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The role of uncertainty in science based predictions
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Sources of uncertainty

(a) parametric uncertainty - e.g., uncertainty in geometric
parameters, friction coefficient, strength of the materials involved;
(b) model inadequacy - arising from the lack of scientific
knowledge about the model which is a-priori unknown;
(c) experimental error - uncertain and unknown error percolate
into the model when they are calibrated against experimental
results;
(d) computational uncertainty - e.g, machine precession, error
tolerance and the so called ‘h’ and ‘p’ refinements in finite
element analysis, and
(e) model uncertainty - genuine randomness in the model such
as uncertainty in the position and velocity in quantum mechanics,
deterministic chaos.
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Problem-types in computational science

Input System Output Problem name Main techniques

Known (deter-
ministic)

Known (deter-
ministic)

Unknown Analysis (forward
problem)

FEM/BEM/Finite
difference

Known (deter-
ministic)

Incorrect (deter-
ministic)

Known (deter-
ministic)

Updating/calibration Modal updating

Known (deter-
ministic)

Unknown Known (deter-
ministic)

System identifica-
tion

Kalman filter

Assumed (de-
terministic)

Unknown (de-
terministic)

Prescribed Design Design optimisa-
tion

Unknown Partially Known Known Structural Health
Monitoring (SHM)

SHM methods

Known (deter-
ministic)

Known (deter-
ministic)

Prescribed Control Modal control

Known (ran-
dom)

Known (deter-
ministic)

Unknown Random vibration Random vibration
methods
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Problem-types in computational science

Input System Output Problem name Main techniques

Known (deter-
ministic)

Known (ran-
dom)

Unknown Stochastic analysis
(forward problem)

SFEM/SEA/RMT

Known (ran-
dom)

Incorrect (ran-
dom)

Known (ran-
dom)

Probabilistic updat-
ing/calibration

Bayesian calibra-
tion

Assumed (ran-
dom/deterministic)

Unknown (ran-
dom)

Prescribed (ran-
dom)

Probabilistic de-
sign

RBOD

Known (ran-
dom/deterministic)

Partially known
(random)

Partially known
(random)

Joint state and pa-
rameter estimation

Particle Kalman
Filter/Ensemble
Kalman Filter

Known (ran-
dom/deterministic)

Known (ran-
dom)

Known from
experiment and
model (random)

Model validation Validation meth-
ods

Known (ran-
dom/deterministic)

Known (ran-
dom)

Known from dif-
ferent computa-
tions (random)

Model verification verification meth-
ods
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UQ approaches: key challenges

The main difficulties are:

the computational time can be prohibitively high compared to
a deterministic analysis for real problems,

the volume of input data can be unrealistic to obtain for a
credible probabilistic analysis,

the predictive accuracy can be poor if considerable
resources are not spend on the previous two items, and

the need for general purpose software tools: as the
state-of-the art methodology stands now (such as the
Stochastic Finite Element Method), only very few highly
trained professionals (such as those with PhDs) can even
attempt to apply the complex concepts (e.g., random fields)
and methodologies to real-life problems.
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Main objectives

Our work is aimed at developing methodologies [the 10-10-10
challenge] with the ambition that they should:

not take more than 10 times the computational time required
for the corresponding deterministic approach;

result a predictive accuracy within 10% of direct Monte Carlo
Simulation (MCS);

use no more than 10 times of input data needed for the
corresponding deterministic approach; and

enable ‘normal’ engineering graduates to perform
probabilistic structural dynamic analyses with a reasonable
amount of training.
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Outline of the presentation

Uncertainty Quantification (UQ) in structural dynamics

Review of current approaches

Parametric approach: stochastic finite element
Spectral approach
Gaussian emulator

Non-parametric approach: Wishart random matrices
Parameter selection
Computational method

Experimental results

Conclusions & future directions
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Current UQ approaches - 1

Two different approaches are currently available

Parametric approaches : Such as the Stochastic Finite
Element Method (SFEM):

aim to characterize parametric uncertainty (type ‘a’)
assumes that stochastic fields describing parametric
uncertainties are known in details
suitable for low-frequency dynamic applications
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Current UQ approaches - 2

Nonparametric approaches : Such as the Statistical Energy
Analysis (SEA) and Wishart random matrix theory:

aim to characterize nonparametric uncertainty (types ‘b’ -
‘e’)
does not consider parametric uncertainties in details
suitable for high/mid-frequency dynamic applications
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Random continuous dynamical systems

The equation of motion:

ρ(r, θ)
∂2U(r, t)

∂t2
+L1

∂U(r, t)

∂t
+L2U(r, t) = p(r, t); r ∈ D, t ∈ [0, T ]

(1)

U(r, t) is the displacement variable, r is the spatial position vector
and t is time.

