Distribution of Eigenvalues of Linear Stochastic Systems

S ADHIKARI[†] and R. S. LANGLEY[‡]

[†]Department of Aerospace Engineering, University of Bristol, Bristol, U.K. Email: S.Adhikari@bristol.ac.uk

URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

[‡]Department of Engineering, University of Cambridge, Cambridge, UK

Outline of the talk

- Random eigenvalue problem
- Perturbation Methods
 - Mean-centered perturbation method
 - α -centered perturbation method
- Asymptotic analysis
- PDF of the eigenvalues
- Numerical Example
- Conclusions & Open Problems

Random eigenvalue problem

The random eigenvalue problem of undamped or proportionally damped linear systems:

$$\mathbf{K}(\mathbf{x})\boldsymbol{\phi}_{j} = \lambda_{j}\mathbf{M}(\mathbf{x})\boldsymbol{\phi}_{j}$$
 (1)

 λ_j eigenvalues; ϕ_j eigenvectors; $\mathbf{M}(\mathbf{x}) \in \mathbb{R}^{N \times N}$ mass matrix and $\mathbf{K}(\mathbf{x}) \in \mathbb{R}^{N \times N}$ stiffness matrix. $\mathbf{x} \in \mathbb{R}^m$ is random parameter vector with pdf

$$p(\mathbf{x}) = (2\pi)^{-m/2} e^{-\mathbf{X}^T \mathbf{X}/2}$$

(2)

The fundamental aim

- To obtain the joint probability density function of the eigenvalues and the eigenvectors.
- If the matrix M⁻¹K is GUE (Gaussian unitary ensemble) or GOE (Gaussian orthogonal ensemble) an exact closed-form expression can be obtained for the joint pdf of the eigenvalues.
- In general the system matrices for real structures are not GUE or GOE.

Mean-centered perturbation

Assume that $\mathbf{M}(\mathbf{0}) = \mathbf{M}_0$ and $\mathbf{K}(\mathbf{0}) = \mathbf{K}_0$ are 'deterministic parts'. Deterministic eigenvalue problem: $\mathbf{K}_0 \phi_{j0} = \lambda_{j_0} \mathbf{M}_0 \phi_{j_0}$. The eigenvalues $\lambda_j(\mathbf{x}) : \mathbb{R}^m \to \mathbb{R}$ are non-linear functions of \mathbf{x} . Expanding $\lambda_j(\mathbf{x})$ by Taylor series about $\mathbf{x} = 0$:

$$\lambda_j(\mathbf{x}) \approx \lambda_j(\mathbf{0}) + \mathbf{d}_{\lambda_j}^T(\mathbf{0})\mathbf{x} + \frac{1}{2}\mathbf{x}^T \mathbf{D}_{\lambda_j}(\mathbf{0})\mathbf{x} \qquad (\mathbf{0})\mathbf{x}$$

 $d_{\lambda_j}(\mathbf{0}) \in \mathbb{R}^m$: gradient vector, $D_{\lambda_j}(\mathbf{0}) \in \mathbb{R}^{m \times m}$ the Hessian matrix of $\lambda_j(\mathbf{x})$ evaluated at $\mathbf{x} = \mathbf{0}$.

3

α -centered perturbation

We are looking for a point $\mathbf{x} = \boldsymbol{\alpha}$ in the x-space such that the Taylor series expansion of $\lambda_j(\mathbf{x})$ about this point

$$egin{split} \lambda_j(\mathbf{x}) &pprox \lambda_j(oldsymbol{lpha}) + \mathbf{d}_{\lambda_j}^T(oldsymbol{lpha}) \left(\mathbf{x} - oldsymbol{lpha}
ight) \ &+ rac{1}{2} \left(\mathbf{x} - oldsymbol{lpha}
ight)^T \mathbf{D}_{\lambda_j}(oldsymbol{lpha}) \left(\mathbf{x} - oldsymbol{lpha}
ight) \ \end{split}$$

is optimal in some sense. The optimal point α is selected such that the mean or the first moment of each eigenvalue is calculated most accurately.

$$\begin{array}{l} \textbf{\alpha-centered perturbation} \\ \hline \textbf{A}_{j}(\textbf{x}) \ \textbf{C}_{k}(\textbf{x}) \ \textbf{$$

• • ۲ • ۲ •

• • •

.

