
Response Variability of Viscoelastically Damped
Systems

S Adhikari & B P Oliver

School of Engineering, Swansea University, Swansea, UK

Email: S.Adhikari@swansea.ac.uk

URL: http://engweb.swan.ac.uk/∼adhikaris

ICNPAA, Genoa, 25 June 2008 Viscoelastically damped systems – p.1/30

http://www.swan.ac.uk/engineering/
http://www.swan.ac.uk
mailto:S.Adhikari@swansea.ac.uk?subject=Enquiry regarding your paper
http://engweb.swan.ac.uk/~adhikaris


Outline of the presentation

Overview of viscoelastically damped systems

Eigensolutions
State-space approach
Approximate methods in N-space

Dynamic response calculation

Parametric sensitivity of eigensolutions

Parametric sensitivity of dynamic response

Numerical results

Conclusions

ICNPAA, Genoa, 25 June 2008 Viscoelastically damped systems – p.2/30



Damping models

Viscous damping is the most widely used damping model for
complex aerospace dynamic systems.

In general a physically realistic model of damping may not
be a viscous damping model.

Damping models in which the dissipative forces depend on
any quantity other than the instantaneous generalized
velocities are non-viscous (e.g., viscoelastic) damping
models.

Possibly the most general way to model damping within the
linear range is to use non-viscous damping models which
depend on the past history of motion via convolution
integrals over kernel functions.
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Equation of motion

The equations of motion of a N -DOF linear system:

Mü(t) +

∫ t

0

G(t − τ) u̇(τ) dτ + Ku(t) = f(t) (1)

together with the initial conditions

u(t = 0) = u0 ∈ R
N and u̇(t = 0) = u̇0 ∈ R

N . (2)

u(t): displacement vector, f(t): forcing vector, M,K: mass and
stiffness matrices.

In the limit when G(t−τ) = C δ(t−τ), where δ(t) is the Dirac-delta

function, this reduces to viscous damping.
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Damping functions - 1

Model Damping function Author and year of publication

Number

1 G(s) =
∑n

k=1

aks

s + bk
Biot[1] - 1955

2 G(s) =
E1sα − E0bsβ

1 + bsβ
(0 < α, β < 1) Bagley and Torvik[2] - 1983

3 sG(s) = G∞

[

1 +
∑

k αk
s2 + 2ξkωks

s2 + 2ξkωks + ω2

k

]

Golla and Hughes[3] - 1985

and McTavish and Hughes[4] - 1993

4 G(s) = 1 +
∑n

k=1

∆ks

s + βk
Lesieutre and Mingori[5] - 1990

5 G(s) = c
1 − e−st0

st0
Adhikari[6] - 1998

6 G(s) =
c

st0

1 + 2(st0/π)2 − e−st0

1 + 2(st0/π)2
Adhikari[6] - 1998

7 G(s) = c es2/4µ

[

1 − erf

(

s

2
√

µ

)]

Adhikari and Woodhouse[7] - 2001

Some damping functions in the Laplace domain.
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Damping functions - 2

We use a damping model for which the kernel function
matrix:

G(t) =

n
∑

k=1

µke
−µktCk (3)

The constants µk ∈ R
+ are known as the relaxation

parameters and n denotes the number relaxation
parameters.

When µk → ∞,∀ k this reduces to the viscous damping
model:

C =

n
∑

k=1

Ck. (4)
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Non-linear Eigenvalue Problem

The eigenvalue problem associated with a linear system with
exponential damping model:

[

s2
jM + sj

n
∑

k=1

µk

sj + µk

Ck + K

]

zj = 0, for j = 1, · · · ,m.

(5)

Two types of eigensolutions:

2N complex conjugate solutions -
underdamped/vibrating modes

p real solutions [p =
∑n

k=1 rank (Ck)] - overdamped
modes
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State-space Approach - 1

The equation of motion can be transformed to (m = 2N + nN ) dimensional system

B ż(t) = A z(t) + r(t) (6)

B =

























n
∑

k=1

Ck M −C1/µ1 · · · −Cn/µn

M O O O O

−C1/µ1 O C1/µ2

1
O O

... O O
. . . O

−Cn/µn O O O Cn/µ2
n

























, r(t) =











































f(t)

0

0

...