ρ(r, θ) is the random mass distribution of the system, p(r, t)

is the distributed time-varying forcing function, L1 is the
random spatial self-adjoint damping operator, L2 is the
random spatial self-adjoint stiffness operator.

Eq (1) is a Stochastic Partial Differential Equation (SPDE)
[ie, the coefficients are random processes].
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Stochastic Finite Element Method

Problems of structural dynamics in which the uncertainty in specifying mass and stiffness of the
structure is modeled within the framework of random fields can be treated using the Stochastic
Finite Element Method (SFEM). The application of SFEM in linear structural dynamics typically
consists of the following key steps:

1. Selection of appropriate probabilistic models for parameter uncertainties and boundary
conditions

2. Replacement of the element property random fields by an equivalent set of a finite number
of random variables. This step, known as the ‘discretisation of random fields’ is a major
step in the analysis.

3. Formulation of the equation of motion of the form D(ω)u = f where D(ω) is the random
dynamic stiffness matrix, u is the vector of random nodal displacement and f is the applied
forces. In general D(ω) is a random symmetric complex matrix.

4. Calculation of the response statistics by either (a) solving the random eigenvalue problem,
or (b) solving the set of complex random algebraic equations.
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Spectral Decomposition of random fields-1

Just like the displacement fields (or any other continuous
state variables) in the deterministic FEM, in SFEM we need
to discretise the random fields appearing in the governing
SPDE.

Various approaches (mid-point method, collocation method,
weighted integral approach etc) have been proposed in
literature.

Here we use the spectral decomposition of random fields
due to its useful mathematical properties (eg, orthogonal
eigenfunctions, mean-square convergence etc).
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Spectral Decomposition of random fields-2

Suppose H(r, θ) is a random field with a covariance function CH(r1, r2) defined in a space Ω.
Since the covariance function is finite, symmetric and positive definite it can be represented by a
spectral decomposition. Using this spectral decomposition, the random process H(r, θ) can be
expressed in a generalized fourier type of series as

H(r, θ) = H0(r) +
∞∑

i=1

√
λiξi(θ)ϕi(r) (2)

where ξi(θ) are uncorrelated random variables, λi and ϕi(r) are eigenvalues and eigenfunctions
satisfying the integral equation

∫

Ω

CH(r1, r2)ϕi(r1)dr1 = λiϕi(r2), ∀ i = 1, 2, · · · (3)

The spectral decomposition in equation (2) is known as the Karhunen-Loève (KL) expansion. The
series in (2) can be ordered in a decreasing series so that it can be truncated after a finite number
of terms with a desired accuracy.
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Exponential autocorrelation function

The autocorrelation function:

C(x1, x2) = e−|x1−x2|/b (4)

The underlying random process H(x, θ) can be expanded using the Karhunen-Loève expansion in
the interval −a ≤ x ≤ a as

H(x, θ) =

∞∑

n=1

[
ξn

√
λnϕn(x) + ξ∗n

√
λ∗

nϕ∗
n(x)

]
. (5)

The corresponding eigenvalues and eigenfunctions:

λn =
2c

ω2
n + c2

; ϕn(x) =
cos(ωnx)√

a +
sin(2ωna)

2ωn

and tan(ωa) =
c

ω
; for even n (6)

λ∗
n =

2c

ω∗
n

2 + c2
; ϕ∗

n(x) =
sin(ω∗

nx)√
a −

sin(2ω∗
na)

2ω∗
n

and tan(ω∗a) =
ω∗

−c
; for odd n (7)
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Triangular autocorrelation function

The autocorrelation function:

C(x1, x2) = 1 − d|x1 − x2|; |x1 − x2| ∈ [0,
1

d
]. (8)