۲

• • •

α -centered perturbation

Therefore, the optimal point can be obtained as

$$\frac{\partial h(\mathbf{x})}{\partial x_k} = 0 \quad \text{or} \quad x_k = \frac{1}{\lambda_j(\mathbf{x})} \frac{\partial \lambda_j(\mathbf{x})}{\partial x_k}, \quad \forall k$$

Combining for all k we have $d_{\lambda_j}(\alpha) = \lambda_j(\alpha)\alpha$. Rearranging

$$oldsymbol{lpha} = {\sf d}_{\lambda_j}(oldsymbol{lpha})/\lambda_j(oldsymbol{lpha})$$
 (8)

This equation immediately gives a recipe for an iterative algorithm to obtain α .

(/

$$\begin{aligned} \alpha \text{-centered perturbation} \\ \text{Substituting } \mathbf{d}_{\lambda_j}(\alpha) \text{ in Eq. (4)} \\ \lambda_j(\mathbf{x}) \approx \lambda_j(\alpha) \left(1 - |\alpha|^2\right) + \frac{1}{2} \alpha^T \mathbf{D}_{\lambda_j}(\alpha) \alpha \\ + \alpha^T \left(\lambda_j(\alpha) \mathbf{I} - \mathbf{D}_{\lambda_j}(\alpha)\right) \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{D}_{\lambda_j}(\alpha) \mathbf{x} \end{aligned}$$
(9)

This, like the mean-centered approach, also results in a quadratic form in the random variable **x**.

Eigenvalue statistics

Both approximations yield a quadratic form in Gaussian random variable of the form

$$\lambda_j(\mathbf{x}) pprox c_j + \mathbf{a}_j^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \mathbf{A}_j \mathbf{x}$$

The moment generating function:

$$M_{\lambda_j}(s) = \mathbb{E}\left[e^{s\lambda_j(\mathbf{X})}\right] \approx \frac{e^{sc_j + \frac{s^2}{2}}\mathbf{a}_j^T \left[\mathbf{I} - s\mathbf{A}_j\right]^{-1} \mathbf{a}_j}{\sqrt{\left\|\mathbf{I} - s\mathbf{A}_j\right\|}}$$

(10)

(11)

Eigenvalue statisticsCumulants:
$$\kappa_r = \begin{cases} c_j + \frac{1}{2} \operatorname{Trace}(\mathbf{A}_j) & \text{if } r = 1, \\ \frac{r!}{2} \mathbf{a}_j^T \mathbf{A}_j^{r-2} \mathbf{a}_j + \frac{(r-1)!}{2} \operatorname{Trace}(\mathbf{A}_j^r) & \text{if } r \ge 2 \\ (12) \end{cases}$$
Thus $\bar{\lambda}_j = \kappa_1 = c_j + \frac{1}{2} \operatorname{Trace}(\mathbf{A}_j) & (13) \\ \operatorname{Var}[\lambda_j] = \kappa_2 = \mathbf{a}_j^T \mathbf{a}_j + \frac{1}{2} \operatorname{Trace}(\mathbf{A}_j^2) & (14) \end{cases}$

•

•

•

We want to evaluate an integral of the following form:

$$\mathcal{J} = \int_{\mathbb{R}^m} f(\mathbf{x}) p(\mathbf{x}) \, d\mathbf{x} = (2\pi)^{-m/2} \int_{\mathbb{R}^m} e^{\widetilde{h}(\mathbf{X})} \, d\mathbf{x}$$
(15)

where
$$\widetilde{h}(\mathbf{x}) = \ln f(\mathbf{x}) - \mathbf{x}^T \mathbf{x}/2$$
 (16)

Assume $f(\mathbf{x}) : \mathbb{R}^m \to \mathbb{R}$ is smooth and at least twice differentiable and $\tilde{h}(\mathbf{x})$ reaches its global maximum at an unique point $\boldsymbol{\theta} \in \mathbb{R}^m$.

