Reliability approximations via asymptotic distribution

S Adhikari

Department of Aerospace Engineering, University of Bristol, Bristol, U.K.

Email: S.Adhikari@bristol.ac.uk

URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

Outline of the presentation

- Introduction to structural reliability analysis
- Limitation of FORM/SORM in high dimensions
- Asymptotic distribution of quadratic forms
- Strict asymptotic formulation
- Weak asymptotic formulation
- Numerical results
- Conclusions & discussions

Structural reliability analysis

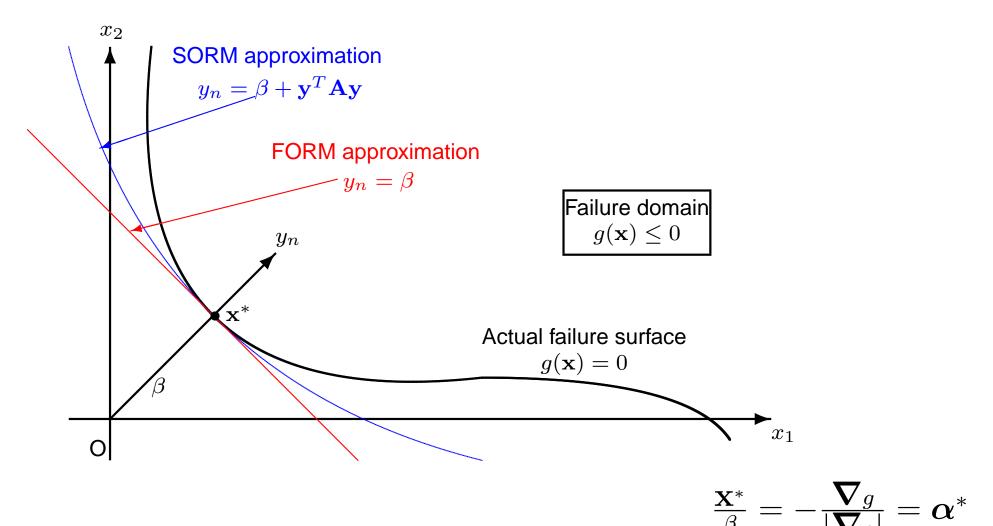
Probability of failure

$$P_f = (2\pi)^{-n/2} \int_{g(\mathbf{X}) \le 0} e^{-\mathbf{X}^T \mathbf{X}/2} d\mathbf{x}$$

 $\mathbf{x} \in \mathbb{R}^n$: Gaussian parameter vector $g(\mathbf{x})$: failure surface Maximum contribution comes from the neighborhood where $\mathbf{x}^T\mathbf{x}/2$ is minimum subject to $g(\mathbf{x}) \leq 0$. The design point \mathbf{x}^* :

$$\mathbf{x}^* : \min\{(\mathbf{x}^T\mathbf{x})/2\}$$
 subject to $g(\mathbf{x}) = 0$.

Graphical explanation



FORM/SORM approximations

$$P_f \approx \operatorname{Prob}\left[y_n \ge \beta + \mathbf{y}^T \mathbf{A} \mathbf{y}\right] = \operatorname{Prob}\left[y_n \ge \beta + U\right]$$
(1)

where

$$U: \mathbb{R}^{n-1} \mapsto \mathbb{R} = \mathbf{y}^T \mathbf{A} \mathbf{y},$$

is a quadratic form in Gaussian random variable. The eigenvalues of A, say a_j , can be related to the principal curvatures of the surface κ_j as $a_j = \kappa_j/2$. Considering A = O in Eq. (1), we have the FORM:

$$P_f \approx \Phi(-\beta)$$

SORM approximations

Breitung's asymptotic formula (1984):

$$P_f \to \Phi(-\beta) \|\mathbf{I}_{n-1} + 2\beta \mathbf{A}\|^{-1/2}$$
 when $\beta \to \infty$

Hohenbichler and Rackwitz's improved formula (1988):

$$P_f \approx \Phi(-\beta) \left\| \mathbf{I}_{n-1} + 2 \frac{\varphi(\beta)}{\Phi(-\beta)} \mathbf{A} \right\|^{-1/2}$$