The underlying random process H(x, θ) can be expanded using the Karhunen-Loève expansion
(5) and the eigenvalues and eigenfunctions in the interval 0 ≤ x ≤ a:

λn =
2d

ω2
n

; ϕn(x) =
cos(ωnx)√

a

2
+

sin(2ωna)

2ωn

and tan(
ωna

2
) =

2

ωn( 2
d
− a)

; for even n

λ∗
n =

2d

ω∗2
n

; ϕ∗
n(x) =

cos(ωnx) + tan(
ω∗

na

2
) sin(ω∗

nx)
√

a + (tan2(
ω∗

na

2
) − 1)(

a

2
−

sin(2ω∗
na)

4ω∗
n

) +
sin2(ω∗

na)

ω∗
n

tan(
ω∗

na

2
)

and ω∗
n = n

π

a
; for odd n (9)
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Spectral Stochastic Finite Element Method (SSFEM)

Like the classical finite element method, suppose that frequency-dependent displacement within
an element is interpolated from the nodal displacements as

ue(r, ω) = N
T (r, ω)ûe(ω) (10)

Here ûe(ω) ∈ C
n is the nodal displacement vector and N(r, ω) ∈ C

n, the vector of
frequency-dependent shape functions and n is the number of the nodal degrees-of-freedom.
Suppose the sj(r, ω) ∈ C, j = 1, 2, · · ·m (m is the order of the equation) are the basis functions
which satisfy the governing differential equation in the frequency domain. It can be shown that the
shape function vector can be expresses as

N(r, ω) = Γ(ω)s(r, ω) (11)

where the vector s(r, ω) = {sj(r, ω)}T ,∀ j ∈ C
m and the complex matrix Γ(ω) ∈ C

nm depends

on the boundary conditions.
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Stochastic element matrices-1

Using the weak-form, the frequency depended random stiffness, mass and damping matrices can
be obtained as

Ke(ω, θ) =

∫

De

k(r, θ)L2 {N(r, ω)}L2

{
N

T (r, ω)
}

dr ∈ C
nn (12)

Me(ω, θ) =

∫

De

ρ(r, θ)N(r, ω)NT (r, ω)dr ∈ C
nn (13)

and Ce(ω, θ) =

∫

De

c(r, θ)L1 {N(r, ω)}L1

{
N

T (r, ω)
}

dr ∈ C
nn (14)

Where, (•)T denotes Hermitian transpose, k(r, θ) is the random distributed stiffness parameter,
L2{•} is the strain energy operator, c(r, θ) is the random distributed damping parameter and
L1{•} is the energy dissipation operator. The random fields k(r, θ), ρ(r, θ) and c(r, θ) should be
expanded using the Karhunen-Loève expansion.
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Stochastic element matrices-2

Using finite number of terms, each of the complex element matrices can be expanded in a spectral
series as

Ke(ω, θ) = K0e(ω) +

NK∑

j=1

ξKj
(θ)Kje(ω), Me(ω, θ) = M0e(ω) +

NM∑

j=1

ξMj
(θ)Mje(ω)

(15)

and Ce(ω, θ) = C0e(ω) +

NC∑

j=1

ξCj
(θ)Cje(ω) (16)

The complex deterministic matrices can be obtained as (the stiffness matrix is shown only)

K0e(ω) =

∫

De

k0(r)L2 {N(r, ω)}L2

{
N

T (r, ω)
}

dr ∈ C
nn (17)

and Kje(ω) =
√

λKj

∫

De

ϕKj
(r)L2 {N(r, ω)}L2

{
N

T (r, ω)
}

dr ∈ C
nn; ∀j = 1, 2, · · · , NK

(18)
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Stochastic element matrices-3

Substituting the shape functions one obtains

K0e(ω) = Γ(ω)K̃0e(ω)ΓT (ω) (19)

and Kje(ω) =
√

λKj
Γ(ω)K̃je(ω)ΓT (ω); ∀j = 1, 2, · · · , NK (20)

where a

K̃0e(ω) =

∫

De

k0(r)L2 {s(r, ω)}L2

{
s
T (r, ω)

}
dr ∈ C

mm (21)

and K̃je(ω) =

∫

De

ϕKj
(r)L2 {s(r, ω)}L2

{
s
T (r, ω)

}
dr ∈ C

mm; ∀j = 1, 2, · · · , NK

(22)

apaper under review in AIAA
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Parametric uncertainly quantification-1

Global matrices can be assembled using the element
matrices following the usual method. Each global matrix has
a general series form involving random variables:

G(θ) = G0(ω) +

NG∑

j=1

ξGj
(θ)Gj(ω)

If the original random fields are Gaussian, then the resulting
random matrices will be Gaussian random matrices.

