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The random eigenvalue problem of undamped or
proportionally damped linear systems:

K(x)p; = AjM(x); (1)

\; eigenvalues; ¢; eigenvectors; M(x) € RN

mass matrix and K(x) € R"*" stiffness matrix.
x € R™ Is random parameter vector with pdf

p(x) = (2m) /2T XX/2 2)



The fundamental am

 To obtain the joint probability density function
of the eigenvalues and the eigenvectors.

o If the matrix M~'K is GUE (Gaussian unitary
ensemble) or GOE (Gaussian orthogonal
ensemble) an exact closed-form expression
can be obtained for the joint pdf of the
eigenvalues.

 In general the system matrices for real
structures are not GUE or GOE.



......................................

Assume that M(0) = My and K(0) = K are
‘deterministic parts’. Deterministic eigenvalue
problem: Kog,, = Aj Mo, . The eigenvalues
Aj(x) : R™ — R are non- Ilnear functions of x.
Expanding A;(x) by Taylor series about x = 0:

1
Aj(x) = X;(0) +dy (0)x + §mej(())x (3)

dy,(0) € R™: gradient vector, D, (0) € R™" ™ the
Hessian matrix of \;(x) evaluated at x = O.



- a-centered perturbation 4 §

We are looking for a point x = « In the x-space
such that the Taylor series expansion of \;(x)
about this point

1
+5(x—a) Dy (@) (x—a) (@
IS optimal In some sense. The optimal point « IS
selected such that the mean or the first moment

of each eigenvalue is calculated most accurately.




- a-centered perturbation 4 §

The mean of )\;(x) can be obtained as

)\-:/ Ai(X)p(x) dx = (27 _m/Q/ e "X (dx
I = fom A OPR) dx = (2) o
(5)
where h(x) = x"x/2 — In \;(x) (6)
Expand the function A(x) in a Taylor series about

a point where h(x) attends its global minimum. By
doing so the error in evaluating the integral (5)



. «-centered perturbation 4 §
- Therefore, the optimal point can be obtained as '

ﬁh(x) B B 1 6)\j(x)
il W R

Vk  (7)

Combining for all & we have d) () = Aj(a)a.
Rearranging

a =dy (a)/Aj(o) t)

This equation immediately gives a recipe for an
iterative algorithm to obtain .



- a-centered perturbation 4 §
© Substituting dy, () In Eq. (4) '

Ai(x) = Aj(a) (1—|af?) + %aTDAj(a)a
-+ OéT ()\j(a)l — D)\j (a)) X + %XTD)\j (a)x ©)

This, like the mean-centered approach, also re-
sults in a quadratic form in the random variable x.



- Eigenvalue statistics 4 §

Both approximations yield a quadratic form in
Gaussian random variable of the form

1
Ai(x) = ¢+ a]Tx + §XTA]'X (10)

The moment generating function:

scj—|—§a?[|—sAj]_1aj
My.(s)=E {eSAﬂ'(X)} ~ & (11)

VAR




- Eigenvalue statistics 4 §

Cumulants:

¢; + 5 Trace (A;) if r=1,
Ry = r—1)! '
%!a;pA;_Qaj | ( 21)'Trace (Ag) f r>2
(12)
Thus
_ 1
A\ =K] =Cj+ §Trace (A)) K)
P SN 2
Var [\;| = k2 = a;a; + 2Trace (A7) (14)



Asymptotic analysis

We want to evaluate an integral of the following
form:

~

T = / d - m/2/ h(X)d
Fpo e = (2m) 77 [0

(15)
where h(x) =In f(x) — x"x/2 (16)
Assume f(x) : R™ — R is smooth and at least

twice differentiable and h(x) reaches its global
maximum at an unigue point 8 € R™.



Asymptotic analysis
Therefore, atx = 0
Oh(x) . e, E
o 0 or xj = a—xklnf(x),Vk, or 6 = &lnf(ﬂ).:
(17)

Further assume that (6) is so large that

Nl D/(h(0))| — 0 for j>2 (18)

h(6)

~~

DI(h(0)): jth order derivative of h(x) at x = 6.



Asymptotic analysis /

Under previous assumptions, using second-order

Taylor series of E(x) the integral (12) can be
evaluated asymptotically as

N0

WH

H(0) is the Hessian matrix of i(x) at x = 6.

o) (@ 0250y 2 o)



. Asymptotic analysis / ;

- An arbitrary rth order moment of the eigenvalues -
[, = /Rm N(x)p(x)dx, r=1,2,3-- (20)

' Comparing this with Eq. (12) it is clear that

. f(x) = A:(x) and h(x) = rln Ai(x) —x'x/2 (21)

The optimal point @ can be obtained from (14) as

0 =1rdy (0)/);(0) (22)



Asymptotic analysis /

The rth moment:

@)Y + 10" - _p (6) s
oy = j( )6 - )\](9) Aj
(23)
The mean of the eigenvalues (substitute r = 1):
. |9| ~1/2
A= \;(0)e 1+ 66" —D,.(0)/);(0)|
(24)

Central moments:



Pdf of the elgenvalues /

Theorem 1 \;(x) is distributed as a non-central
v? random variable with noncentrality parameter

6% and degrees-of-freedom ' if and only if (a)

A7 = Aj, (b) Trace (A;) = m' and (c)

a; = Aja,, 6% = Cj = ajTaj/él.

