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Ensembles of structural dynamical systems

Many structural dynamic systems are manufactured in a production line (nominally identical sys-
tems)
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A complex structural dynamical system

Complex aerospace system can have millions of degrees of freedom and signifi-
cant ‘errors’ and/or ‘lack of knowledge’ in its numerical (Finite Element) model
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Sources of uncertainty

(a) parametric uncertainty - e.g., uncertainty in geometric
parameters, friction coefficient, strength of the materials involved;
(b) model inadequacy - arising from the lack of scientific
knowledge about the model which is a-priori unknown;
(c) experimental error - uncertain and unknown error percolate
into the model when they are calibrated against experimental
results;
(d) computational uncertainty - e.g, machine precession, error
tolerance and the so called ‘h’ and ‘p’ refinements in finite
element analysis, and
(e) model uncertainty - genuine randomness in the model such
as uncertainty in the position and velocity in quantum mechanics,
deterministic chaos.
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Overview of Random Eigenvalue Problems

EVP of Undamped or proportionally damped systems:

Kφj = λjMφj (1)

λj: Eigenvalue (natural frequency squared)
φj: Eigenvector (modeshape)
M &K are symmetric and P.D random matrices ⇒ λj real
and positive.

M = M + δM and K = K + δK. (2)

(•): Nominal (deterministic) of of (•)
δ(•): Random parts of (•).
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Randomness

M = M + δM and K = K + δK.

δM and δK are zero-mean random matrices.

Small randomness assumption that preserve symmetry and
P.D of M and M .

No assumptions on the type of randomness: need not be
Gaussian, for example

Fixed-Fixed beam with random placement of equal masses
gives δM 6= 0 δK = 0

Cantilever plate with random placement of random
oscillators gives δM 6= 0 δK 6= 0
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Fixed-Fixed Beam: Experiments

The test rig for the fixed-fixed beam
Actuator: Shaker, Sensors: Accelerometers
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Fixed-Fixed Beam: Experiments

Attached masses (magnets) at random locations.
12 masses, each weighting 2g, are used.
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Fixed-Fixed Beam: Properties

Beam Properties Numerical values

Length (L) 1200 mm
Width (b) 40.06 mm
Thickness (th) 2.05 mm
Mass density (ρ) 7800 Kg/m3

Young’s modulus (E) 2.0 × 105 MPa
Total weight 0.7687 Kg

Material and geometric properties of the beam.
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Shaker as an Impulse Hammer

pulse rate: 20s & pulse width: 0.01s. Eliminate input
uncertainties.

brass plate (2g) takes impact.
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Experiments: Protocol

Arrange the masses along the beam at random locations
(computer generated)

Measure impulse response at: 23 cm (Point1) 50 cm (Point2,
also the actuation point) and 102 cm (Point3) from the left
end of the beam in a 32 channel LMSTM system

Transform to frequency domain to estimate frequency
response function (FRF).

Curvefit the FRF to estimate the natural frequencies ωn and
damping factors Qn

Rational Fraction Polynomial (RFP) method
Nonlinear Leastsquares method

Calculate the statistics of natural frequencies
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Experiments: FRF at Point 1 (23 cm from the left end)
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Experiments: FRF at point 2 (the driving point FRF, 50

cm from the left end)
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Experiments: FRF at point 3 (102 cm from the left end)
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Ensemble Mean
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Standard Deviation
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PDFs
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Cantilever plate

The test rig for the cantilever plate: Front View
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Cantilever plate
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Cantilever plate: Properties

Plate Properties Numerical values

Length (L) 998 mm
Width (b) 530 mm
Thickness (th) 3.0 mm
Mass density (ρ) 7800 Kg/m3

Young’s modulus (E) 2.0 × 105 MPa
Total weight 12.38 Kg

Table 1: Material and geometric properties of the can-

tilever plate considered for the experiment
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Attached Oscillators

Attached oscillators at random locations. The spring stiffness varies so
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Properties of Attached Oscillators

Oscillator Number Spring stiffness (×10
4 N/m) Natural Frequency (Hz)

1 1.6800 59.2060

2 0.9100 43.5744

3 1.7030 59.6099

4 2.4000 70.7647

5 1.5670 57.1801

6 2.2880 69.0938

7 1.7030 59.6099

8 2.2880 69.0938

9 2.1360 66.7592

10 1.9800 64.2752

Table 2: Stiffness of the springs and natural frequency of the oscillators used to simulate
unmodelled dynamics (the mass of the each oscillator is 121.4g).
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Experiments: Protocol

Attach the oscillators at random locations (computer
generated)

Measure impulse response at: Point 1: (4,6), Point 2: (6,11),
Point 3: (11,3), Point 4: (14,14), Point 5: (18,2), Point 6:
(21,10)

Transform to frequency domain to estimate frequency
response function (FRF).

Curvefit the FRF to estimate the natural frequencies ωn and
damping factors Qn

Rational Fraction Polynomial (RFP) method
Nonlinear Leastsquares method

Calculate the statistics of natural frequencies
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Experiments: FRF at Point 1
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Experiments: FRF at point 3
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Ensemble Mean
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Standard Deviation

0 5 10 15 20 25 30 35

10
−1

10
0

10
1

10
2

10
3

Mode number

S
ta

nd
ar

d 
de

vi
at

io
n 

(H
z)

MCS
Response point 1
Response point 2
Response point 3

0 5 10 15 20 25 30 35

10
−1

10
0

10
1

10
2

10
3

Mode number
S

ta
nd

ar
d 

de
vi

at
io

n 
(H

z)

MCS
Response point 1
Response point 2
Response point 3

Left: RFP; Right: Nonlinear Least-squares

Palm Springs, CA, 6th May 2009 Random Eigenvalue Problems in Structural Dynamics – p.28/30



PDFs
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Conclusions

The ensemble statistics such as mean and standard
deviation for natural frequencies vary with the spatial
location of the measured FRFs and the type of the system
identification technique chosen to estimate the natural
frequencies.

Whilst a reasonable predictions for the mean and the
standard deviations may be obtained using the Monte Carlo
Simulation, higher moments, and hence the pdfs can be
significantly different.

In some cases, the differences in pdfs arising from different
points and different identification methods can be more than
those obtained from the Monte Carlo Simulation.
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