Efficient computational approaches are needed for
stochastic analysis of discrete dynamical systems.
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Parametric uncertainly quantification-2

Complex engineering dynamical systems with parametric
uncertainty are investigated running computer codes (e.g,
with Monte Carlo Simulation), also known as simulators.

A simulator is a function η(·) that, given an input x, it
produces an output y.

Sophisticated simulators can have a high cost of execution.
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Emulator - 1

A possible solution is to build an emulator of the expensive
simulator.

An emulator is a statistical approximation to the simulator,
i.e., it provides a probability distribution for η(·).

Emulators have already been implemented in a number of
fields, which include:

Environmental science (Challenor et al., 2006)

Climate modeling (Rougier, 2007)
Medical science (Haylock and O’Hagan, 1996)
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Emulator - 2

An emulator is built by first choosing n design points in the
input domain of the simulator and obtaining the training set
{η(x1), . . . , η(xn)}.

After that initial choice is made, an emulator should:

Reproduce the known output at any design point.

At any untried input, provide a distribution whose mean
value constitutes a plausible interpolation of the training
data. The probability distribution around this mean value
should also express the uncertainty about how the
emulator might interpolate.
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Emulator: simple example - 1

To illustrate what do the above criteria mean, an emulator
was constructed to approximate the simple simulator
y = cos(x).

In the following figures, the solid line is the true output of the
simulator. The circles represent the training runs, and the
dots are the mean of the distribution provided by the
emulator, which is the approximation.

Note how the approximation improves when more design
points are chosen.
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Emulator: simple example - 2
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Emulator: simple example - 3
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Emulator: simple example - 4

In the same way, the following figures show upper and lower
probability bounds of two standard deviations for the mean
of the emulator. The solid line is the true output of the
simulator. The circles represent the training runs, and the
dots are the bounds.

Note how the uncertainty about the approximation is reduces
as more design points are chosen.
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Emulator: simple example - 5
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Emulator: simple example - 6
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Application: experimentally measured FRF of a plate
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Stochastic Finite Element (SFE) problems

A random field H(x, θ) can be discretized using the
Karhunen-Loève (KL) expansion as

H(x, θ) = µ(x) +
M∑

i=1

√
λiξi(θ)φi(x) (23)

Using this, the system equation can be represented as

[K0 +
M∑

i=0

Kiξ(θ)]u = f (24)

where each Ki is a deterministic matrix.
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Simulation of random field - 1
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Simulation of random field - 2
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Emulation of the values of H(x, θ) at the nodal points. The initial design is shown
lying on the lower plane.
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Simulation of random field - 3
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Computational effort

No. Nodes Time (secs.) Direct Time (secs.) Emulator

121 9.56 0.07

256 19.92 0.24

441 34.43 0.75

961 76.23 6.05

1681 131.29 17.76

2601 273.18 59.66

Number of nodes vs. CPU time employed for a typical sample of the random field
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Emulator: Future works

Parametric eigenvalue problem:
Express the eigenvalues of interest by emulator
(probabilistic response surface)
Exploit explicit parametric sensitivity expressions

Representation of stochastic response field:
Monte Carlo simulation using emulator
polynomial chaos representation by emulator

Domain decomposition and substructure approach
Possibility of parallel and high-performance computing
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Non-parametric approaches
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Random discrete dynamical systems

The equation of motion:

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (25)

Due to the presence of (parametric/nonparametric or both)
uncertainty M, C and K become random matrices.

The main objectives in the ‘forward problem’ are:
to quantify uncertainties in the system matrices
to predict the variability in the response vector q

Probabilistic solution of this problem is expected to have
more credibility compared to a deterministic solution
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Random Matrix Method (RMM)

The objective : To have an unified method which will work
across the frequency range.

