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Sources of uncertainty

(a) parametric uncertainty - e.g., uncertainty in geometric
parameters, friction coefficient, strength of the materials involved;
(b) model inadequacy - arising from the lack of scientific
knowledge about the model which is a-priori unknown;
(c) experimental error - uncertain and unknown error percolate
into the model when they are calibrated against experimental
results, and
(d) computational uncertainty - e.g, machine precession, error
tolerance and the so called ‘h’ and ‘p’ refinements in finite
element analysis
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Motivation of the proposed approach

Uncertainties in complex dynamical systems play an important role in the prediction of
dynamic response in the mid and high frequency ranges.

For distributed parameter systems, parametric uncertainties can be represented by random
fields leading to stochastic partial differential equations.

Over the past two decades spectral stochastic finite element method has been developed
to discretise the random fields and solve such problems.

On the other hand, for deterministic distributed parameter linear dynamical systems,
spectral finite element method has been developed to efficiently solve the problem in the
frequency domain.

In spite of the fact that both approaches use spectral decomposition (one for the random
fields and while the other for the dynamic displacement fields), there has been very little
overlap between them in literature.

In this paper these two spectral techniques have been unified with the aim that the unified
approach would outperform any of the spectral methods considered on its own.
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Rationale behind the proposed approach

In the higher frequency ranges, as the wavelengths become smaller, very fine (static) mesh
size is required to capture the dynamical behaviour.

As a result, the deterministic analysis itself can pose significant computational challenges.

One way to address this problem is to use a spectral approach in the frequency domain
where the displacements within an element is expressed in terms of frequency dependent
shape functions. The shape functions adapt themselves with increasing frequency and
consequently displacements can be obtained accurately without fine remeshing.

The spectral approach have the potential to be an efficient method for mid and high
frequency vibration problems provided the random fields describing parametric
uncertainties can be taken into account efficiently. Here the spectral decomposition of the
random files are used in conjunction with the spectral decomposition of the displacements
field.
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Spectral method in the frequency domain

Spectral method for deterministic dynamical systems have been in use for more than three
decades. This approach, or approaches very similar to this, is known by various names such as
the dynamic stiffness method, spectral finite element method, exact element method and dynamic
finite element method. Some of the notable features are:

the mass distribution of the element is treated in an exact manner in deriving the element
dynamic stiffness matrix;

the dynamic stiffness matrix of one dimensional structural elements taking into account the
effects of flexure, torsion, axial motion, shear deformation effects and damping are exactly
determinable, which, in turn, enables the exact vibration analysis of skeletal structures by
an inversion of the global dynamic stiffness matrix;

the method does not employ eigenfunction expansions and, consequently, a major step of
the traditional finite element analysis, namely, the determination of natural frequencies and
mode shapes, is eliminated which automatically avoids the errors due to series truncation;
this makes the method attractive for situations in which a large number of modes
participate in vibration;
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Spectral method in the frequency domain

since the modal expansion is not employed, ad hoc

assumptions concerning damping matrix being proportional
to mass and/or stiffness is not necessary;

the method is essentially a frequency domain approach
suitable for steady state harmonic or stationary random
excitation problems; generalization to other type of problems
through the use of Laplace transforms is also available;

the static stiffness matrix and the consistent mass matrix
appear as the first two terms in the Taylor expansion of the
dynamic stiffness matrix in the frequency parameter.
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Stochastic Finite Element Method

Problems of structural dynamics in which the uncertainty in specifying mass and stiffness of the
structure is modeled within the framework of random fields can be treated using the Stochastic
Finite Element Method (SFEM). The application of SFEM in linear structural dynamics typically
consists of the following key steps:

1. Selection of appropriate probabilistic models for parameter uncertainties and boundary
conditions

2. Replacement of the element property random fields by an equivalent set of a finite number
of random variables. This step, known as the ‘discretisation of random fields’ is a major
step in the analysis.

3. Formulation of the equation of motion of the form D(ω)u = f where D(ω) is the random
dynamic stiffness matrix, u is the vector of random nodal displacement and f is the applied
forces. In general D(ω) is a random symmetric complex matrix.