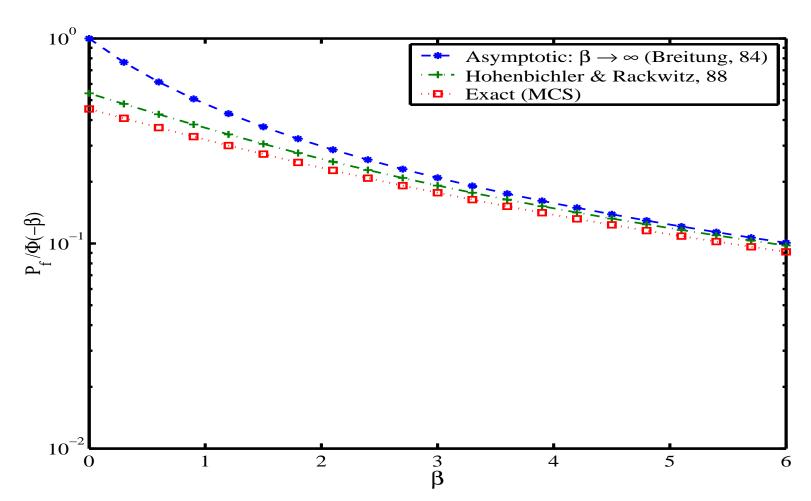
Numerical example

Consider a problem for which the failure surface is

exactly parabolic:
$$g = -y_n + \beta + \mathbf{y}^T \mathbf{A} \mathbf{y}$$

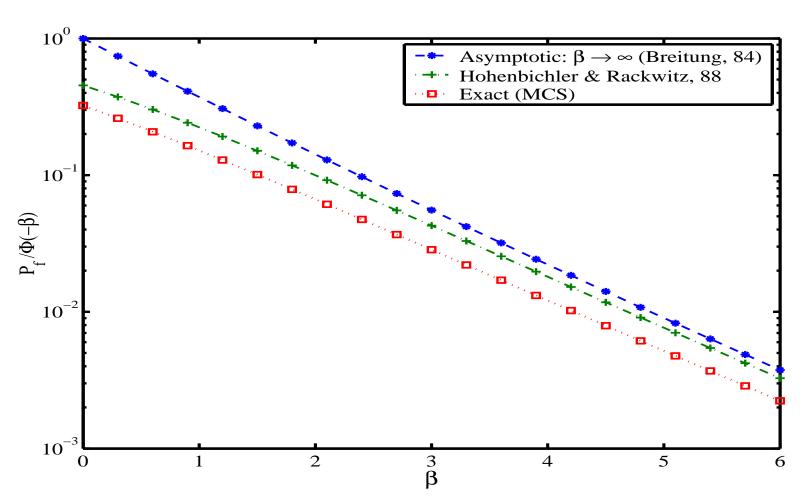
- We choose n and the value of $\operatorname{Trace}(\mathbf{A})$
- When $\operatorname{Trace}(\mathbf{A}) = 0$ the failure surface is effectively linear. Therefore, the more the value of $\operatorname{Trace}(\mathbf{A})$, the more non-linear the failure surface becomes.
- It is assumed that the eigenvalues of A are uniform random numbers.

P_f for small n



Failure probability for n-1=3, $\operatorname{Trace}\left(\mathbf{A}\right)=1$

P_f for large n



Failure probability for n-1=100, $\mathrm{Trace}\left(\mathbf{A}\right)=1$

■ If n, i.e. the dimension is large, the computation time to obtain P_f using any tools will be high.

- If n, i.e. the dimension is large, the computation time to obtain P_f using any tools will be high.
- Question 1: Suppose we have followed the 'normal route' and obtained x^* , β and A. Why the results from classical FORM/SORM is not satisfactory in a high dimensional problem?

- If n, i.e. the dimension is large, the computation time to obtain P_f using any tools will be high.
- Question 1: Suppose we have followed the 'normal route' and obtained x^* , β and A. Why the results from classical FORM/SORM is not satisfactory in a high dimensional problem?
- Question 2: What is a 'high dimension'?

- If n, i.e. the dimension is large, the computation time to obtain P_f using any tools will be high.
- Question 1: Suppose we have followed the 'normal route' and obtained x^* , β and A. Why the results from classical FORM/SORM is not satisfactory in a high dimensional problem?
- Question 2: What is a 'high dimension'?
- Only simulation methods (Au & Beck, 2003; Koutsourelakis et al., 2004) are available at present for problems with high dimension.

