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Ensembles of structural dynamical systems

Many structural dynamic systems are manufactured in a production line (nominally identical sys-
tems)
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A complex structural dynamical system

Complex aerospace system can have millions of degrees of freedom and signifi-
cant ‘errors’ and/or ‘lack of knowledge’ in its numerical (Finite Element) model
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Sources of uncertainty

(a) parametric uncertainty - e.g., uncertainty in geometric
parameters, friction coefficient, strength of the materials involved;
(b) model inadequacy - arising from the lack of scientific
knowledge about the model which is a-priori unknown;
(c) experimental error - uncertain and unknown error percolate
into the model when they are calibrated against experimental
results;
(d) computational uncertainty - e.g, machine precession, error
tolerance and the so called ‘h’ and ‘p’ refinements in finite
element analysis, and
(e) model uncertainty - genuine randomness in the model such
as uncertainty in the position and velocity in quantum mechanics,
deterministic chaos.
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UP approaches: key challenges

The main difficulties are:

the computational time can be prohibitively high compared to
a deterministic analysis for real problems,

the volume of input data can be unrealistic to obtain for a
credible probabilistic analysis,

the predictive accuracy can be poor if considerable
resources are not spend on the previous two items, and

the need for general purpose software tools: as the
state-of-the art methodology stands now (such as the
Stochastic Finite Element Method), only very few highly
trained professionals (such as those with PhDs) can even
attempt to apply the complex concepts (e.g., random fields)
and methodologies to real-life problems.
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The 10-10-10 challenge

Can we develop methodologies which will:
(a) not take more than 10 times the computational time required
for the corresponding deterministic approach;
(b) result a predictive accuracy within 10% of direct Monte Carlo
Simulation (MCS);
(c) use no more than 10 times of input data needed for the
corresponding deterministic approach; and
(d) enable ‘normal’ engineering graduates to perform probabilistic
structural dynamic analyses with a reasonable amount of training.
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Current UP approaches - 1

Two different approaches are currently available

Parametric approaches : Such as the Stochastic Finite
Element Method (SFEM):

aim to characterize parametric uncertainty (type ‘a’)
assumes that stochastic fields describing parametric
uncertainties are known in details
suitable for low-frequency dynamic applications (building
under earthquake load, steering column vibration in cars)
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Current UP approaches - 2

Nonparametric approaches : Such as the Statistical Energy
Analysis (SEA):

aim to characterize nonparametric uncertainty (types ‘b’ -
‘e’)
does not consider parametric uncertainties in details
suitable for high/mid-frequency dynamic applications (eg,
noise propagation in vehicles)
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Dynamics of a general linear system

The equation of motion:

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (1)

Due to the presence of uncertainty M, C and K become
random matrices.

The main objectives in the ‘forward problem’ are:
to quantify uncertainties in the system matrices (and
consequently in the eigensolutions)
to predict the variability in the response vector q

Probabilistic solution of this problem is expected to have
more credibility compared to a deterministic solution
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Matrix variate distributions

The probability density function of a random matrix can be
defined in a manner similar to that of a random variable.

If A is an n × m real random matrix, the matrix variate
probability density function of A ∈ Rn,m, denoted as pA(A),
is a mapping from the space of n × m real matrices to the
real line, i.e., pA(A) : Rn,m → R.
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Gaussian random matrix

The random matrix X ∈ Rn,p is said to have a matrix variate
Gaussian distribution with mean matrix M ∈ Rn,p and covariance
matrix Σ ⊗ Ψ, where Σ ∈ R

+
n and Ψ ∈ R

+
p provided the pdf of X

is given by

pX (X) = (2π)−np/2 |Σ|−p/2 |Ψ|−n/2

etr

{

−
1

2
Σ−1(X − M)Ψ−1(X − M)T

}

(2)

This distribution is usually denoted as X ∼ Nn,p (M,Σ ⊗ Ψ).
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Matrix variate Gamma distribution

A n × n symmetric positive definite matrix random W is said to
have a matrix variate gamma distribution with parameters a and
Ψ ∈ R

+
n , if its pdf is given by

pW (W) =
{

Γn (a) |Ψ|−a}−1
|W|a−

1

2
(n+1) etr {−ΨW} ; ℜ(a) >

1

2
(n−1)

This distribution is usually denoted as W ∼ Gn(a,Ψ). Here the
multivariate gamma function:

Γn (a) = π
1

4
n(n−1)

n
∏

k=1

Γ

[

a −
1

2
(k − 1)

]

; forℜ(a) > (n − 1)/2
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Wishart matrix

A n × n symmetric positive definite random matrix S is said to
have a Wishart distribution with parameters p ≥ n and Σ ∈ R

+
n , if

its pdf is given by

pS (S) =

{

2
1

2
np Γn

(

1

2
p

)

|Σ|
1

2
p

}−1

|S|
1

2
(p−n−1)etr

{

−
1

2
Σ−1S

}

(3)

This distribution is usually denoted as S ∼ Wn(p,Σ).

