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Introduction SPDE for dynamical systems

Stochastic PDEs for structural dynamics

We consider the stochastic partial differential equation (PDE) pertinent
to the structural dynamics problem as

ρ(r, θ)
∂2U(r, t , θ)

∂t2 + Lα
∂U(r, t , θ)

∂t
+ LβU(r, t , θ) = p(r, t) (1)

The stochastic operator Lβ can be

Lβ ≡ ∂
∂x AE(x , θ) ∂

∂x axial deformation of rods

Lβ ≡ ∂2

∂x2 EI(x , θ) ∂2

∂x2 bending deformation of beams

Lα denotes the stochastic damping, which is mostly proportional in
nature.
Here α, β : Rd ×Θ → R are stationary square integrable random fields,
which can be viewed as a set of random variables indexed by r ∈ R

d .
Based on the physical problem the random field a(r, θ) can be used to
model different physical quantities (e.g., AE(x , θ), EI(x , θ)).
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Discretization Techniques

Discretized Stochastic PDE

A random process a(r, θ) can be expressed in a generalised
Fourier type of series known as the Karhunen-Loève expansion

a(r, θ) = a0(r) +
∞∑

i=1

√
νiξi(θ)ϕi(r) (2)

Here a0(r) is the mean function, ξi(θ) are uncorrelated standard
Gaussian random variables, νi and ϕi(r) are eigenvalues and
eigenfunctions satisfying the integral equation

∫

D

Ca(r1, r2)ϕj (r1)dr1 = νjϕj (r2), ∀ j = 1,2, · · · (3)

For non-Gaussian random fields (e.g. uniform, lognormal), Eq. 2
can represented with a PC type expansion and different sets of
orthogonal polynomials from the Weiner-Askey scheme can be
utilized to represent the trial basis.
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Discretization Techniques

Discrete equation for stochastic mechanics

The stochastic PDE along with the boundary conditions results in:

M(θ)ü(θ, t) + C(θ)u̇(θ, t) + K(θ)u(θ, t) = f(t) (4)

M(θ) = M0 +
∑p

i=1 µi(θi)Mi ∈ R
n×n is the random mass matrix,

K(θ) = K0 +
∑p

i=1 νi(θi)K i ∈ R
n×n is the random stiffness matrix,

C(θ) ∈ R
n×n as the random damping matrix and f(t) is the forcing

vector
The mass and stiffness matrices have been expressed in terms of
their deterministic components (M0 and K0) and the
corresponding random contributions (Mi and Ki) obtained from
discretising the stochastic field with a finite number of random
variables (µi(θi) and νi(θi)) and their corresponding spatial basis
functions.
Proportional damping model is considered for which
C(θ) = ζ1M(θ) + ζ2K(θ), where ζ1 and ζ2 are scalars.
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Discretization Techniques

Time domain representation

If the time steps are fixed to ∆t , then the equation of motion can be
written as

M(θ)üt+∆t(θ) + C(θ)u̇t+∆t(θ) + K(θ)ut+∆t(θ) = pt+∆t . (5)

Following the Newmark method based on constant average
acceleration scheme, the above equations can be represented as

[a0M(θ) + a1C(θ) + K(θ)] ut+∆t(θ) = peqv
t+∆t(θ) (6)

and, peqv
t+∆t(θ) = pt+∆t + f (ut(θ), u̇t(θ), üt(θ),M(θ),C(θ)) (7)

where peqv
t+∆t(θ) is the equivalent force at time t +∆t which consists of

contributions of the system response at the previous time step.
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Discretization Techniques

Newmark’s method

The expressions for the velocities u̇t+∆t(θ) and accelerations üt+∆t(θ)
at each time step is a linear combination of the values of the system
response at previous time steps (Newmark method) as

üt+∆t(θ) = a0 [ut+∆t(θ)− ut(θ)]− a2u̇t(θ)− a3üt(θ) (8)

and, u̇t+∆t(θ) = u̇t(θ) + a6üt(θ) + a7üt+∆t(θ) (9)

where the integration constants ai , i = 1,2, . . . ,7 are independent of
system properties and depends only on the chosen time step and
some constants:

a0 =
1

α∆t2 ; a1 =
δ

α∆t
; a2 =

1
α∆t

; a3 =
1

2α
− 1; (10)

a4 =
δ

α
− 1; a5 =

∆t
2

(
δ

α
− 2
)
; a6 = ∆t(1 − δ); a7 = δ∆t

(11)
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Discretization Techniques

