
Random Eigenvalue Problem for Linear
Dynamic Systems

S. ADHIKARI

Cambridge University Engineering Department

Cambridge, U.K.

Random Eigenvalue Problems – p.1/23



Outline of the talk

Random eigenvalue problem

Perturbation Methods
Mean-centered perturbation method
α-centered perturbation method

Asymptotic analysis

PDF of the eigenvalues

Numerical Example

Conclusions

Random Eigenvalue Problems – p.2/23



Random eigenvalue problem

The random eigenvalue problem of undamped or
proportionally damped linear systems:

K(x)φj = λjM(x)φj. (1)

λj eigenvalues; φj eigenvectors; M(x) ∈ R
N×N mass matrix

and K(x) ∈ R
N×N stiffness matrix.

x ∈ R
m is random parameter vector with pdf

p(x) = (2π)−m/2e−xT x/2. (2)
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The Fundamental aim

To obtain the joint probability density function of the
eigenvalues and the eigenvectors.

If the matrix M−1K is GUE (Gaussian unitary ensemble)
or GOE (Gaussian orthogonal ensemble) an exact
closed-form expression can be obtained for the joint
pdf of the eigenvalues.

In general the system matrices for real structures are
not GUE or GOE
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Mean-centered perturbation method

Assume that M(0) = M0 and K(0) = K0 are ‘deterministic
parts’ (in general different from the mean matrices). The
deterministic eigenvalue problem K0φj0 = λj0M0φj0 .
The eigenvalues λj(x) : R

m → R are non-linear functions of
x. Here λj(x) is replaced by its Taylor series about the point
x = 0

λj(x) ≈ λj(0) + dT
λj

(0)x +
1

2
xT Dλj

(0)x. (3)

dλj
(0) ∈ R

m and Dλj
(0) ∈ R

m×m are respectively the gra-

dient vector and the Hessian matrix of λj(x) evaluated at

x = 0.
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α-centered perturbation method

We are looking for a point x = α in the x-space such that
the Taylor series expansion of λj(x) about this point

λj(x) ≈ λj(α) + dT
λj

(α) (x − α) +
1

2
(x − α)T Dλj

(α) (x − α)

(4)
is optimal in some sense. The optimal point α is selected
such that the mean or the first moment of each eigenvalue
is calculated most accurately.

Random Eigenvalue Problems – p.6/23



α-centered perturbation method

The mean of λj(x) can be obtained as

λ̄j =

∫

R
m

λj(x)p(x) dx = (2π)−m/2

∫

R
m

e−h(x) dx (5)

where h(x) = xT x/2 − ln λj(x). (6)

Expand the function h(x) in a Taylor series about a point
where h(x) attends its global minimum. By doing so the
error in evaluating the integral (5) would be minimized.
Therefore, the optimal point can be obtained as

∂h(x)

∂xk

= 0 or xk =
1

λj(x)

∂λj(x)

∂xk

, ∀k. (7)
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α-centered perturbation method

Combining for all k we have dλj
(α) = λj(α)α. Rearranging

α = dλj
(α)/λj(α). (8)

This equation immediately gives a recipe for an iterative
algorithm to obtain α. Substituting dλj

(α) in Eq. (4)

λj(x) ≈ λj(α)
(
1 − |α|2

)
+

1

2
αT Dλj

(α)α

+ αT
(
λj(α)I − Dλj

(α)
)

x +
1

2
xT Dλj

(α)x. (9)
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Eigenvalue statistics using theory of
quadratic forms

Both approximations yield a quadratic form in Gaussian
random variable λj(x) ≈ cj + aT

j x + 1
2
xT Ajx.

The moment generating function:

Mλj
(s) = E

[
esλj(x)

]
≈

escj+
s2

2
aT

j [I−sAj]
−1aj

√
‖I − sAj‖

(10)

Cumulants:

κr =

{
cj + 1

2
Trace (Aj) if r = 1,

r!
2

aT
j Ar−2

j aj + (r−1)!
2

Trace
(

Ar
j

)
if r ≥ 2.