4. Calculation of the response statistics by either (a) solving the random eigenvalue problem,
or (b) solving the set of complex random algebraic equations.
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Spectral Decomposition of random fields

Suppose H(r, θ) is a random field with a covariance function CH(r1, r2) defined in a space Ω.
Since the covariance function is finite, symmetric and positive definite it can be represented by a
spectral decomposition. Using this spectral decomposition, the random process H(r, θ) can be
expressed in a generalized fourier type of series as

H(r, θ) = H0(r) +
∞∑

i=1

√
λiξi(θ)ϕi(r) (1)

where ξi(θ) are uncorrelated random variables, λi and ϕi(r) are eigenvalues and eigenfunctions
satisfying the integral equation

∫

Ω
CH(r1, r2)ϕi(r1)dr1 = λiϕi(r2), ∀ i = 1, 2, · · · (2)

The spectral decomposition in equation (2) is known as the Karhunen-Loève (KL) expansion. The
series in (2) can be ordered in a decreasing series so that it can be truncated after a finite number
of terms with a desired accuracy.
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Exponential autocorrelation function

The autocorrelation function:

C(x1, x2) = e−|x1−x2|/b (3)

The underlying random process H(x, θ) can be expanded using the Karhunen-Loève expansion in
the interval −a ≤ x ≤ a as

H(x, θ) =
∞∑

j=1

ξj(θ)
√

λjϕj(x) (4)

Using the notation c = 1/b, the corresponding eigenvalues and eigenfunctions for odd j are given
by

λj =
2c

ω2
j + c2

, ϕj(x) =
cos(ωjx)√

a +
sin(2ωja)

2ωj

, where tan(ωja) =
c

ωj
, (5)

and for even j are given by

λj =
2c

ωj
2 + c2

, ϕj(x) =
sin(ωjx)√

a − sin(2ωja)

2ωj

, where tan(ωja) =
ωj

−c
. (6)
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General Derivation of Doubly Spectral Element Matrices

A linear damped distributed parameter dynamical system in which the displacement
variable U(r, t), where r is the spatial position vector and t is time, specified in some
domain D, is governed by a linear partial differential equation

ρ(r, θ)
∂2U(r, t)

∂t2
+ L1

∂U(r, t)

∂t
+ L2U(r, t) = p(r, t); r ∈ D, t ∈ [0, T ] (7)

with linear boundary-initial conditions of the form

M1j
∂U(r, t)

∂t
= 0; M2jU(r, t) = 0; r ∈ Γ, t = t0, j = 1, 2, · · · (8)

specified on some boundary surface Γ.

In the above equation ρ(r, θ) is the random mass distribution of the system, p(r, t) is the
distributed time-varying forcing function, L1 is the random spatial self-adjoint damping
operator, L2 is the random spatial self-adjoint stiffness operator and M1j and M2j are
some linear operators defined on the boundary surface Γ. When parametric uncertainties
are considered, the mass density ρ(r, θ) as well as the damping and stiffness operators
involve random processes.
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DSSFEM Formulation

The equation of underlying homogeneous system without any forcing is given by

ρ0
∂2U(r, t)

∂t2
+ L10

∂U(r, t)

∂t
+ L20U(r, t) = 0 (9)

together with suitable homogeneous boundary and initial conditions.

Taking the Fourier transform and considering zero initial conditions

−ω2ρ0u(r) + iωL10 {u(r)} + L20 {u(r)} = 0 (10)

Frequency-dependent displacement within an element is interpolated from the nodal
displacements

ue(r, ω) = N
T (r, ω)ûe(ω) (11)

ûe(ω) ∈ C
n is the nodal displacement vector and N(r, ω) ∈ C

n, the vector of
frequency-dependent shape functions and n is the number of the nodal
degrees-of-freedom.
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DSSFEM Formulation

Suppose the sj(r, ω) ∈ C, j = 1, 2, · · ·m are the basis
functions which exactly satisfy the baseline equation. Here
m is the order of the ordinary differential equation. It can be
shown that the shape function vector can be expresses as

N(r, ω) = Γ(ω)s(r, ω) (12)

where the vector s(r, ω) = {sj(r, ω)}T
,∀ j ∈ C

m and the
complex matrix Γ(ω) ∈ C

nm depends on the boundary
conditions.
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DSSFEM Formulation

The frequency depended n × n complex random stiffness,
mass and damping matrices can be obtained as