Newmark’s method

Following this development, the linear structural system in (6) can be
expressed as

[
A0 +

M∑

i=1

ξi(θ)Ai

]

︸ ︷︷ ︸
A(θ)

ut+∆t(θ) = peqv
t+∆t(θ). (12)

where A0 and Ai represent the deterministic and stochastic parts of
the system matrices respectively. For the case of proportional
damping, the matrices A0 and Ai can be written similar to the case of
frequency domain as

A0 = [a0 + a1ζ1]M0 + [a1ζ2 + 1]K0 (13)

and, A i = [a0 + a1ζ1]Mi for i = 1,2, . . . ,p1 (14)

= [a1ζ2 + 1]Ki for i = p1 + 1,p1 + 2, . . . ,p1 + p2 .
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Discretization Techniques

General mathematical representation

In general the main equation which need to be solved can be
expressed as (

A0 +
M∑

i=1

ξi(θi)A i

)
u(θ) = f(θ) (15)

where A0 and A i represent the deterministic and stochastic parts of the
system matrices respectively. These can be real or complex matrices.
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Discretization Techniques

Polynomial Chaos expansion

After the finite truncation, concisely, the polynomial chaos
expansion can be written as

û(θ) =
P∑

k=1

Hk (ξ(θ))uk (16)

where Hk(ξ(θ)) are the polynomial chaoses and uk ∈ R
n are

deterministic vectors to be determined.

The value of the number of terms P depends on the number of
basic random variables M and the order of the PC expansion r as

P =
r∑

j=0

(M + j − 1)!
j!(M − 1)!

(17)
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Discretization Techniques

Polynomial Chaos expansion

We need to solve a nP × nP linear equation to obtain all uk for every
frequency point:




A0,0 · · · A0,P−1

A1,0 · · · A1,P−1
...

...
...

AP−1,0 · · · AP−1,P−1








u0

u1
...

uP−1





=





f0

f1
...

fP−1





(18)

P increases exponentially with M:
M 2 3 5 10 20 50 100

2nd order PC 5 9 20 65 230 1325 5150
3rd order PC 9 19 55 285 1770 23425 176850
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Discretization Techniques

Polynomial Chaos expansion: Some Observations

The basis is a function of the pdf of the random variables only. For
example, Hermite polynomials for Gaussian pdf, Legender’s
polynomials for uniform pdf.

The physics of the underlying problem (static, dynamic, heat
conduction, transients....) cannot be incorporated in the basis.

For an n-dimensional output vector, the number of terms in the
projection can be more than n (depends on the number of random
variables). This implies that many of the vectors uk are linearly
dependent.

The physical interpretation of the coefficient vectors uk is not
immediately obvious.

The functional form of the response is a pure polynomial in
random variables.
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Spectral decomposition in vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Suppose the solution of Eq. (15) is given by

ût+∆t(θ) =

[
A0 +

M∑

i=1

Γi(ξ(θ))A i

]−1

feqv
t+∆t(θ) (19)

Orthogonal decompostion of the deterministic system yields

λ0 = diag [λ01 , λ02 , . . . , λ0n ] ∈ R
n×n;Φ = [φ1,φ2, . . . ,φn] ∈ R

n×n (20)

where the eigenpairs are ordered in the ascending order:
λ01 < λ02 < . . . < λ0n . We introduce the transformations
Ã i = Φ

T AiΦ ∈ R
n×n; i = 0,1,2, . . . ,M.

The orthonormality of Φ one has

ût+∆t(θ) =

[
Φ

−T
Λ0Φ

−1 +

M∑

i=1

Γi(ξ(θ))Φ
−T Ã iΦ

−1

]−1

feqv
t+∆t(θ) (21)

where ξ(θ) = [ξ1(θ), ξ2(θ), . . . , ξM(θ)]T .
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Spectral decomposition in vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Now we separate the diagonal and off-diagonal terms of the Ãi

matrices as
Ã i = Λi +∆i , i = 1,2, . . . ,M (22)

Here the diagonal matrix

Λi = diag
[
Ã
]
= diag

[
λi1, λi2 , . . . , λin

]
∈ R

n×n (23)

and ∆i = Ã i − Λi is an off-diagonal only matrix. We can write :

Ψ (ξ(θ)) =



Λ0 +

M∑

i=1

Γi(ξ(θ))Λi

︸ ︷︷ ︸
Λ(Γi (ξ(θ)))

