

−
r∑

m=1

E





(

φT
k (ω)A(ω)φm(ω)

)(

φT
m(ω)f

)

λm(ω)











Due to the nonlinearity, the expectation terms cannot be

computed analytically even with first-order perturbation for the

eigensolutions.

A Monte Carlo simulation based approach is used to obtain these

constants.

Only a reduced number of constants r < n need to be evaluated.

Explicit closed-form expressions of eigenvalues and eigenvectors

can be used to compute these constants.

The sampling necessary to compute the constants can be coarser

compared to sampling necessary for the series solution.

@ProfAdhikari (Swansea) Random Eigenfunction Expansion Method 8-11 April, 20113 25 / 40



Error minimisation using the Galerkin approach

Summary of the proposed method

The discretised equation:
[

A0 +
∑M

i=1 ξi(ω)Ai

]

u(ω) = f

The solution: u(ω) =
∑r

k=1

{

ck +
φ

T

k (ω)f
λk (ω)

}

φk (ω)

The random eigenvalues λk (ω) = λ0k
+

∑M
i=1 ξi(ω)φ

T
0k

Aiφ0k
and

eigenvectors φk (ω) = φ0k
+

∑M
i=1 ξi(ω)

∑n
m=1, 6=k

[

φ
T

0m
Aiφ0k

λ0k
−λ0m

]

φ0m

The deterministic eigensolutions A0φ0k
= λ0k

φ0k
; k = 1,2, . . . r .

Choose r so that λ01
/λ0r

is sufficiently small.

The constants for the Galerkin error minimisation: ck =

1
E[λk (ω)]

{

E
[

φT
k (ω)f

]

−∑r
m=1 E

[
(

φ
T

k (ω)A(ω)φm(ω)
)(

φ
T

m(ω)f
)

λm(ω)

]}
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Numerical example

The Euler-Bernoulli beam example

An Euler-Bernoulli cantilever beam with stochastic bending

modulus

Length : 1.0 m, Cross-section : 30 × 5 mm2, Young’s Modulus: 69

× 109 Pa.

We study the deflection of the beam under the action of a point

load on the free end.
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Numerical example

Problem details

We assume that the bending modulus of the cantilever beam is a

homogeneous stationary Gaussian random field of the form

EI(x , θ) = EI0(1 + a(x , θ)) (37)

where x is the coordinate along the length of the beam, EI0 is the

estimate of the mean bending modulus, a(x , θ) is a zero mean

stationary random field.

The autocorrelation function of this random field is assumed to be

Ca(x1, x2) = σ2
ae−(|x1−x2|)/µa (38)

where µa is the correlation length and σa is the standard deviation.

Two correlation lengths are considered in the numerical studies:

µa = L/2 and µa = L/5.
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Numerical example

Problem details

Case 1: The random field a(x , ω) is assumed to be a Gaussian

random field with correlation length µa = L/2. Four terms in the

KL expansion are considered and the beam is divided into 200

elements. For this case we have n = 400 and M = 4. The results

are compared with the different orders of polynomial chaos

expansions and direct Monte Carlo simulation.

Case 2: The random field a(x , ω) is assumed to be an Gaussian

random field with correlation length µa = L/5. The beam is divided

into 200 elements and 14 random variables are considered in the

discretisation of the random field. The value of M is selected such

that νM/ν1 = 0.03. For this case we have n = 400 and M = 14.

The results are compared with direct Monte Carlo simulation.
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Numerical example

Eigensolutions of the beam

0 20 40 60 80 100 120 140 160 180 200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of eigenvalues: j

R
at

io
 o

f e
ig

en
va

lu
es

: λ 01
/λ

0j

 

 

All eigenvalues
Selected eigenvalues

(a) Ratio of eigenvalues of the stiffness

matrix A0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Distance along the beam (m)

D
et

er
m

in
is

tic
 e

ig
en

ve
ct

or
s

 

 
φ

1

φ
2

φ
3

φ
4

φ
5

φ
5

(b) First six eigenvectors of A0 (transverse

DOF).

Figure : The eigenvalues and eigenvectors of the stiffness matrix A0. For
r = 15, the ration eigenvalues λ01

/λ0r
< 10−3.
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Numerical example Case 1: Smaller number of random variables

Moments of the eigenvalues
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The mean and standard deviation bounds of the first 15 eigenvalues

obtained from the first-order perturbation and direct Monte Carlo

simulation for σa = 0.2.
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Numerical example Case 1: Smaller number of random variables

Mean of the eigenvectors
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(b) Mean of the fourth eigenvector.

The mean of the eigenvectors (transverse DOF) obtained from the

first-order perturbation and direct Monte Carlo simulation, σa = 0.2.
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Numerical example Case 1: Smaller number of random variables

Standard deviation of the eigenvectors
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(c) Standard deviation of the first eigen-

vector.
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vector.

The standard deviation of the eigenvectors (transverse DOF) obtained

from the first-order perturbation and direct Monte Carlo simulation,

σa = 0.2.
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Numerical example Case 1: Smaller number of random variables

Probability density function of the response
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(f) Probability density function for σa =

0.1.

The probability density function of the normalized tip deflection of the

cantilever beam under the action of a point load at the free end

(10,000 sample MCS). First 15 modes are used in the calculation.
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Numerical example Case 1: Smaller number of random variables

Probability density function of the response
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(g) Probability density function for σa =

0.15.
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(h) Probability density function for σa =

0.2.

For n = 400 and M = 4, the fourth-order PC needs solution of a linear system

of equation of size 28,000. Direct MCS: 141s; PC: 34s; REFE: 5s.
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Numerical example Case 2: Larger number of random variables

Probability density function of the response

0.5 1 1.5 2
0

2

4

6

8

10

12

14

16

18

20

Normalized deflection

pd
f

 

 

MCS
1st order REFE

(i) Probability density function for σa =

0.05.
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(j) Probability density function for σa =

0.1.

The probability density function of the normalized tip deflection of the

cantilever beam under the action of a point load at the free end

(10,000 sample MCS). First 15 modes are used in the calculation.
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Numerical example Case 2: Larger number of random variables

Probability density function of the response
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(k) Probability density function for σa =

0.15.
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(l) Probability density function for σa =

0.2.

For n = 400 and M = 14, the fourth-order PC would need the solution of a

linear system of equation of size 1,224,000. Direct MCS: 2751s; REFE: 10s.
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Conclusions

Conclusions

1 We consider discretized stochastic partial differential equations.

2 In the classical spectral stochastic finite element approach, the

solution is projected into an infinite dimensional orthonormal basis

functions and the associated constant vectors are obtained using

the Galerkin type of error minimization approach

3 Here the solution is projected into a finite dimensional random

vector basis and the associated coefficient functions are obtained

in terms of the random eigenvalues and eigenvectors

4 A Galerkin error minimisation approach is proposed to obtain

unknown constants which are used to minimise error arising due

to approximate calculation of the eigensolutions.

5 Exact closed-form expression of these unknown constants are

derived.
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Conclusions

Conclusions

The possibility of a reduced series expansion is discussed using

the idea of conventional modal truncation.

Encouraging agreements have been observed between the

proposed reduced approach and direct Monte Carlo simulation

Currently we are extending this idea to stochastic dynamic

systems.
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Conclusions

Discussions

The proposed method takes advantage of the difference in the

magnitude of the eigenvalues of the A0. This POD-like model

reduction leads to a significantly smaller basis. This type of

reduction is difficult to incorporate within the scope of PC as no

information regarding the system matrices are used in

constructing the orthogonal polynomial basis.
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