Asymptotic distribution of quadratic forms

Moment generating function:

$$M_U(s) = \|\mathbf{I}_{n-1} - 2s\mathbf{A}\|^{-1/2} = \prod_{k=1}^{n-1} (1 - 2sa_k)^{-1/2}$$

Now construct a sequence of new random variables $q = U/\sqrt{n}$. The moment generating function of q:

$$M_q(s) = M_U(s/\sqrt{n}) = \prod_{k=1}^{n-1} (1 - 2sa_k/\sqrt{n})^{-1/2}$$

Asymptotic distribution

Truncating the Taylor series expansion:

$$\ln (M_q(s)) \approx \text{Trace}(\mathbf{A}) s / \sqrt{n} + (2 \text{ Trace}(\mathbf{A}^2)) s^2 / 2n$$

We assume n is large such that the following conditions hold

$$\frac{2}{n}\mathrm{Trace}\left(\mathbf{A}^2\right)<\infty$$
 and
$$\frac{2^r}{n^{r/2}\,r}\mathrm{Trace}\left(\mathbf{A}^r\right)\to0,\forall r\geq3$$

Asymptotic distribution

Therefore, the moment generating function of $U=q\sqrt{n}$ can be approximated by:

$$M_U(s) \approx e^{\text{Trace}(\mathbf{A})s + (2 \text{Trace}(\mathbf{A}^2))s^2/2}$$

From the uniqueness of the Laplace Transform pair it follows that U asymptotically approaches a Gaussian random variable with mean $\operatorname{Trace}(\mathbf{A})$ and variance $2\operatorname{Trace}(\mathbf{A}^2)$, that is

$$U \simeq \mathbb{N}_1 \left(\text{Trace} \left(\mathbf{A} \right), 2 \, \text{Trace} \left(\mathbf{A}^2 \right) \right) \quad \text{when} \quad n \to \infty$$

Minimum number of random variables

The error in neglecting higher order terms:

$$\frac{1}{r} \left(\frac{2s}{\sqrt{n}} \right)^r \operatorname{Trace} \left(\mathbf{A}^r \right), \text{ for } r \geq 3.$$

Using $s=\beta$ and assuming there exist a small real number ϵ (the error) we have

$$\frac{1}{r} \frac{(2\beta)^r}{n^{r/2}} \operatorname{Trace}\left(\mathbf{A}^r\right) < \epsilon \text{ or } n > \frac{4\beta^2}{\sqrt[r]{r^2 \epsilon^2}} \left(\sqrt[r]{\operatorname{Trace}\left(\mathbf{A}^r\right)}\right)^2$$

Strict asymptotic formulation

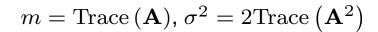
We rewrite (1):

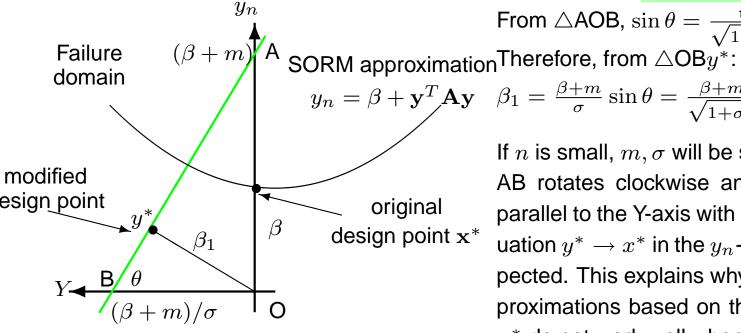
$$P_f \approx \operatorname{Prob}\left[y_n \geq \beta + U\right] = \operatorname{Prob}\left[y_n - U \geq \beta\right]$$

Since U is asymptotically Gaussian, the variable $z=y_n-U$ is also Gaussian with mean $(-\operatorname{Trace}(\mathbf{A}))$ and variance $(1+2\operatorname{Trace}(\mathbf{A}^2))$. Thus,

$$P_{f_{ ext{Strict}}} o \Phi\left(-eta_1
ight), \ eta_1 = rac{eta + ext{Trace}(\mathbf{A})}{\sqrt{1 + 2 \operatorname{Trace}(\mathbf{A}^2)}}, n o \infty$$

Graphical explanation





Failure surface: $y_n - U \ge \beta$. Using the standardizing transformation $Y = (U - m)/\sigma$, modified

failure surface
$$\frac{y_n}{\beta+m}+\frac{Y}{-\frac{\beta+m}{\sigma}}\geq 1$$
 .

