

Reliability and Uncertainty in Structural Dynamics

S. Adhikari

In collaboration with Prof. R S. Langley

Cambridge University Engineering Department Cambridge, U.K.

Reliability and Uncertainty in Structural Dynamics - p.1/23

Outline of the Talk

- Introduction: Research Interests
- Structural Reliability Analysis
- Reliability Analysis for Dynamics
- Conclusions

Research Areas

- 1. Identification of damping in vibrating structures
- 2. Deterministic and stochastic structural dynamics
- 3. Sensitivity analysis of damped structures
- 4. Statistical Energy Analysis (SEA)
- 5. Structural reliability analysis

Structural Reliability Analysis

The Fundamental Problem

Probability of failure:

$$P_f = \int_{G(\mathbf{y}) \le 0} p(\mathbf{y}) d\mathbf{y} \tag{1}$$

- $\mathbf{y} \in \mathbb{R}^n$: vector describing the uncertainties in the structural parameters and applied loadings.
- $p(\mathbf{y})$: joint probability density function of \mathbf{y}
- G(y): failure surface/limit-state function/safety margin/

Main Difficulties

• n is large

- $p(\mathbf{y})$ is non-Gaussian
- P_f is usually very small (in the order of 10^{-4} or smaller)
- ${\scriptstyle \ensuremath{\, \hbox{\scriptsize onlinear}}}\ function of y$

Approximate Reliability Analyses

First-Order Reliability Method (FORM):

- Requires the random variables y to be Gaussian.
- Approximates the failure surface by a hyperplane.
- Second-Order Reliability Method (SORM):
- Requires the random variables y to be Gaussian.
- Approximates the failure surface by a quadratic hypersurface.

- Original non-Gaussian random variables y are transformed to standardized gaussian random variables x. This transforms G(y) to g(x).
- The probability of failure is given by

$$P_f = \Phi(-\beta)$$
 with $\beta = (\mathbf{x}^{*^T} \mathbf{x}^*)^{1/2}$ (2)

where \mathbf{x}^* , the design point is the solution of

min
$$\left\{ (\mathbf{x}^T \mathbf{x})^{1/2} \right\}$$
 subject to $g(\mathbf{x}) = 0.$ (3)

Reliability and Uncertainty in Structural Dynamics - p.8/23

Gradient Projection Method

- Uses the gradient of $g(\mathbf{x})$ noting that ∇g is independent of \mathbf{x} for linear $g(\mathbf{x})$.
- For nonlinear $g(\mathbf{x})$, the design point is obtained by an iterative method.
- Reduces the number of variables to 1 in the constrained optimization problem.
- Is expected to work well when the failure surface is 'fairly' linear.

Linear failure surface in \mathbb{R}^2 : $g(\mathbf{x}) = x_1 - 2x_2 + 10$

Example 1

Reliability and Uncertainty in Structural Dynamics - p.10/23

Example 2

 $\mathbf{x}^* = \{-2.34, 2.21\}^T$ and $\beta = 3.22$.

Example 3

 $\mathbf{x}^* = \{2.1286, 1.2895, 1.8547\}^T \text{ and } \beta = 3.104$

Multistoried Portal Frame

 $P_1 = 4.0e5 \text{ KN}, P_2 = 5.0e5 \text{ KN}$

Random Variables:

Axial stiffness (EA) and the bending stiffness (EI) of each member are uncorrelated Gaussian random variables (Total $2 \times 20 = 40$ random variables: $\mathbf{x} \in \mathbb{R}^{40}$).

	EA (KN)		EI (KNm 2)	
Element		Standard	Mean	Standard
Туре	Mean	Deviation		Deviation
1	5.0 ×10 ⁹	7.0%	6.0×10^4	5.0%
2	3.0 ×10 ⁹	3.0%	4.0 $\times 10^{4}$	10.0%
3	1.0 ×10 ⁹	10.0%	2.0 ×10 ⁴	9.0%
Failure surface: $g(\mathbf{x}) = d_{max} - \delta h_{11}(\mathbf{x}) ,$				
δh_{11} : horizontal displacement at node 11,				
$d_{max} = 0.184 \times 10^{-2} \mathrm{m}$				

Reliability and Uncertainty in Structural Dynamics – p.13/23

Multistoried Portal Frame

Results (with one iteration)

ApproximationFORMMCS‡ $(n_{reduced} = 1)$ n = 40(exact) β 3.3993.397- $P_f \times 10^3$ 0.3380.3400.345

^{\ddagger} with 11600 samples (considered as benchmark)

Reliability and Uncertainty in Structural Dynamics - p.14/23

Dynamic Reliability Problem

The **central** issues:

- The failure surface is discontinuous (hence not differentiable) and multiple-connected
- FORM and SORM, in its classical form, is not applicable

Transfer Function

Static Failure Surface

 α_{max} : maximum allowable amplification=6

Static Reliability Integral

Dynamic Failure Surface

 $g(x_1, x_2) = H_{11}(\omega)/\bar{y}_s - \alpha_{max} = 0, \, \omega = 33.26$ rad/s

 α_{max} : maximum allowable amplification=6

Dynamic Reliability Integral

Conclusions & Future Research

- A gradient projection method based on the sensitivity vector of the failure surface is developed to reduce the number of random variables in structural reliability problems involving a large number of random variables.
- Current methods work well when the failure surface is close to linear (static problems).
- For dynamic problems the failure surface becomes highly non-linear, discontinuous and multiple-connected.

Conclusions & Future Research

Further research is needed to develop non-classical methods for solving dynamic reliability problems.