Ke(ω, θ) =

∫

De

ks(r, θ)L2 {N(r, ω)}L2

{
N

T (r, ω)
}

dr (13)

Me(ω, θ) =

∫

De

ρ(r, θ)N(r, ω)NT (r, ω)dr and (14)

Ce(ω, θ) =

∫

De

c(r, θ)L1 {N(r, ω)}L1

{
N

T (r, ω)
}

dr (15)

(•)T denotes matrix transpose, ks(r, θ) is the random
distributed stiffness parameter, L2{•} is the strain energy
operator, c(r, θ) is the random distributed damping
parameter and L1{•} is the energy dissipation operator.
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DSSFEM Formulation

The random fields ks(r, θ), ρ(r, θ) and c(r, θ) are expanded
using the Karhunen-Loève expansion. Using finite number of
terms, each of the complex element matrices can be
expanded in a spectral series as

Ke(ω, θ) = K0e(ω) +

NK∑

j=1

ξKj
(θ)Kje(ω) (16)

Me(ω, θ) = M0e(ω) +

NM∑

j=1

ξMj
(θ)Mje(ω) (17)

and Ce(ω, θ) = C0e(ω) +

NC∑

j=1

ξCj
(θ)Cje(ω) (18)
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DSSFEM Formulation

Here the complex deterministic symmetric matrices, for example in the case of the stiffness
matrix, can be obtained as

K0e(ω) =

∫

De

ks0 (r)L2 {N(r, ω)}L2

{
N

T (r, ω)
}

dr and (19)

Kje(ω) =
√

λKj

∫

De

ϕKj
(r)L2 {N(r, ω)}L2

{
N

T (r, ω)
}

dr (20)

∀j = 1, 2, · · · , NK

The equivalent terms corresponding to the mass and damping matrices can be obtained in
a similar manner. Substituting the shape function one obtains

K0e(ω) = Γ(ω)K̃0e(ω)ΓT (ω) and (21)

Kje(ω) =
√

λKj
Γ(ω)K̃je(ω)ΓT (ω); ∀j = 1, 2, · · · , NK (22)
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DSSFEM Formulation

K̃0e(ω) =

∫

De

ks0 (r)L2 {s(r, ω)}L2

{
s
T (r, ω)

}
dr ∈ C

mm and (23)

K̃je(ω) =

∫

De

ϕKj
(r)L2 {s(r, ω)}L2

{
s
T (r, ω)

}
dr ∈ C

mm (24)

∀j = 1, 2, · · · , NK

The expressions of the eigenfunctions given in the previous section are valid within the
specific domains defined before. One needs to change the coordinate in order to use them
in the preceding equations. Once the element stiffness, mass and damping matrices are
obtained in this manner, the global matrices can be calculated by summing the element
matrices with suitable coordinate transformations as in the standard finite element method.
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Global matrices

Combining the element matrices one finally obtains
[
−ω2

M(ω, θ) + iωC(ω, θ) + K(ω, θ)
]
u(ω) = f(ω) (25)

where

K(ω, θ) = K0(ω) +

NK∑

j=1

ξKj
(θ)Kj(ω) (26)

M(ω, θ) = M0(ω) +

NM∑

j=1

ξMj
(θ)Mj(ω) (27)

and C(ω, θ) = C0(ω) +

NC∑

j=1

ξCj
(θ)Cj(ω) (28)
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Axially vibrating rod

The equation of motion of the stochastically inhomogeneous rod under axial motion is
given by

∂

∂x

[
AE(x, θ)

∂U

∂x

]
+ c0

∂U

∂t
− m(x, θ)

∂2U

∂t2
= 0 (29)

Here the axial rigidity AE(x) and the mass per unit length m(x) is assumed to be random
fields of the following form

AE(x, θ) = A0E0 [1 + ǫAEHAE(x, θ)] (30)

m(x) = m0(1 + ǫmHm(x, θ)) (31)

Here HAE(x, θ) and Hm(x, θ) are assumed to homogeneous Gaussian random fields with
zero mean and exponentially decaying autocorrelation function. The ’strength parameters’
ǫAE and ǫm effectively quantify the amount of uncertainty in the axial rigidity and mass per
unit length of the rod.