From
$$\triangle AOB$$
, $\sin \theta = \frac{\tan \theta}{\sqrt{1 + \tan^2 \theta}} = \frac{\sigma}{\sqrt{1 + \sigma^2}}$.

$$y_n = \beta + \mathbf{y}^T \mathbf{A} \mathbf{y}$$
 $\beta_1 = \frac{\beta + m}{\sigma} \sin \theta = \frac{\beta + m}{\sqrt{1 + \sigma^2}} = \frac{\beta + \operatorname{Trace}(\mathbf{A})}{\sqrt{1 + 2\operatorname{Trace}(\mathbf{A}^2)}}$.

If n is small, m, σ will be small. When $m, \sigma \to 0$, AB rotates clockwise and eventually becomes parallel to the Y-axis with a shift of $+\beta$. In this situation $y^* \to x^*$ in the y_n -axis and $\beta_1 \to \beta$ as expected. This explains why classical F/SORM approximations based on the original design point x* do not work well when a large number of random variables are considered.

Weak asymptotic formulation

$$P_f \approx \operatorname{Prob}\left[y_n \ge \beta + U\right]$$

$$= \int_{\mathbb{R}} \left\{ \int_{\beta+u}^{\infty} \varphi(y_n) dy_n \right\} p_U(u) du = \operatorname{E}\left[\Phi(-\beta - U)\right]$$

Noticing that $u \in \mathbb{R}^+$ as \mathbf{A} is positive definite we rewrite

$$P_f \approx \int_{\mathbb{R}^+} e^{\ln[\Phi(-\beta - u)] + \ln[p_U(u)]} du$$

Weak asymptotic formulation

For the maxima of the integrand (say at point u^*)

$$\frac{\partial}{\partial u} \left\{ \ln \left[\Phi(-\beta - u) \right] + \ln \left[p_U(u) \right] \right\} = 0$$

Recalling that

$$p_U(u) = (2\pi)^{-1/2} \sigma^{-1} e^{-(u-m)^2/(2\sigma^2)}$$

we have

$$\frac{\varphi(\beta+u)}{\Phi(-(\beta+u))} = \frac{m-u}{\sigma^2}$$

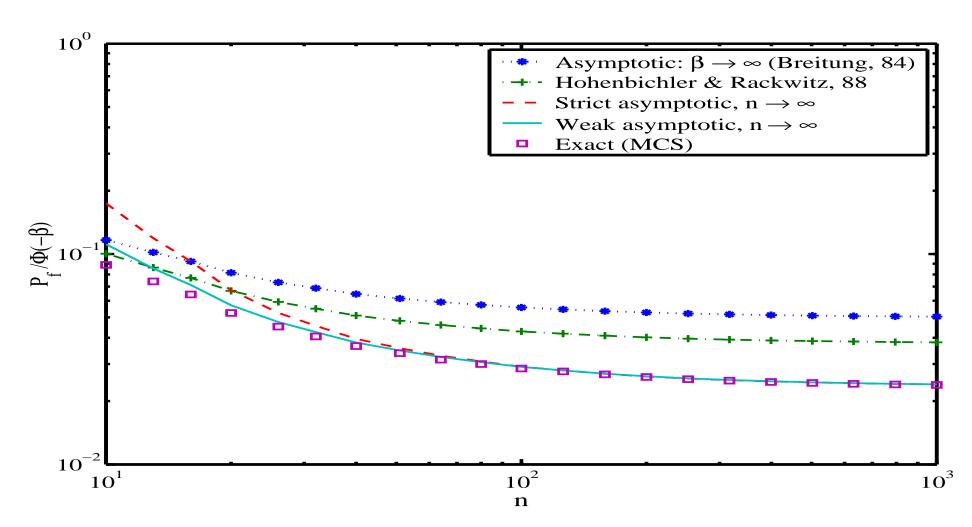
Weak asymptotic formulation

After some simplifications, the failure probability using weak asymptotic formulation:

