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Background

In many stochastic mechanics problems we need to solve a
system of linear stochastic equations:

Ku = f. (1)

K ∈ R
n×n is a n× n real non-negative definite random

matrix, f ∈ R
n is a n-dimensional real deterministic input

vector and u ∈ R
n is a n-dimensional real uncertain output

vector which we want to determine.

This typically arise due to the discretisation of stochastic
partial differential equations (eg. in the stochastic finite
element method)
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Background

In the context of linear structural mechanics, K is known as
the stiffness matrix, f is the forcing vector and u is the vector
of structural displacements.

Often, the objective is to determine the probability density
function (pdf) and consequently the cumulative distribution
function (cdf) of u. This will allow one to calculate the
reliability of the system.

It is generally difficult to obtain the probably density function
(pdf) of the response. As a consequence, engineers often
intend to obtain only the fist few moments (typically the fist
two) of the response quantity.
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Objectives

We propose a joint diagonalisation method for the solution of
stochastic linear systems.

The method is based on the recently developed joint
diagonalisation solution strategy and the Neumann
expansion of inverse matrix.

The joint diagonalisation method is applicable to stochastic
linear systems with arbitrary number of random variables
and has no registration on the type of probability distribution.
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Example of heterogeneous materials: 1D
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Example of heterogeneous materials: 2D

An example of heterogeneous property in two dimensions
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Discretisation of stochastic material parameters

middle point method

local averaging method

shape function method

least-squares discretization method

trigonometric series approximation

K-L expansion method

F-K-L expansion method
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Karhunen-Loève expansion

A second-order stochastic field can be represented as:

b (x, ω) = E (b (x, ω)) +

+∞
∑

i=1

√

λiξi (ω)ψi (x) (2)

The required eigen-structure is obtained through solving a
generalized eigen-value problem
∫

D

Cov (b (x1, ω) , b (x2, ω))ψ (x1) dx1 = λψ (x2) ⇒ Av = λBv

(3)
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Karhunen-Loève expansion

After sorting from high to low the eigen-values of stochastic
field, the K-L expansion is optimal in terms of approximation
of the total variance of the random material parameter

+∞
∑

i=1

λi =

∫

D

Cov (b (x, ω) , b (x, ω)) dx (4)
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Fourier-Karhunen-Loève expansion

For stationary stochastic fields in regular domains, the
Fourier-Karhunen-Loève expansion is developed by Li et
al.13,14 and by combining the representation theory of
stationary stochastic fields, the F-K-L result is much more
accurate and is obtained explicitly without solving any
equation.

a (x, ω) = ao (x) +

∫

Rn

e
√
−1xydZ (y, ω) (5)

f (y) =
1

(2π)n

∫

n

R (τ) e−
√
−1τydτ (6)

Palm Springs, CA, 5 May 2009 Simultaneous diagonalisation of stochastic systems – p.11/38



Current Approaches

The random matrix can be represented as

K = K0 + ∆K (7)

K0 ∈ R
n×n is the deterministic part and the random part:

∆K =

m
∑

j=1

ξjK
I
j +

m
∑

j=1

j
∑

l=1

ξjξlK
II
jl + · · · (8)

m is the number of random variables, KI
j ,K

II
jl ∈ R

n×n, ∀ j, l are
deterministic matrices and ξj , ∀ j are real random variables.
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Perturbation based approach

Represent the response as

u = u0 + ξju
I
j +

m
∑

j=1

j
∑

l=1

ξjξlu
II
jl + · · · . (9)

where

u0 = K0−1

f (10)

uI
j = −K0−1

KI
ju

0, ∀ j (11)

and uII
jl = −K0−1

[KII
jl u

0 + KI
ju

I
l + KI

l u
I
j ], ∀ j, l. (12)
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Neumann expansion

Provided
∥

∥

∥K
0−1

∆K

∥

∥

∥

F
< 1,

K−1 =
[

K0(In + K0−1

∆K)
]−1

= K0−1

− K0−1

∆KK0−1

+ K0−1

∆KK0−1

∆KK0−1

+ · · · .

Therefore,

u = K−1f = u0 − Tu0 + T2u0 + · · · (13)

where T = K0−1

∆K ∈ R
n×n is a random matrix.
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Projection methods

Here one ‘projects’ the solution vector onto a complete stochastic
basis. Depending on how the basis is selected, several methods
are proposed.
Using the classical Polynomial Chaos (PC) projection scheme

u =
P−1
∑

j=0

ujΨj(ξ) (14)

where uj ∈ R
n, ∀j are unknown vectors and Ψj(ξ) are

multidimensional Hermite polynomials in ξr.
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A partial summary

Methods Sub-methods

1. Perturbation First and second order perturbation 11,22,

based methods Neumann expansion 1,26,

improved perturbation method 3.

2. Projection methods Polynomial chaos expansion 7,

random eigenfunction expansion 1,

stochastic reduced basis method 16,18,19,

Wiener−Askey chaos expansion 23–25,

domain decomposition method 20,21.

3. Monte carlo simulation Simulation methods8,17,

and other methods Analytical method in references5,6,9,10,15,

Exact solutions for beams 2,4.
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Joint diagonalisation approach

We consider a stochastic linear system:

(K0 + ξ1(ω)K1 + ξ2(ω)K2 + · · · + ξm(ω)Km)u = f, (15)

where Kj, ∀ j are real symmetric deterministic matrices and
ξj(ω), ∀ j are real random variables.