The numerical values are taken as ρ = 2700 kg/m3, E = 69 GPa (corresponding to
aluminium), length of the bar L = 30 m cross section A = 1 cm2, and ǫ1 = ǫ2 = 0.1.
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Axially vibrating rod

The constants A0E0 and m0 = A0ρ0 are respectively the mass per unit length and axial
rigidity of the underline baseline model. The equation of motion of the baseline model is
given by

A0ρ0
∂2U(x, t)

∂t2
+ c0

∂U

∂t
− A0E0

∂2U

∂x2
= 0 , (32)

where ρ0, E0, A0 and c0 are the nominal value of the density, elastic stiffness, cross
sectional area and damping factor within a domain x ∈ [0, L]. With spectral expansion of
the axial displacement U(x, t) in the frequency-wavenumber space, one has

U(x, t) =
(
ũ1e−ik0x/L + ũ2e−ik0(1−x/L)

)
eiωt = u(x)eiωt (33)

where i =
√
−1 and k0 is the non-dimensional wavenumber for the reference model:

k0 = ωL

√
ρ0

E0

√
1 − ic0

ωρ0
. (34)
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Axially vibrating rod

The shape function:

N(r, ω) = Γ(ω)s(r, ω), where s(r, ω) =





e−ik0x/L

eik0x/L





and Γ(ω) =
1

1 − e−i2k0


 1 −e−2ik0

−e−ik0 e−ik0




(35)

The deterministic part of the stiffness matrix:

K̃0e(ω) = A0E0

∫ L

0

{
∂s(x, ω)

∂x

} {
∂s(x, ω)

∂x

}T

dx (36)

=
A0E0k0

L



−1/2 i

(
−1 + e−2 ik0

)
k0

k0 1/2 i
(
e2 ik0 − 1

)


 (37)
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Axially vibrating rod

The deterministic part of the mass matrix:

M̃0e(ω) = m0

∫ L

0

s(x, ω)sT (x, ω)dx (38)

= m0L




1/2 i(−1+e−2 ik0)
k0

1

1
−1/2 i(e2 ik0−1)

k0


 (39)
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Standard deviation of Driving-point FRF
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Mean of a Cross-FRF
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Standard deviation of a Cross-FRF
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Euler-Bernoulli Beam

The equation of motion of an undamped Euler-Bernoulli beam of length L with random
bending stiffness and mass distribution can be expressed as

∂2

∂x2

[
EI(x, θ)

∂2Y (x, t)

∂x2

]
+ ρA(x, θ)

∂2Y (x, t)

∂t2
= p(x, t). (40)

Here Y (x, t) is the transverse flexural displacement, EI(x) is the flexural rigidity, ρA(x)= is
the mass per unit length, and p(x, t) is the applied forcing. It is assumed that the bending
stiffness, EI, and mass per unit length, ρA, are random fields of the form

EI(x, θ) = EI0 (1 + ǫ1F1(x, θ)) (41)

and ρA(x, θ) = ρA0 (1 + ǫ2F2(x, θ)) (42)

The random fields Fi(x, θ) are taken to have zero mean, unit standard deviation and
covariance Rij(ξ).

The numerical values are taken as ρ = 7800 kg/m3, E = 200 GPa (corresponding to
steel), length of the beam L = 1.65 m, rectangular cross section with width b = 40.06mm

and thickness 2.05mm, and ǫ1 = ǫ2 = 0.1.
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Standard deviation of Driving-point FRF
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Mean of a Cross-FRF
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Standard deviation of a Cross-FRF
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Conclusions

The basic principles for Doubly Spectral Stochastic Finite Element Method (DSSFEM) for
damped linear dynamical systems with distributed parametric uncertainty has been derived.

This new approach simultaneously utilizes the spectral representations in the frequency
and random domains. The spatial displacement fields are discretized using
frequency-adaptive complex shape functions while the spatial random fields are discretized
using the Karhunen-Loève expansion.

In spite of the fact that these two spectral approaches existed for well over three decades,
there has been very little overlap between them in literature. In this paper these two
spectral techniques have been unified with the aim that the unified approach would
outperform any of the spectral methods considered on its own.

The resulting frequency depended random element matrices in general turn out to be
complex symmetric matrices.

The main computational advantage of the proposed approach is that the fine spatial
discretisation will not be necessary for high and mid-frequency vibration analysis.

Numerical examples have been given to illustrate the applicability of the proposed method.
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