Note: If p = n + 1, then the matrix is non-negative definite.
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Some books

Muirhead, Aspects of Multivariate Statistical Theory, John
Wiely and Sons, 1982.

Mehta, Random Matrices, Academic Press, 1991.

Gupta and Nagar, Chapman & Hall/CRC, 2000.
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Stochastic dynamic response

Taking the Laplace transform of the equation of motion:

[

s2M + sC + K
]

q̄(s) = f̄(s) (4)

The aim here is to obtain the statistical properties of q̄(s) ∈ C
n when the system matrices

are random matrices.

The system eigenvalue problem is given by

Kφj = ω2

j Mφj , j = 1, 2, . . . , n (5)

where ω2

j and φj are respectively the eigenvalues and mass-normalized eigenvectors of
the system.

We define the matrices

Ω = diag [ω1, ω2, . . . , ωn] and Φ = [φ1, φ2, . . . , φn] . (6)

so that ΦT KeΦ = Ω2 and ΦT MΦ = In (7)
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Stochastic dynamic response

Transforming it into the modal coordinates:

[

s2In + sC′ + Ω2
]

q̄′ = f̄
′

(8)

Here

C′ = ΦTCΦ = 2ζΩ, q̄ = Φq̄′ and f̄
′
= ΦT f̄ (9)

When we consider random systems, the matrix of
eigenvalues Ω2 will be a random matrix of dimension n.
Suppose this random matrix is denoted by Ξ ∈ R

n×n:

Ω2 ∼ Ξ (10)
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Stochastic dynamic response

Since Ξ is a symmetric and positive definite matrix, it can be
diagonalized by a orthogonal matrix Ψr such that

ΨT
r ΞΨr = Ω2

r (11)

Here the subscript r denotes the random nature of the
eigenvalues and eigenvectors of the random matrix Ξ.

Recalling that ΨT
r Ψr = In we obtain

q̄′ =
[

s2In + sC′ + Ω2
]−1

f̄
′

(12)

= Ψr

[

s2In + 2sζΩr + Ω2
r

]−1
ΨT

r f̄
′

(13)
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Stochastic dynamic response

The response in the original coordinate can be obtained as

q̄(s) = Φq̄′(s) = ΦΨr

[

s2In + 2sζΩr + Ω2
r

]−1
(ΦΨr)

T f̄(s)

=

n
∑

j=1

xT
rj
f̄(s)

s2 + 2sζjωrj
+ ω2

rj

xrj
.

Here

Ωr = diag [ωr1
, ωr2

, . . . , ωrn
] , Xr = ΦΨr = [xr1

,xr2
, . . . ,xrn

]

are respectively the matrices containing random eigenvalues
and eigenvectors of the system.
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Wishart random matrix approach

Suppose we ‘know’ (e.g, by measurements or stochastic finite element modeling) the mean
(G0) and the (normalized) variance (dispersion parameter) (δG) of the system matrices:

δG =
E

[

‖G − E [G] ‖2

F

]

‖E [G] ‖2

F

. (14)

It can be proved that a positive definite symmetric matrix can e expressed by a Wishart
matrix G ∼ Wn(p,Σ) with

p = n + 1 + θ and Σ = G0/θ (15)

where

θ =
1

δ2

G

{1 + γG} − (n + 1) (16)

and

γG =
{Trace (G0)}2

Trace
(

G0
2
) (17)
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Parameter-selection for structural dynamics

Approach 1: M and K are fully correlated Wishart (most complex).
For this case M ∼ Wn(p1,Σ1), K ∼ Wn(p1,Σ1) with E [M] = M0

and E [M] = M0. This method requires the simulation of two
n × n fully correlated Wishart matrices and the solution of a n × n

generalized eigenvalue problem with two fully populated matrices.
Here

Σ1 = M0/p1, p1 =
γM + 1

δM

(18)

and Σ2 = K0/p2, p2 =
γK + 1

δK

(19)

γG = {Trace (G0)}
2/Trace

(

G0
2
)

(20)
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Parameter-selection for structural dynamics

Approach 2: Scalar Wishart (most simple) In this case it is
assumed that

Ξ ∼ Wn

(

p,
a2

n
In

)

(21)

Considering E [Ξ] = Ω2
0 and δΞ = δH the values of the unknown

parameters can be obtained as

p =
1 + γH

δ2
H

and a2 = Trace
(

Ω2
0

)

/p (22)

Sheffield, 17 June 2009 Random Matrix Models in Probabilistic Structural Dynamics – p.22/46



Parameter-selection for structural dynamics

Approach 3: Diagonal Wishart with different entries (something in
the middle). For this case Ξ ∼ Wn

(

p,Ω2
0/θ

)

with E
[

Ξ−1
]

= Ω−2
0

and δΞ = δH . This requires the simulation of one n × n

uncorrelated Wishart matrix and the solution of an n × n standard
eigenvalue problem.
The parameters can be obtained as

p = n + 1 + θ and θ =
(1 + γH)

δ2
H

− (n + 1) (23)

Sheffield, 17 June 2009 Random Matrix Models in Probabilistic Structural Dynamics – p.23/46