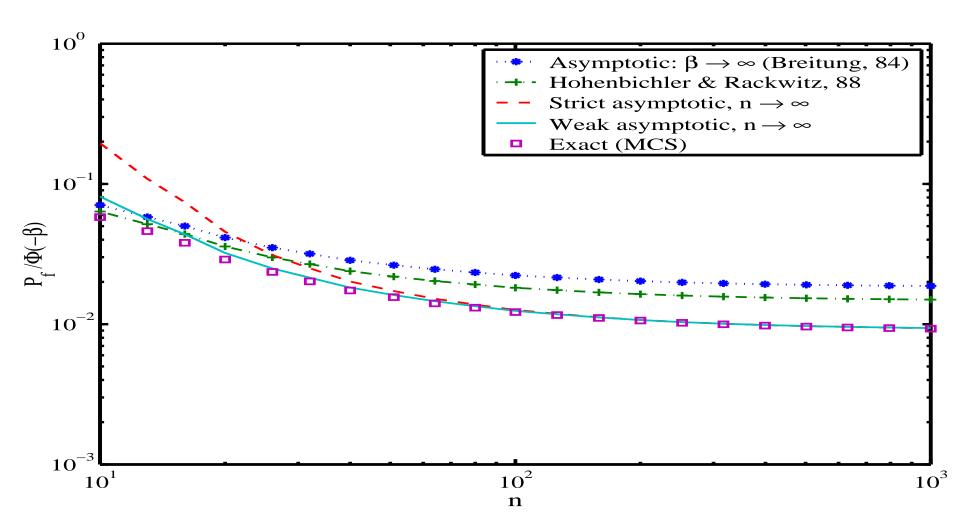
$$P_{f_{\mathrm{Weak}}} \rightarrow \frac{\Phi\left(-\beta_{2}\right) e^{-\left(2\beta_{2}^{2}\mathrm{Trace}\left(\mathbf{A}^{2}\right)-\beta_{2}\mathrm{Trace}\left(\mathbf{A}\right)\right)}}{\sqrt{\left\|\mathbf{I}_{n-1}+2\beta_{2}\mathbf{A}\right\|}},$$

$$\text{where } \beta_{2} = \frac{\beta+\mathrm{Trace}\left(\mathbf{A}\right)}{1+2\,\mathrm{Trace}\left(\mathbf{A}^{2}\right)} \text{ when } n \rightarrow \infty$$

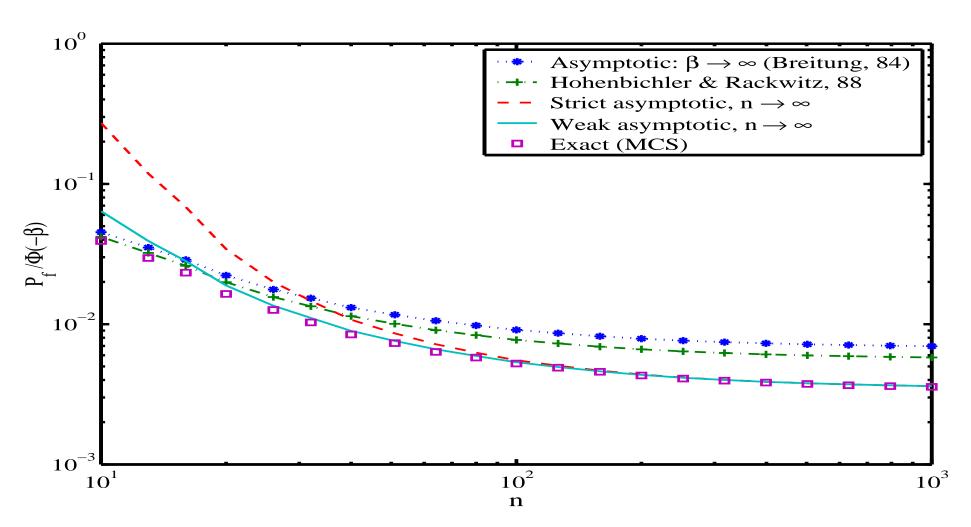
For the small n case, neglecting the 'trace effect' it can be seen that $P_{f_{\text{Weak}}}$ approaches to Breitung's formula.