This implies that the the Hessian matrix A, should
be an idempotent matrix. In general this require-
ment IS not expected to be satisfied for eigenval-

ues of real structural systems.



e AR

Central \* approximation peason's
Pdf of the jth eigenvalue

( ) 1 (u — /ﬁ) (u — /ﬁ)y/2_1€_(u_ﬁ)/2;}7
. u A — 2 p— —
P S (29)"P°T (v [2)

(25)

_~~

i

where

o —2Ko? 4 Kika K KoS
2 T °and v = 82 (26)

’)7 f— ")/ ——
K3 7 4/{27 /-ig2




SN, A

Non-central x> approximation
Pdf of the jth eigenvalue

1 —n.
pa (1) ~ —po. (u m) o7)
- ;s

o (05 +u/2), m/2—1

2m /2 r=0 r12rT'(m/24r)’
_ 1 T p—1 _ Trace(Aj) o 7
Nj = ¢ = 3 A4 Y =~ 0 07 = pjp; and
1
p; =A; a;



Numerical example /

Undamped two degree-of-system system:

my = 1 Kg, moe = 1.5 Kg, :Z_Cl = 1000
N/m, ks, = 1100 N/m and k; = 100 N/m.
k; ko k 5

Only the stiffness parameters £, and &k, are uncer-
tain: k; = ki(1 4+ €x;), i =1,2. x = {x1, 22} € R?
and the ‘strength parameters’ ¢; = e; = 0.25.



Numerical example

Following six methods are compared

1. Mean-centered first-order perturbation
Mean-centered second-order perturbation
a-centered first-order perturbation
a-centered second-order perturbation

. Asymptotic method

Monte Carlo Simulation (10K samples) - can
be considered as benchmark.

o Ok~ WD



. Numerical example 4 §
- The percentage error: :

{Iu’;{}’ith method — {N%}MCS

x 100
{NZ}MCS

Errorz‘th method —

i=1---5
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Numerical example

Percentage error wrt MCS

Percentage error for the first four raw moments of the first eigenvalue

[] a—centered l1lst—order
[] a—centered 2nd—order
Bl Asymptotic Method

k—th order moment: E?\t]

Random Eigenvalue Problems — p.23/2



e 6 o6 o o o o o o o o o o o o o o ©°o o o oo oo oo °o °o o ©°o o ©°o o ©°o o o o o o o o ® 6 o o o o o o

Numerical example

Bl Mean—centered 1st—ordgr
[ Mean—centered 2nd-ord
[] a—centered 1lst—order
[] a—centered 2nd—order
Bl Asymptotic Method

Percentage error wrt MCS

2 3
k—th order moment: B\g]

Percentage error for the first four raw moments of the second eigenvalue
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a—centered 1st—order &% o
a—centered 2nd—order 0| °o o
. e.. Asymptotic Method 1

'1PI
B »_--.|'| — . o
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Mean—centered 1st—ord o
.—.- Mean—centered 2nd—ord o
- - a—centered lst—order o
a—centered 2nd—order o
o Asymptotic Method R
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Conclusions

e Two methods, namely (a) optimal point
expansion method, and (b) asymptotic
moment method, are proposed.

« The optimal point is obtained so that the
mean of the eigenvalues are estimated most
accurately.

e The asymptotic method assumes that the
eigenvalues are large compared to their 3rd
order or higher derivatives.

« Pdf of the eigenvalues are obtained in terms
of cejral and non-central y* densities.



Open problems /

 Joint statistics (moments/pdf/cumulants) of
the eigenvalues with non-Gaussian system
parameters.

o Statistics of the difference and ratio of the
eigenvalues.

o Statistics of a single eigenvector (for
GUE/GOE and general matrices).

« Joint statistics of the eigenvectors.

« Joint statistics of the eigenvalues and
elgenvectors.



	Outline of the talk
	Random eigenvalue problem
	The fundamental aim
	Mean-centered perturbation
	$alpha $-centered perturbation
	$alpha $-centered perturbation
	$alpha $-centered perturbation
	$alpha $-centered perturbation
	Eigenvalue statistics
	Eigenvalue statistics
	Asymptotic analysis
	Asymptotic analysis
	Asymptotic analysis
	Asymptotic analysis
	Asymptotic analysis
	Pdf of the eigenvalues
	Central $chi ^2$ approximation {small (Pearson's)}
	Non-central $chi ^2$ approximation
	Numerical example
	Numerical example
	Numerical example
	Numerical example
	Numerical example
	Numerical example
	Numerical example
	Conclusions
	Open problems

