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I Outline of the Talk

Introduction: Research Interests
Structural Reliability Analysis
Reliability Analysis for Dynamics
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I Research Areas

1. ldentification of damping in vibrating
structures

2. Deterministic and stochastic structural
dynamics

3. Sensitivity analysis of damped structures
4. Statistical Energy Analysis (SEA)
5. Structural reliability analysis
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I Structural Reliability Analysis




I The Fundamental Problem

Probability of failure:

Py = / p(y)dy (1)
G(Y)<0

» y € R": vector describing the uncertainties Iin
the structural parameters and applied
loadings.

» p(y): joint probability density function of y
» G(y): failure surface/limit-state function/safety

margin/ I



I Main Difficulties

# nislarge
» p(y) is non-Gaussian

» P;is usually very small (in the order of 10~
or smaller)

» ((y) is a complicated nonlinear function of y
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I Approximate Reliability Analyses

First-Order Reliability Method (FORM):

» Requires the random variables y to be
Gaussian.

» Approximates the failure surface by a
hyperplane.

Second-Order Reliability Method (SORM):

» Requires the random variables y to be
Gaussian.

» Approximates the failure surface by a

quadratic hypersurface. I



I FORM

» Original non-Gaussian random variables y
are transformed to standardized gaussian
random variables x. This transforms G(y) to

g(x).
» The probability of failure is given by

Pr=®(—f) with §=(x"x)"2 (2

where x*, the design point is the solution of

min {(xTx)l/Q} subjectto g(x) =0. (3) I




I Gradient Projection Method

» Uses the gradient of g(x) noting that Vg is
independent of x for linear g(x).

» For nonlinear g(x), the design point is
obtained by an iterative method.

» Reduces the number of variables to 1 in the
constrained optimization problem.

» |s expected to work well when the failure

surface is ‘fairly’ linear.



I Example 1

Line

ar failure surface in R?: 40 = oy — 202 + 10

Failure domain:
g(x) =x,-2x,+10 <0

Safe domain
g(x) = X1—2X2+10 >0

1

x* = {—2,4}1 and 3 = 4.472.



Example 2

g(x) = —%(xl —1)2 — 22+ 4
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4 Failure domain ; .
g(x) <O
3 Safe domain
g(x) >0
12
1+
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x* = {—2.34,2.21}7 and 8 = 3.22.



Example 3

x* = {2.1286,1.2895,1.8547}T and 8 = 3.104,



Multistoried Portal Frame

Random Variables:

P, = 4.0e5 KN, Py = 5.0e5 KN Axial stiffness (EA) and the bending stiffness (El) of

Nel=20, Nnode=12 each member are uncorrelated Gaussian random
FfE = @ — variables (Total 2 x 20 = 40 random variables:
17 Z o 1s X € R4O).
P |
> T3 ©® EA (KN) El (KNm?)
13 1 19 Element Standard Standard
_ | Mean o Mean o
@ 1o Type Deviation Deviation
° iz 1 5.0x10° 7.0% 6.0x10* 5.0%
® 5 ©® T 2 3.0x10° 3.0% 4.0x10%* 10.0%
= s 7 5 @ [2.0m 3 1.0x102 10.0% 2.0x10* 9.0%
B Failure surface: g(x) = dmaz — |0h11(x)],
dhi1: horizontal displacement at node 11,

dmar = 0.184 x 10~ 2m

3.0m



I Multistoried Portal Frame

Results with one iteration)

Approximation FORM MCS?
(Mreducea = 1) 1 =40 (exact)
3 3.399 3.397 —
Py x 10° 0.338 0.340 0.345

I

with 11600 samples (considered as benchmark)
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I Dynamic Reliability Problem

The central issues:

» The failure surface is discontinuous (hence
not differentiable) and multiple-connected

o FORM and SORM, in its classical form, is not
applicable
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I A 2 DOFK System

k] k2 k3
ki1 = 1_61(1 +$1/3), ko = 1_62(1 —|—$2/3),

w1 = 32.22 and wo = 35.52



I Transfer Function

 (rad/s)



I Static Failure Surface

g(x1,22) = H11(w)/¥s — @maz =0, w =0

amaz - Maximum allowable amplification=6



Stati '
tic Reliability Integral
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I Dynamic Failure Surface

g(x1,22) = H11(w)/Us — Omaz = 0, w = 33.26 rad/s

— R

) 4
amaz - Maximum allowable amplification=6



I Dynamic Reliability Integral
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I Conclusions & Future Research

» A gradient projection method based on the
sensitivity vector of the failure surface is
developed to reduce the number of random
variables in structural reliability problems
involving a large number of random variables.

» Current methods work well when the failure
surface Is close to linear (static problems).

» For dynamic problems the failure surface
becomes highly non-linear, discontinuous and

multiple-connected.



I Conclusions & Future Research

» Further research is needed to develop
non-classical methods for solving dynamic
reliability problems.
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