The methodology :

Derive the matrix variate probability density functions of
M, C and K a

Propagate the uncertainty (using Monte Carlo simulation
or analytical methods) to obtain the response statistics
(or pdf)

a
AIAA Journal, 45[7] (2007), pp. 1748-1762
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Matrix variate distributions

The probability density function of a random matrix can be
defined in a manner similar to that of a random variable.

If A is an n × m real random matrix, the matrix variate
probability density function of A ∈ Rn,m, denoted as pA(A),
is a mapping from the space of n × m real matrices to the
real line, i.e., pA(A) : Rn,m → R.
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Gaussian random matrix

The random matrix X ∈ Rn,p is said to have a matrix variate
Gaussian distribution with mean matrix M ∈ Rn,p and covariance
matrix Σ ⊗ Ψ, where Σ ∈ R

+
n and Ψ ∈ R

+
p provided the pdf of X

is given by

pX (X) = (2π)−np/2det {Σ}−p/2 det {Ψ}−n/2

etr

{
−

1

2
Σ−1(X − M)Ψ−1(X − M)T

}
(26)

This distribution is usually denoted as X ∼ Nn,p (M,Σ ⊗ Ψ).
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Wishart matrix

A n × n symmetric positive definite random matrix S is said to
have a Wishart distribution with parameters p ≥ n and Σ ∈ R

+
n , if

its pdf is given by

pS (S) =

{
2

1
2
np Γn

(
1

2
p

)
det {Σ}

1
2
p

}−1

|S|
1
2
(p−n−1)etr

{
−

1

2
Σ−1S

}

(27)

This distribution is usually denoted as S ∼ Wn(p,Σ).

Note: If p = n + 1, then the matrix is non-negative definite.
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Matrix variate Gamma distribution

A n × n symmetric positive definite matrix random W is said to
have a matrix variate gamma distribution with parameters a and
Ψ ∈ R

+
n , if its pdf is given by

pW (W) =
{
Γn (a) det {Ψ}−a}−1

det {W}a− 1
2
(n+1) etr {−ΨW} ; ℜ(a)

(28)

This distribution is usually denoted as W ∼ Gn(a,Ψ). Here the
multivariate gamma function:

Γn (a) = π
1
4
n(n−1)

n∏

k=1

Γ

[
a −

1

2
(k − 1)

]
; forℜ(a) > (n − 1)/2 (29)
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Wishart random matrix approach

The probability density function of the mass (M), damping
(C) and stiffness (K) matrices should be such that they are
symmetric and non-negative matrices.

Wishart random matrix (a non-Gaussian matrix) is the
simplest mathematical model which can satisfy these two
criteria: [M,C,K] ≡ G ∼ Wn(p,Σ).

Suppose we ‘know’ (e.g, by measurement or stochastic
modeling) the mean (G0) and the (normalized) standard
deviation (σG) of the system matrices:

σ2
G =

E
[
‖G − E [G] ‖2

F

]

‖E [G] ‖2
F

. (30)
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Wishart parameter selection - 1

The parameters p and Σ can be obtained based on what criteria
we select. We investigate four possible choices.

1. Criteria 1 (proposed by Soize, 2000): E [G] = G0 and
σG = σ̃G which results

p = n + 1 + θ and Σ = G0/p (31)

θ = (1 + β)/σ̃2
G − (n + 1), β = {Trace (G0)}

2 /Trace
(
G0

2
)
.

2. Criteria 2: ‖G0 − E [G]‖F and
∥∥G0

−1 − E
[
G−1

]∥∥
F

are
minimum and σG = σ̃G. This results:

p = n + 1 + θ and Σ = G0/α (32)

where α =
√

θ(n + 1 + θ).
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Wishart parameter selection - 2

1. Criteria 3: E
[
G−1

]
= G0

−1 and σG = σ̃G. This results:

p = n + 1 + θ and Σ = G0/θ (33)

2. Criteria 4: The mean of the eigenvalues of the distribution is
same as the ‘measured’ eigenvalues of the mean matrix and
the (normalized) standard deviation is same as the
measured standard deviation:

E
[
M−1

]
= M0

−1, E [K] = K0, σM = σ̃M and σK = σ̃K .