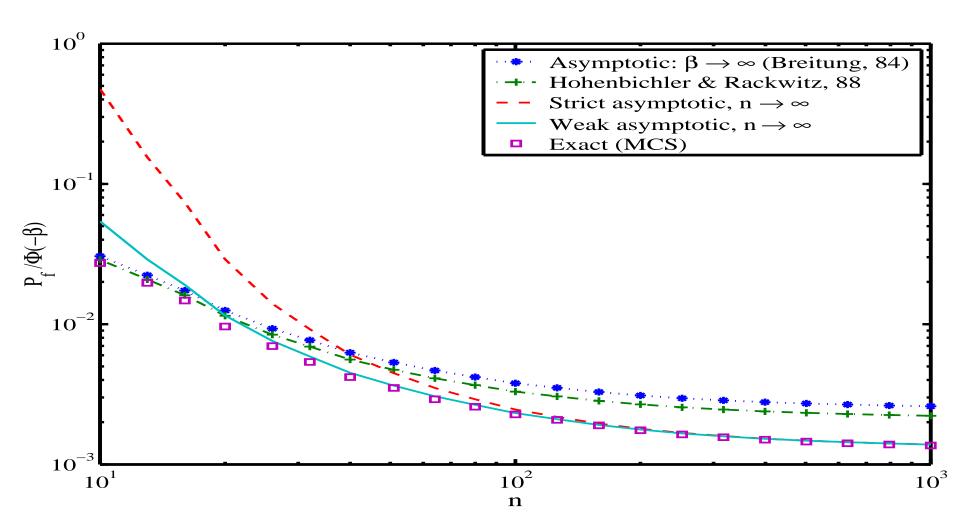
Failure probability for $\operatorname{Trace}(\mathbf{A}) = 1$, $\beta = 3$



Failure probability for $\operatorname{Trace}(\mathbf{A}) = 1$, $\beta = 4$



Failure probability for $\operatorname{Trace}(\mathbf{A}) = 1$, $\beta = 5$



Failure probability for $\operatorname{Trace}(\mathbf{A}) = 1$, $\beta = 6$

Geometric analysis shows that the classical design point should be modified in high dimension. This also explains why classical FORM/SORM work poorly in high dimension.

- Geometric analysis shows that the classical design point should be modified in high dimension. This also explains why classical FORM/SORM work poorly in high dimension.
- In the context of classical FORM/SORM, the number of random variables n can be considered as large if

$$n > \frac{4\beta^2}{\sqrt[3]{9\epsilon^2}} \left(\sqrt[3]{\text{Trace}(\mathbf{A}^3)}\right)^2$$

$$P_{f_{\text{Strict}}} \to \Phi\left(-\beta_1\right), \, \beta_1 = \frac{\beta + \text{Trace}(\mathbf{A})}{\sqrt{1 + 2 \, \text{Trace}(\mathbf{A}^2)}}, n \to \infty$$

The strict asymptotic formula can viewed as the

'correction' needed to the existing **FORM** formula in high dimension.

$$P_{f_{\mathrm{Weak}}} \to \frac{\Phi\left(-\beta_{2}\right) e^{-\left(2\beta_{2}^{2}\mathrm{Trace}\left(\mathbf{A}^{2}\right) - \beta_{2}\mathrm{Trace}\left(\mathbf{A}\right)\right)}}{\sqrt{\|\mathbf{I}_{n-1} + 2\beta_{2}\mathbf{A}\|}},$$

$$\text{where } \beta_{2} = \frac{\beta + \mathrm{Trace}\left(\mathbf{A}\right)}{1 + 2\,\mathrm{Trace}\left(\mathbf{A}^{2}\right)} \text{ when } n \to \infty$$

The weak asymptotic formula can viewed as the correction needed to the existing SORM formula in high dimension.

References

- Breitung, K. (1984). Asymptotic approximations for multinormal integrals.

 *Journal of Engineering Mechanics, ASCE, 110(3):357–367.
- Hohenbichler, M. and Rackwitz, R. (1988). Improvement of second-order reliability estimates by importance sampling. *Journal of Engineering Mechanics*, ASCE, 14(12):2195–2199.