(11)
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Asymptotic analysis

We want to evaluate an integral of the following form:

J =

∫

R
m

f(x)p(x) dx = (2π)−m/2

∫

R
m

eh̃(x) dx (12)

where h̃(x) = ln f(x) − xT x/2. (13)

Assume f(x) : R
m → R is smooth and at least twice

differentiable and h̃(x) reaches its global maximum at an
unique point θ ∈ R

m. Therefore, at x = θ

∂h̃(x)

∂xk

= 0 or xk =
∂

∂xk

ln f(x), ∀k, or θ =
∂

∂x
ln f(θ). (14)
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Asymptotic analysis

Further assume that h̃(θ) is so large that
∣∣∣∣∣

1

h̃(θ)
Dj(h̃(θ))

∣∣∣∣∣ → 0 for j > 2 (15)

where Dj(h̃(θ)) is jth order derivative of h̃(x) evaluated at
x = θ. Under such assumptions, using second-order Taylor
series of h̃(x) the integral (12) can be evaluated as

J ≈
eh̃(θ)

√
‖H̃(θ)‖

= f(θ)e
−

(
θ

T
θ/2

)

‖H̃(θ)‖−1/2. (16)
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Asymptotic analysis

An arbitrary rth order moment of the eigenvalues

µ′

r =

∫

R
m

λr
j(x)p(x) dx, r = 1, 2, 3 · · · (17)

Comparing this with Eq. (12) it is clear that

f(x) = λr
j(x) and h̃(x) = r ln λj(x) − xT x/2. (18)

The optimal point θ can be obtained from (14) as

θ = r dλj
(θ)/λj(θ). (19)
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Asymptotic analysis

Using the asymptotic approximation, the rth moment:

µ′

r = λr
j(θ)e−

|θ|2

2

∥∥∥∥I +
1

r
θθT −

r

λj(θ)
Dλj

(θ)

∥∥∥∥
−1/2

. (20)

The mean of the eigenvalues (by substituting r = 1):

λ̄j = λj(θ)e−
|θ|2

2

∥∥I + θθT − Dλj
(θ)/λj(θ)

∥∥−1/2
. (21)

Central moments: E
[
(λj − λ̄j)

r
]

=
∑r

k=0

(
r
k

)
(−1)r−kµ′

kλ̄
r−k
j .
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Pdf of the eigenvalues

Theorem 1 λj(x) is distributed as a non-central χ2 random
variable with noncentrality parameter δ2 and
degrees-of-freedom m′ if and only if (a) A2

j = Aj, (b)
Trace (Aj) = m′ and (c) aj = Ajaj, δ2 = cj = aT

j aj/4.

This implies that the the Hessian matrix Aj should be an

idempotent matrix. In general this requirement is not ex-

pected to be satisfied for eigenvalues of real structural sys-

tems.
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Pearson’s approximation (central χ2)

Pdf of the jth eigenvalue

pλj
(u) ≈

1

γ̃
pχ2

ν

(
u − η̃

γ̃

)
=

(u − η̃)ν/2−1e−(u−η̃)/2γ̃

(2γ̃)ν/2Γ(ν/2)
. (22)

where

η̃ =
−2κ2

2 + κ1κ3

κ3

, γ̃ =
κ3

4κ2

, and ν = 8
κ2

3

κ3
2
. (23)
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Non-central χ2 approximation

Pdf of the jth eigenvalue

pλj
(u) ≈

1

γj

pQj

(
u − ηj

γj

)
(24)

where

pQj
(u) =

e−(δj+u/2)um/2−1

2m/2

∞∑

r=0

(δu)r

r! 2rΓ(m/2 + r)
. (25)

where ηj = cj −
1
2
aT

j A−1
j aj, γj =

Trace(Aj)
2m

, δ2
j = ρT

j ρj and

ρj = A−1
j aj.
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Numerical Example

Undamped two degree-of-system system: m1 = 1 Kg, m2 =

1.5 Kg, k̄1 = 1000 N/m, k̄2 = 1100 N/m and k3 = 100 N/m.
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Only

the stiffness parameters k1 and k2 are uncertain: ki =

k̄i(1 + εixi), i = 1, 2. x = {x1, x2}
T ∈ R

2 and the ‘strength

parameters’ ε1 = ε2 = 0.25.
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Numerical Example

Following six methods are compared

1. Mean-centered first-order perturbation
2. Mean-centered second-order perturbation

3. α-centered first-order perturbation
4. α-centered second-order perturbation
5. Asymptotic method

6. Monte Carlo Simulation (10K samples) - can be
considered as benchmark.

The percentage error:

Errorith method =
{µ′

k}ith method − {µ′

k}MCS

{µ′

k}MCS
× 100

i = 1, · · · 5.
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Numerical Example
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Numerical Example
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Numerical Example
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Numerical Example
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Conclusions & Future Research

Two methods, namely (a) optimal point expansion
method, and (b) asymptotic moment method, are
proposed

The optimal point is obtained so that the mean of the
eigenvalues are estimated most accurately.

The asymptotic method assumes that the eigenvalues
are large compared to their 3rd order or higher
derivatives.

Pdf of the eigenvalues are obtained in terms of central
and non-central χ2 densities.
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