+

M∑

i=1

Γi(ξ(θ))∆i

︸ ︷︷ ︸
∆(Γi (ξ(θ)))




−1

. (24)
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Spectral decomposition in vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

The diagonal matrix Λ (ξ(θ)) is treated as the preconditioner in the
stochastic Krylov space, such that the solution can be projected onto a
very few basis functions.
Hence the left preconditioned stochastic Krylov space becomes

Km(Λ
−1

Ψ,Λ−1feqv
t+∆t) = span{ΦT

Λ
−1

Φfeqv
t+∆t ,Φ

T (Λ−1
∆)Λ−1

Φfeqv
t+∆t ,

Φ
T (Λ−1

∆)2
Λ
−1

Φfeqv
t+∆t , . . . ,Φ

T (Λ−1
∆)m−1

Λ
−1

Φfeqv
t+∆t}

(25)

The equivalent infinite Neumann matrix series representation of the
above equation is

Ψ (ξ(θ)) =
∞∑

s=0

(−1)s
[
Λ
−1 (ξ(θ))∆ (ξ(θ))

]s
Λ
−1 (ξ(θ)) (26)
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Spectral decomposition in vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

Taking an arbitrary r -th element of u(t , θ), Eqn. (21) can be rearranged
to have

ur
t+∆t(θ) =

n∑

k=1

Φrk




n∑

j=1

Ψkj (ξ(θ))
(
φT

j feqv
t+∆t

)

 (27)

Defining

Lk (t , ξ(θ)) =
n∑

j=1

Ψkj (ξ(θ))
(
φT

j feqv
t+∆t

)
(28)

and collecting all the elements in Eqn. (27) for r = 1,2, . . . ,n one has

ut+∆t(θ) =
n∑

k=1

Lk (t , ξ(θ))φk (29)

A. Kundu and S. Adhikari (Swansea) Fuzzy spectral analysis July 2012 16 / 28



Spectral decomposition in vector space Projection in a finite dimensional vector-space

Projection in a finite dimensional vector-space

A few observations :

The matrix power series is different from the classical Neumann
series in that the elements of the former are not simple
polynomials in ξi(θ) but are in terms of the ratio of polynomials.

The convergence of the series depends on the spectral radius of

R (ξ(θ)) = Λ
−1 (ξ(θ))∆ (ξ(θ)) (30)

A generic term of the matrix R is

Rrs =
∆rs

Λrr
=

∑M
i=1 Γi(ξ)∆irs

Λ0r +
∑M

i=1 Γi(ξ)Λir

=

∑M
i=1 Γi(ξ)Ãirs

Λ0r +
∑M

i=1 Γi(ξ)Ãirr

; r 6= s

(31)
which shows that the spectral radius of R is controlled by the
diagonal dominance of the Ã i matrices.
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Numerical illustration The Euler-Bernoulli beam

The Euler-Bernoulli beam example

An Euler-Bernoulli cantilever beam with stochastic bending
modulus for a specified value of the correlation length and for
different degrees of variability of the random field.

F

(a) Euler-Bernoulli beam
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(c) Eigenvalue ratio of KL
decomposition

Length : 1.0 m, Cross-section : 39 × 5.93 mm2, Young’s Modulus:
2 × 1011 Pa.

Load: Unit impulse at t = 0 on the free end of the beam.
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Numerical illustration The Euler-Bernoulli beam

Problem details

The bending modulus of the cantilever beam is taken to be a
homogeneous stationary Gaussian random field of the form

EI(x , θ) = EI0(1 + a(x , θ)) (32)

where x is the coordinate along the length of the beam, EI0 is the
estimate of the mean bending modulus, a(x , θ) is a zero mean
stationary random field.

The covariance kernel associated with this random field is

Ca(x1, x2) = σ2
ae−(|x1−x2|)/µa (33)

where µa is the correlation length and σa is the standard deviation.

A correlation length of µa = L/5 is considered in the present
numerical study.
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Numerical illustration The Euler-Bernoulli beam

Problem details

The random field is assumed to be Gaussian. The results are
compared with the polynomial chaos expansion.

The number of degrees of freedom of the system is n = 200.

The K.L. expansion is truncated at a finite number of terms such
that 90% variability is retained.

direct MCS have been performed with 10,000 random samples
and for three different values of standard deviation of the random
field, σa = 0.05,0.1,0.2.

Constant modal damping is taken with 1% damping factor for all
modes.

