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Outline of the talk
• Random eigenvalue problem
• Perturbation Methods

• Mean-centered perturbation method
• α-centered perturbation method

• Asymptotic analysis
• PDF of the eigenvalues
• Numerical Example
• Conclusions & Open Problems
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Random eigenvalue problem
The random eigenvalue problem of undamped or
proportionally damped linear systems:

K(x)φj = λjM(x)φj (1)

λj eigenvalues; φj eigenvectors; M(x) ∈ R
N×N

mass matrix and K(x) ∈ R
N×N stiffness matrix.

x ∈ R
m is random parameter vector with pdf

p(x) = (2π)−m/2e−xT x/2 (2)
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The fundamental aim
• To obtain the joint probability density function

of the eigenvalues and the eigenvectors.

• If the matrix M−1K is GUE (Gaussian unitary
ensemble) or GOE (Gaussian orthogonal
ensemble) an exact closed-form expression
can be obtained for the joint pdf of the
eigenvalues.

• In general the system matrices for real
structures are not GUE or GOE.
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Mean-centered perturbation
Assume that M(0) = M0 and K(0) = K0 are
‘deterministic parts’. Deterministic eigenvalue
problem: K0φj0 = λj0M0φj0. The eigenvalues
λj(x) : R

m → R are non-linear functions of x.
Expanding λj(x) by Taylor series about x = 0:

λj(x) ≈ λj(0) + dT
λj

(0)x +
1

2
xT Dλj

(0)x (3)

dλj
(0) ∈ R

m: gradient vector, Dλj
(0) ∈ R

m×m the

Hessian matrix of λj(x) evaluated at x = 0.
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α-centered perturbation
We are looking for a point x = α in the x-space
such that the Taylor series expansion of λj(x)
about this point

λj(x) ≈ λj(α) + dT
λj

(α) (x − α)

+
1

2
(x − α)T Dλj

(α) (x − α) (4)

is optimal in some sense. The optimal point α is
selected such that the mean or the first moment
of each eigenvalue is calculated most accurately.
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α-centered perturbation
The mean of λj(x) can be obtained as

λ̄j =

∫

R
m

λj(x)p(x) dx = (2π)−m/2

∫

R
m

e−h(x) dx

(5)

where h(x) = xT x/2 − ln λj(x) (6)

Expand the function h(x) in a Taylor series about

a point where h(x) attends its global minimum. By

doing so the error in evaluating the integral (5)

would be minimized.
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α-centered perturbation
Therefore, the optimal point can be obtained as

∂h(x)

∂xk
= 0 or xk =

1

λj(x)

∂λj(x)

∂xk
, ∀k (7)

Combining for all k we have dλj
(α) = λj(α)α.

Rearranging

α = dλj
(α)/λj(α) (8)

This equation immediately gives a recipe for an

iterative algorithm to obtain α.
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α-centered perturbation
Substituting dλj

(α) in Eq. (4)

λj(x) ≈ λj(α)
(
1 − |α|2

)
+

1

2
αT Dλj

(α)α

+ αT
(
λj(α)I − Dλj

(α)
)

x +
1

2
xT Dλj

(α)x (9)

This, like the mean-centered approach, also re-

sults in a quadratic form in the random variable x.
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Eigenvalue statistics
Both approximations yield a quadratic form in
Gaussian random variable of the form

λj(x) ≈ cj + aT
j x +

1

2
xT Ajx (10)

The moment generating function:

Mλj
(s) = E

[
esλj(x)

]
≈

escj+
s2

2 aT
j [I−sAj]

−1
aj

√
‖I − sAj‖

(11)
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Eigenvalue statistics
Cumulants:

κr =

{
cj + 1

2Trace (Aj) if r = 1,
r!
2 aT

j Ar−2
j aj + (r−1)!

2 Trace
(

Ar
j

)
if r ≥ 2

(12)
Thus

λ̄j = κ1 = cj +
1

2
Trace (Aj) (13)

Var [λj] = κ2 = aT
j aj +

1

2
Trace

(
A2

j

)
(14)
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Asymptotic analysis
We want to evaluate an integral of the following
form:

J =

∫

R
m

f(x)p(x) dx = (2π)−m/2

∫

R
m

eh̃(x) dx

(15)

where h̃(x) = ln f(x) − xT x/2 (16)

Assume f(x) : R
m → R is smooth and at least

twice differentiable and h̃(x) reaches its global

maximum at an unique point θ ∈ R
m.
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Asymptotic analysis
Therefore, at x = θ

∂h̃(x)

∂xk
= 0 or xk =

∂

∂xk
ln f(x),∀k, or θ =

∂

∂x
ln f(θ).