(34)
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A cantilever plate: front view

The test rig for the cantilever plate; front view (to appear in Probabilistic Engineer-
ing Mechanics).
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A cantilever plate: side view

The test rig for the cantilever plate; side view.
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Physical properties

Plate Properties Numerical values

Length (Lx) 998 mm

Width (Ly) 530 mm

Thickness (th) 3.0 mm

Mass density (ρ) 7860 kg/m3

Young’s modulus (E) 2.0 × 105 MPa

Poisson’s ratio (µ) 0.3

Total weight 12.47 kg
Material and geometric properties of the cantilever plate considered
for the experiment. The data presented here are available from
http://engweb.swan.ac.uk/∼adhikaris/uq/.
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Mean of cross-FRF
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Mean of the amplitude of the response of the cross-FRF of the plate, n = 1200,
σM = 0.1326 and σK = 0.3335.
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Error in the mean of cross-FRF
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Error in the mean of the amplitude of the response of the cross-FRF of the plate,
n = 1200, σM = 0.1326 and σK = 0.3335.
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Standard deviation of driving-point-FRF
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Standard deviation of the amplitude of the response of the driving-point-FRF of
the plate, n = 1200, σM = 0.1326 and σK = 0.3335.
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Error in the standard deviation of driving-point-FRF
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Main observations

Error in the low frequency region is higher than that in the
higher frequencies a

In the high frequency region all methods are similar

Overall, parameter selection 3 performs best; especially in
the low frequency region.

a
to appear in ASCE J. of Engineering Mechanics
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Standard deviation: low frequency
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Standard deviation of the amplitude of the response of the driving-point-FRF of
the plate in the low frequency region, n = 1200, σM = 0.1326 and σK = 0.3335.
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Error in the standard deviation: low frequency
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point-FRF of the plate in the low frequency region, n = 1200, σM = 0.1326 and
σK = 0.3335.
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FE model of the cantilever plate
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Baseline Model: 25 × 15 elements, 416 nodes, 1200 degrees-of-freedom. Input
node number: 481, Output node numbers: 481, 877, 268, 1135, 211 and 844,
0.7% modal damping is assumed for all modes a.

ato appear in Journal of Sound and Vibration
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Comparison of driving-point-FRF
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Comparison of the mean and standard deviation of the amplitude of the driving-
point-FRF, n = 1200, δM = 0.1166 and δK = 0.2711. (dash and dot lines are
from experiment)
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Comparison of driving-point-FRF: Low Freq
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Comparison of the mean and standard deviation of the amplitude of the driving-
point-FRF, n = 1200, δM = 0.1166 and δK = 0.2711. (dash and dot lines are
from experiment)
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Comparison of cross-FRF
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Comparison of the mean and standard deviation of the amplitude of the cross-
FRF, n = 1200, δM = 0.1166 and δK = 0.2711. (dash and dot lines are from
experiment)
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Comparison of cross-FRF: Low Freq
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Random matrix approach: Future works

Random matrix inversion based computational method:
utilize analytical inverted matrix variate probability
density functions for response moment calculation
explore different random matrix parameter fitting options

Random eigenvalue based computational method:
utilize eigensolution density function of Wishart matrices
in response statistics calculation
simple analytical expressions via asymptotic approach
applicable for large systems

Non-central Wishart matrices and beta distribution:
better approximation of the covariance of the system
matrices
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Conclusions

Uncertainties need to be taken into account for credible
predictions using computational methods.

This talk concentrated on Uncertainty Quantification (UQ) in
structural dynamic problems.

Two different approaches are discussed:
non-parametric uncertainty problem: → Wishart random matrix method

parametric uncertainty problem: → Gaussian emulator method, stochastic spectral
finite element method

A general UQ approach based on Wishart random matrix is
discussed and the results are compared with experimental
results.
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Future directions-1

Model calibration/updating (data assimilation): taking model
and measurement uncertainties into account

Model validation and predictive capability assessment: how
good are our model prediction when very little or no data is
available to validate them?
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Future directions-2

High performance computing for uncertain systems: how the
UQ approaches can be integrated with high performance
computing? This is becoming a very important issue due the
availability of relatively inexpensive ‘clusters’ (open research
area!).

UQ in other areas such as fluid-structure interaction
problems, electromagnetism, smart systems - how some of
the proposed techniques might be integrated -
multidisciplinary collaborative works.
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