Parameter-selection for structural dynamics

Defining H0 = M0
−1K0, the constant γH :

γH =
{Trace (H0)}

2

Trace
(

H0
2
) =

{

Trace
(

Ω2

0

)}2

Trace
(

Ω4

0

) =

(

∑

j ω2

0j

)

2

∑

j ω4

0j

(24)

Obtain the dispersion parameter of the generalized Wishart matrix

δH =

(

p1
2 + (p2 − 2 − 2 n) p1 + (−n − 1) p2 + n2 + 1 + 2 n

)

γH

p2 (−p1 + n) (−p1 + n + 3)

+
p1

2 + (p2 − 2 n) p1 + (1 − n) p2 − 1 + n2

p2 (−p1 + n) (−p1 + n + 3)
(25)
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Numerical Examples
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A vibrating cantilever plate
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Baseline Model: Thin plate elements with 0.7% modal damping assumed for all
the modes.
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Physical properties

Plate Properties Numerical values

Length (Lx) 998 mm

Width (Ly) 530 mm

Thickness (th) 3.0 mm

Mass density (ρ) 7860 kg/m3

Young’s modulus (E) 2.0 × 105 MPa

Poisson’s ratio (µ) 0.3

Total weight 12.47 kg
Material and geometric properties of the cantilever plate considered
for the experiment. The data presented here are available from
http://engweb.swan.ac.uk/∼adhikaris/uq/.
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Uncertainty type 1: random fields

The Young’s modulus, Poissons ratio, mass density and thickness
are random fields of the form

E(x) = Ē (1 + ǫEf1(x)) (26)

µ(x) = µ̄ (1 + ǫµf2(x)) (27)

ρ(x) = ρ̄ (1 + ǫρf3(x)) (28)

and t(x) = t̄ (1 + ǫtf4(x)) (29)

The strength parameters: ǫE = 0.15, ǫµ = 0.15, ǫρ = 0.10 and
ǫt = 0.15.

The random fields fi(x), i = 1, · · · , 4 are delta-correlated
homogenous Gaussian random fields.
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Uncertainty type 2: random attached oscillators

Here we consider that the baseline plate is ‘perturbed’ by
attaching 10 oscillators with random spring stiffnesses at
random locations

This is aimed at modeling non-parametric uncertainty.

This case will be investigated experimentally later.
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Mean of cross-FRF: Utype 1
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Error in the mean of cross-FRF: Utype 1
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Standard deviation of driving-point-FRF: Utype 1
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Error in the standard deviation of driving-point-FRF:

Utype 1
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Error in the standard deviation of the amplitude of the response of the driving-
point-FRF of the plate, n = 1200, σM = 0.078 and σK = 0.205.
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Mean of cross-FRF: Utype 2

0 500 1000 1500 2000 2500 3000 3500 4000
−180

−160

−140

−120

−100

−80

−60

Frequency (Hz)

M
ea

n 
of

 a
m

pli
tu

de
 (d

B)

 

 

M and K are fully correlated Wishart
Scalar Wishart
Diagonal Wishart with different entries
Direct simulation

Mean of the amplitude of the response of the cross-FRF of the plate, n = 1200,
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Error in the mean of cross-FRF: Utype 2
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n = 1200, σM = 0.133 and σK = 0.420.
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Standard deviation of driving-point-FRF: Utype 2
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Error in the standard deviation of driving-point-FRF:

Utype 2
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Experimental investigation for
uncertainty type 2 (randomly attached

oscillators)
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A cantilever plate: front view

The test rig for the cantilever plate; front view (to appear in Probabilistic Engineer-
ing Mechanics).
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A cantilever plate: side view

The test rig for the cantilever plate; side view.
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Comparison of driving-point-FRF
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Comparison of the mean of the amplitude obtained using the experiment and
three Wishart matrix approaches for the plate with randomly attached oscillators
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Comparison of Cross-FRF
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Comparison of driving-point-FRF
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Comparison of relative standard deviation of the amplitude obtained using the
experiment and three Wishart matrix approaches for the plate with randomly at-
tached oscillators
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Comparison of Cross-FRF
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Comparison of relative standard deviation of the amplitude obtained using the
experiment and three Wishart matrix approaches for the plate with randomly at-
tached oscillators
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Conclusions

Uncertainties need to be taken into account for credible
predictions using computational methods.

This talk concentrated on Uncertainty Propagation (UP) in
linear structural dynamic problems.

A general UP approach based on Wishart random matrix is
discussed and the results are compared with experimental
results.

Based on numerical and experimental studies, a suitable
simple Wishart random matrix model has been identified.
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Future directions

Efficient computational methods based on analytical
approaches involving random eigenvalue problems

Model calibration/updating: from experimental
measurements (with uncertainties) how to identify/update
the model (ie, the system matrices) and its associated
uncertainty.

High performance computing software for uncertain
systems: how the UP approaches can be integrated with
high performance computing and general purpose
commercial software? This is becoming a very important
issue due the availability of relatively inexpensive ‘clusters’.
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