Asymptotic analysis
Therefore, at
$$\mathbf{x} = \boldsymbol{\theta}$$

 $\frac{\partial \widetilde{h}(\mathbf{x})}{\partial x_k} = 0 \text{ or } x_k = \frac{\partial}{\partial x_k} \ln f(\mathbf{x}), \forall k, \text{ or } \boldsymbol{\theta} = \frac{\partial}{\partial \mathbf{x}} \ln f(\boldsymbol{\theta}).$
(17)
Further assume that $\widetilde{h}(\boldsymbol{\theta})$ is so large that
 $\left| \frac{1}{\widetilde{h}(\boldsymbol{\theta})} \mathcal{D}^j(\widetilde{h}(\boldsymbol{\theta})) \right| \to 0 \text{ for } j > 2$ (18)
 $\mathcal{D}^j(\widetilde{h}(\boldsymbol{\theta})): j \text{th order derivative of } \widetilde{h}(\mathbf{x}) \text{ at } \mathbf{x} = \boldsymbol{\theta}.$

.

• •

•

•

۲

• •

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$

.

• • •

• •

Under previous assumptions, using second-order

- Taylor series of $h(\mathbf{x})$ the integral (12) can be
- evaluated asymptotically as

$$\mathcal{J} \approx \frac{e^{\widetilde{h}(\boldsymbol{\theta})}}{\sqrt{\|\widetilde{\mathbf{H}}(\boldsymbol{\theta})\|}} = f(\boldsymbol{\theta})e^{-\left(\boldsymbol{\theta}^{T}\boldsymbol{\theta}/2\right)}\|\widetilde{\mathbf{H}}(\boldsymbol{\theta})\|^{-1/2} \quad (\mathbf{f})$$

 $\widetilde{H}(\theta)$ is the Hessian matrix of $\widetilde{h}(\mathbf{x})$ at $\mathbf{x} = \theta$.

9)

An arbitrary rth order moment of the eigenvalues

$$\mu'_r = \int_{\mathbb{R}^m} \lambda_j^r(\mathbf{x}) p(\mathbf{x}) \, d\mathbf{x}, \quad r = 1, 2, 3 \cdots$$
 (20)

Comparing this with Eq. (12) it is clear that

$$f(\mathbf{x}) = \lambda_j^r(\mathbf{x})$$
 and $\widetilde{h}(\mathbf{x}) = r \ln \lambda_j(\mathbf{x}) - \mathbf{x}^T \mathbf{x}/2$ (21)

The optimal point θ can be obtained from (14) as

$$oldsymbol{ heta} = r \, \mathbf{d}_{\lambda_j}(oldsymbol{ heta}) / \lambda_j(oldsymbol{ heta})$$
 (22)

The rth moment:

$$\mu'_{r} = \lambda_{j}^{r}(\boldsymbol{\theta})e^{-\frac{|\boldsymbol{\theta}|^{2}}{2}} \left\| \mathbf{I} + \frac{1}{r}\boldsymbol{\theta}\boldsymbol{\theta}^{T} - \frac{r}{\lambda_{j}(\boldsymbol{\theta})}\mathbf{D}_{\lambda_{j}}(\boldsymbol{\theta}) \right\|$$

The mean of the eigenvalues (substitute r = 1):

$$\bar{\lambda}_j = \lambda_j(\boldsymbol{\theta}) e^{-\frac{|\boldsymbol{\theta}|^2}{2}} \left\| \mathbf{I} + \boldsymbol{\theta} \boldsymbol{\theta}^T - \mathbf{D}_{\lambda_j}(\boldsymbol{\theta}) / \lambda_j(\boldsymbol{\theta}) \right\|^{-1/2}$$

Central moments:

$$\operatorname{E}\left[(\lambda_j - \bar{\lambda}_j)^r\right] = \sum_{k=0}^r \binom{r}{k} (-1)^{r-k} \mu'_k \bar{\lambda}_j^{r-k}.$$

(23)

(24)

Pdf of the eigenvalues

Theorem 1 $\lambda_i(\mathbf{x})$ is distributed as a non-central χ^2 random variable with noncentrality parameter δ^2 and degrees-of-freedom m' if and only if (a) $\mathbf{A}_{j}^{2} = \mathbf{A}_{j}$, (b) Trace $(\mathbf{A}_{j}) = m'$ and (c) $\mathbf{a}_j = \mathbf{A}_j \mathbf{a}_j, \ \delta^2 = c_j = \mathbf{a}_j^T \mathbf{a}_j / 4.$ This implies that the the Hessian matrix A_i should be an idempotent matrix. In general this requirement is not expected to be satisfied for eigenvalues of real structural systems.