Time domain response of the free end of the beam is sought
under the action of a unit impulse at t = 0

Upto 4th order spectral functions have been considered in the
present problem. Comparison have been made with 4th order
Polynomial chaos results.
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Numerical illustration The Euler-Bernoulli beam

Mean deflection of the beam

(d) Mean, σa = 0.05. (e) Mean, σa = 0.1. (f) Mean, σa = 0.2.

Time domain response of the deflection of the tip of the cantilever
for three values of standard deviation σa of the underlying random
field.

Spectral functions approach approximates the solution accurately.

For long time-integration, the discrepancy of the 4th order PC
results increases.
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Numerical illustration The Euler-Bernoulli beam

Standard deviation of the beam response

(g) Standard deviation of
deflection, σa = 0.05.

(h) Standard deviation of
deflection, σa = 0.1.

(i) Standard deviation of
deflection, σa = 0.2.

The standard deviation of the tip deflection of the beam.

Since the standard deviation comprises of higher order products
of the Hermite polynomials associated with the PC expansion, the
higher order moments are less accurately replicated and tend to
deviate more significantly.
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Numerical illustration The Euler-Bernoulli beam

Comparison of PDF of deflection of
the beam at t = 0.119s and t =
0.134s for
σa = {0.05,0.10,0.15,0.20}.

good agreement of the density
functions for different orders of
spectral functions.

the 4th order PC fails to
produce the appropriate
distribution function.

an increase in order of the PC
method to improve the higher
order moments of the
response is expensive, as the
dimension of the resulting
linear algebraic system
increases with it exponentially.
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Numerical illustration The Euler-Bernoulli beam

Autocorrelation surface of the response

ACF (t , τ ) =
E [(ut − µt)(ut+τ − µt+τ )]

σt σt+τ

for T , τ ∈ [0, 2.0]
and input parametric uncertainty of σa = 0.20
Below:
ACF at specific values of T (top) and τ (bottom).
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Numerical illustration The Euler-Bernoulli beam

Error Analysis

Convergence of the error
with spectral function
order.

A L2 relative error norm is defined as

ǫ
(m)

Σj
(t) =

∥∥∥Σj
(m)
SF (t)− Σj MCS(t)

∥∥∥
L2(D)∥∥Σj MCS(t)

∥∥
L2(D)

; j = 1,2

for different spectral function order (m) and
j = 1 ⇒ mean, j = 2 ⇒: std dev.

Higher order functions provide a better
aprroximation of the solution at an enhanced
cost.
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Numerical illustration Computational Cost

Computational cost

The calculation times are shown for a single time step (done with an
200 × 200 system and 4 Gaussian random variables).

Calculation Avg Time(s) Min Time(s) Max Time(s)
Direct MCS 13.589 13.506 13.798

2nd order spectral 1.375 1.345 1.396
3rd order spectral 1.445 1.414 1.465
4th order spectral 1.500 1.481 1.523

4th order PC 5.117 4.975 5.327

All calculations were performed using a single processor core
while the optimized ATLAS, LAPACK and BLAS libraries were
used on 8 processor cores for the last case.
The 4th order spectral function is 9 times more efficient than direct
MCS and 3.5 times more efficient than 4th order PC.
Computational time increases with spectral function order.
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Conclusion & Future Work

Conclusion

The true nature of the solution is a ratio of two polynomials of
random variables where the denominator has higher degree than
the numerator. The proposed spectral basis functions have this
correct mathematical form.

The proposed method utilizes the eigen-spectrum of the
deterministic coefficient matrices A0 to achieve a POD-like model
reduction which helps to work with a significantly smaller
subspace dimension.

The polynomial basis used in the PC method has no adaptive
characteristics and remains the same for all time steps, however,
in reality, the non-linearity in the stochastic domain is
compounded with each incremental time step.

The spectral functions used in the present approach changes with
each time step which allows a better estimation of the response
variables.
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Conclusion & Future Work

Future Work

The future work that can be pursued along this direction may include :

Trying to reducing the computational burden of integration over the
probability space using the efficient variance reduction and/or
sampling techniques.

A-priori error analysis and a rigorous study of the convergence
behavior can give important intuitive guidance in moving towards
a choice of a more efficient set of basis functions suitable for this
class of stochastic problems.

Extension of the presented idea to the class of non-linear
(geometric) dynamics problems.

Extension of the present approach to study the behavior of time
dependent diffusion problems using the dynamic loading.
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