(17)

Further assume that h̃(θ) is so large that
∣∣∣∣∣

1

h̃(θ)
Dj(h̃(θ))

∣∣∣∣∣ → 0 for j > 2 (18)

Dj(h̃(θ)): jth order derivative of h̃(x) at x = θ.
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Asymptotic analysis
Under previous assumptions, using second-order
Taylor series of h̃(x) the integral (12) can be
evaluated asymptotically as

J ≈
eh̃(θ)

√
‖H̃(θ)‖

= f(θ)e
−

(
θ

T
θ/2

)

‖H̃(θ)‖−1/2 (19)

H̃(θ) is the Hessian matrix of h̃(x) at x = θ.
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Asymptotic analysis
An arbitrary rth order moment of the eigenvalues

µ′
r =

∫

R
m

λr
j(x)p(x) dx, r = 1, 2, 3 · · · (20)

Comparing this with Eq. (12) it is clear that

f(x) = λr
j(x) and h̃(x) = r ln λj(x)−xT x/2 (21)

The optimal point θ can be obtained from (14) as

θ = r dλj
(θ)/λj(θ) (22)
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Asymptotic analysis
The rth moment:

µ′
r = λr

j(θ)e−
|θ|2

2

∥∥∥∥I +
1

r
θθT −

r

λj(θ)
Dλj

(θ)

∥∥∥∥
−1/2

(23)
The mean of the eigenvalues (substitute r = 1):

λ̄j = λj(θ)e−
|θ|2

2

∥∥I + θθT − Dλj
(θ)/λj(θ)

∥∥−1/2

(24)
Central moments:

E
[
(λj − λ̄j)

r
]

=
∑r

k=0

(
r
k

)
(−1)r−kµ′

kλ̄
r−k
j .
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Pdf of the eigenvalues
Theorem 1 λj(x) is distributed as a non-central
χ2 random variable with noncentrality parameter
δ2 and degrees-of-freedom m′ if and only if (a)
A2

j = Aj, (b) Trace (Aj) = m′ and (c)
aj = Ajaj, δ2 = cj = aT

j aj/4.

This implies that the the Hessian matrix Aj should

be an idempotent matrix. In general this require-

ment is not expected to be satisfied for eigenval-

ues of real structural systems.
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Central χ2 approximation (Pearson’s)

Pdf of the jth eigenvalue

pλj
(u) ≈

1

γ̃
pχ2

ν

(
u − η̃

γ̃

)
=

(u − η̃)ν/2−1e−(u−η̃)/2γ̃

(2γ̃)ν/2Γ(ν/2)
(25)

where

η̃ =
−2κ2

2 + κ1κ3

κ3
, γ̃ =

κ3

4κ2
, and ν = 8

κ2
3

κ3
2

(26)

Random Eigenvalue Problems – p.18/28



Non-central χ2 approximation
Pdf of the jth eigenvalue

pλj
(u) ≈

1

γj
pQj

(
u − ηj

γj

)
(27)

where pQj
(u) = e−(δj+u/2)um/2−1

2m/2

∑∞
r=0

(δu)r

r! 2rΓ(m/2+r),

ηj = cj −
1
2a

T
j A−1

j aj, γj =
Trace(Aj)

2m , δ2
j = ρT

j ρj and

ρj = A−1
j aj.
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Numerical example
Undamped two degree-of-system system:

m1 = 1 Kg, m2 = 1.5 Kg, k̄1 = 1000

N/m, k̄2 = 1100 N/m and k3 = 100 N/m.

m1 m2

1 2

k1
k2 k3

Only the stiffness parameters k1 and k2 are uncer-

tain: ki = k̄i(1 + εixi), i = 1, 2. x = {x1, x2}
T ∈ R

2

and the ‘strength parameters’ ε1 = ε2 = 0.25.
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Numerical example
Following six methods are compared

1. Mean-centered first-order perturbation

2. Mean-centered second-order perturbation

3. α-centered first-order perturbation

4. α-centered second-order perturbation

5. Asymptotic method

6. Monte Carlo Simulation (10K samples) - can
be considered as benchmark.
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Numerical example
The percentage error:

Errorith method =
{µ′

k}ith method − {µ′
k}MCS

{µ′
k}MCS

× 100

i = 1, · · · 5.
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Numerical example
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Numerical example
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Numerical example
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Numerical example
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Conclusions
• Two methods, namely (a) optimal point

expansion method, and (b) asymptotic
moment method, are proposed.

• The optimal point is obtained so that the
mean of the eigenvalues are estimated most
accurately.

• The asymptotic method assumes that the
eigenvalues are large compared to their 3rd
order or higher derivatives.

• Pdf of the eigenvalues are obtained in terms
of central and non-central χ2 densities.
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Open problems
• Joint statistics (moments/pdf/cumulants) of

the eigenvalues with non-Gaussian system
parameters.

• Statistics of the difference and ratio of the
eigenvalues.

• Statistics of a single eigenvector (for
GUE/GOE and general matrices).

• Joint statistics of the eigenvectors.
• Joint statistics of the eigenvalues and

eigenvectors.
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