Central
$$\chi^2$$
 approximation (Pearson's)
Pdf of the *j*th eigenvalue
 $p_{\lambda_j}(u) \approx \frac{1}{\tilde{\gamma}} p_{\chi_{\nu}^2} \left(\frac{u - \tilde{\eta}}{\tilde{\gamma}} \right) = \frac{(u - \tilde{\eta})^{\nu/2 - 1} e^{-(u - \tilde{\eta})/2\tilde{\gamma}}}{(2\tilde{\gamma})^{\nu/2} \Gamma(\nu/2)}$
(25)
where
 $\tilde{\eta} = \frac{-2\kappa_2^2 + \kappa_1\kappa_3}{\kappa_3}, \ \tilde{\gamma} = \frac{\kappa_3}{4\kappa_2}, \ \text{and} \ \nu = 8\frac{\kappa_2^3}{\kappa_3^2}$ (26)

 \bullet

• •

 Non-central
$$\chi^2$$
 approximation
Pdf of the *j*th eigenvalue
 $p_{\lambda_j}(u) \approx \frac{1}{\gamma_j} p_{Q_j} \left(\frac{u - \eta_j}{\gamma_j} \right)$ (27)
where $p_{Q_j}(u) = \frac{e^{-(\delta_j + u/2)} u^{m/2 - 1}}{2^{m/2}} \sum_{r=0}^{\infty} \frac{(\delta u)^r}{r! 2^r \Gamma(m/2 + r)},$
 $\eta_j = c_j - \frac{1}{2} a_j^T \mathbf{A}_j^{-1} a_j, \gamma_j = \frac{\operatorname{Trace}(\mathbf{A}_j)}{2m}, \delta_j^2 = \rho_j^T \rho_j$ and
 $\rho_j = \mathbf{A}_j^{-1} a_j.$

Numerical example

Undamped two degree-of-system system:

 $m_1 = 1$ Kg, $m_2 = 1.5$ Kg, $\bar{k}_1 = 1000$

N/m, $\bar{k}_2 = 1100$ N/m and $k_3 = 100$ N/m.

Only the stiffness parameters k_1 and k_2 are uncer-

tain:
$$k_i = \bar{k}_i(1 + \epsilon_i x_i), i = 1, 2$$
. $\mathbf{x} = \{x_1, x_2\}^T \in \mathbb{R}^2$

and the 'strength parameters' $\epsilon_1 = \epsilon_2 = 0.25$.

Numerical example

- Following six methods are compared
 - 1. Mean-centered first-order perturbation
 - 2. Mean-centered second-order perturbation
 - **3.** α -centered first-order perturbation
 - 4. α -centered second-order perturbation
 - 5. Asymptotic method
 - 6. *Monte Carlo Simulation (10K samples)* can be considered as benchmark.

Random Eigenvalue Problems – p.26/28

Conclusions

- Two methods, namely (a) optimal point expansion method, and (b) asymptotic moment method, are proposed.
- The optimal point is obtained so that the mean of the eigenvalues are estimated most accurately.
- The asymptotic method assumes that the eigenvalues are large compared to their 3rd order or higher derivatives.
- Pdf of the eigenvalues are obtained in terms of central and non-central χ^2 densities.

Open problems

- Joint statistics (moments/pdf/cumulants) of the eigenvalues with non-Gaussian system parameters.
- Statistics of the difference and ratio of the eigenvalues.
- Statistics of a single eigenvector (for GUE/GOE and general matrices).
- Joint statistics of the eigenvectors.
- Joint statistics of the eigenvalues and eigenvectors.