The above stochastic linear system is commonly obtained in
a SFEM formulation after discretising the random material
parameters with the K-L (or F-K-L) expansion method.
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Joint diagonalisation approach

By using a sequence of Givens transformations, stiffness
matrices Kj can be simultaneously diagonalised such that

Q−1KjQ = Λj + ∆j ≈ Λj, j = 1, 2, · · · ,m (16)

where Λj, ∀ j are diagonal matrices and ∆j, ∀ j are matrices with
zero diagonal entries and small magnitude off-diagonal entries.
The transform matrix Q is explicitly obtained as the product of the
Givens rotation matrices

Q = GT
1 GT

2 · · ·GT
k (17)

where k is the total number of Givens transformations and Gj, ∀ j
are Givens rotation matrices
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Givens rotation matrix

G = G (p, q, θ)
∆
=

p q

p

q
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Optimal Givens rotation angle

For n× n real symmetric matrices Kl let

off(Kl)
∆
=

n
∑

i=1

n
∑

j=1
j 6=i

(Kl)
2
ij (l = 1, · · · ,m) (19)

denote the quadratic sums of off-diagonal elements in Kl. The

aim here is to gradually reduce
m
∑

l=1

off(Kl) through a sequence of

orthogonal similarity transformations that have no effect on
‖Kl‖F , the Frobenius norm of Kl.
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Optimal Givens rotation angle

The optimal Givens rotation angle θopt that in the current iteration
maximizes the diagonal entries and minimizes the off-diagonal
entries can be accurately obtained by solving the following
characteristic equation

(cos 2θopt sin 2θopt)
T
J = λJ (cos 2θopt sin 2θopt)

T (20)

where J is a two by two matrix given by

J =
m

∑

j=1





2 (Kj)
2
pq

(Kj)pq

(

(Kj)qq
− (Kj)pp

)

(Kj)pq

(

(Kj)qq
− (Kj)pp

)

1
2

(

(Kj)qq
− (Kj)pp

)2





(21)
and λJ is the smallest eigen-value of J.
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Joint diagonalisation solution

In the original joint diagonalisation solution, the off-diagonal
entries ∆j, ∀ j are completely ignored and this significantly
simplifies the random equation system which in turn leads to an
explicit solution

u ≈ Q(Λ0 + ξ1(ω)Λ1 + · · · + ξm(ω)Λm)−1
Q−1f (22)

This work propose to take into consideration the contribution from
the off-diagonal matrices ∆j, ∀ j. Specifically

Q

[

(Λ0 +
m

∑

j=1

ξj(ω)Λj) + (∆0 +
m

∑

j=1

ξj(ω)∆j)

]

Q−1u = f. (23)
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Improved joint diagonalisation solution

Let

V = Λ0 +

m
∑

j=1

ξj(ω)Λj and A = ∆0 +

m
∑

j=1

ξj(ω)∆j (24)

the solution can be expressed as

u = Q
[

V(In + V−1A)
]−1

Q−1f (25)

Noting that matrix V is a diagonal matrix whose inverse can be
explicitly obtained, the above expression can be further simplified
by using the Neumann expansion as

u = Q
[

V−1 − (V−1A)V−1 + (V−1A)2V−1 − · · ·
]

Q−1f. (26)
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Summary of the joint diagonalisation approach

The joint diagonalisation approach is applicable to any real
symmetric matrices. The response statistics for static (or
steady-state) stochastic systems can be obtained by following
these steps:

Discretise the random material parameters by using the
F-K-L expansion scheme

In space dimension, discretise the unknown field with finite
element mesh

Following a standard finite element formulation procedure
and taking into consideration the F-K-L expansion of random
material parameters, construct the stochastic linear system
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Summary of the joint diagonalisation approach

Approximate joint diagonalisation of all matrices in the
stochastic linear system

Check in turn all the off-diagonal entries in matrices Kj

and find an entry (p, q) , p 6= q such that
m
∑

j=1

(Kj)
2
pq

6= 0.

For every entry (p, q) satisfying the above condition,
compute the optimal Givens rotation angle θopt

Apply Givens similarity transformation to all the matrices
Repeat the above procedure until the process converges
below the given threshold

For a specific realization of random variables ξj(ω), ∀ j and
by using Neumann expansion, the response vector u is
obtained
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Heat conduction of a concrete pipe
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Heat conduction of a concrete pipe
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Heat conduction of a concrete pipe
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Heat conduction of a concrete pipe
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Heat conduction of a concrete pipe
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Heat conduction of a concrete pipe
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Plain strain analysis of a tunnel model

A tunnel model and its boundary conditions
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Plain strain analysis of a tunnel model

The first term in the F-K-L expansion
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Plain strain analysis of a tunnel model

The 25th term in the F-K-L expansion
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Plain strain analysis of a tunnel model

A specific realization of the random Young’s modulus
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Plain strain analysis of a tunnel model

Principle stress distribution - σ1

Palm Springs, CA, 5 May 2009 Simultaneous diagonalisation of stochastic systems – p.36/38



Plain strain analysis of a tunnel model

Principle stress distribution - σ2
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Summary

For the solution of static and steady-state problems of random
media, this paper presents an improved joint diagonalisation
solution framework.

The random medial properties are discretised by using the
Fourier-Karhunen-Loève expansion scheme.

The resulting stochastic linear system is solved by using the
improved joint diagonalization method, in which

A Jacobi-like algorithm is developed to jointly diagonalise
multiple real-symmetric matrices

The Neumann expansion is used to account for small
off-diagonal entries and obtain accurate solutions.
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