0











































(7)

A =
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O M O O O

O O −C1/µ1 O O

O O O
. . . O

O O O O −Cn/µn























, z(t) =











































u(t)

v(t)

y1(t)

...

yn(t)











































(8)
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State-space Approach - 2

The eigenvalue problem in the sate-space is given by

A zj = λjB zj (9)

The ‘size’ of the eigenvalue problem is (2N + nN )-dimensional.

although exact in nature, the state-space approach is
computationally very intensive for real-life systems;

the physical insights offered by methods in the original space
(eg, the modal analysis) is lost in a state-space based
approach
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Approximate eigensolutions

If ωj and xj are the undamped natural frequency and mode
shape of the system satisfying Kxj = ω2

jMxj, the eigenvalues of
the viscoelastically damped system obtained using the first-order
perturbation method:

sj ≈ iωj − G′
jj(iωj)/2, −iωj − G′

jj(−iωj)/2. (10)

Similarly, the eigenvectors are given by

zj ≈ xj −
N

∑

k=1

k 6=j

sjG
′
kj(sj)xk

ω2
k + s2

j + sjG′
kk(sj)

. (11)
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Dynamic Response - 1

Taking the Laplace transform of the equation of motion and
considering the initial conditions we have

s2Mq̄ − sMq0 − Mq̇0 + sG(s)q̄− G(s)q0 + Kq̄ = f̄(s)

or D(s)q̄ = f̄(s) + Mq̇0 + [sM + G(s)]q0.

The dynamic stiffness matrix is defined as

D(s) = s2M + sG(s) + K ∈ C
N×N . (12)

The inverse of the dynamics stiffness matrix, known as the
transfer function matrix, is given by

H(s) = D−1(s) ∈ C
N×N . (13)
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Dynamic Response - 2

Using the residue-calculus, the transfer function matrix can be
expressed like a viscously damped system as

H(s) =
m

∑

j=1

Rj

s − sj

; Rj =
res

s=sj
[H(s)] =

zjz
T
j

zT
j

∂D(sj)

∂sj
zj

(14)

where m is the number of non-zero eigenvalues (order) of the
system, sj and zj are respectively the eigenvalues and
eigenvectors of the system, which are solutions of the non-linear
eigenvalue problem

[s2
jM + sj G(sj) + K]zj = 0, for j = 1, · · · ,m (15)
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Dynamic Response - 3

The expression of H(s) allows the response to be expressed as
modal summation as

q̄(s) =
m

∑

j=1

γj

zT
j f̄(s) + zT

j Mq̇0 + szT
j Mq0 + zT

j G(s)q0(s)

s − sj

zj (16)

where the normalization constant

γj =
1

zT
j

∂D(sj)

∂sj
zj

. (17)

We use the approximate eigensolutions in the ‘N’-space.
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Dynamic Response - 4

The response in the time domain can be obtained by taking the
inverse transform:

q(t) = L−1[q̄(s)] =
m

∑

j=

γjaj(t)zj (18)

where the time-dependent scalar coefficients (for t > 0)

aj(t) =

∫ t

0

esj(t−τ)
{

zT
j f(τ) + zT

j G(τ)q0

}

dτ+esjt
{

zT
j Mq̇0 + sjz

T
j Mq0

}

.

(19)

ICNPAA, Genoa, 25 June 2008 Viscoelastically damped systems – p.14/30



Response variability: Direct approach

The dynamic response in the Laplace domain:

q̄(s) = D−1(s)p̄(s) (20)

where

D(s) = s2M + s
n

∑

k=1

µk

s + µk

Ck + K (21)

p̄(s) = f̄(s) + Mq̇0 + [sM + G(s)]q0. (22)

Suppose the system matrices are functions of some design

parameter p. We want to obtain
∂q̄(s)

∂p
.
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Response variability: Direct approach

Differentiating the equation of motion in the Laplace domain

∂q̄(s)

∂p
=

∂D−1(s)

∂p
p̄(s) + D−1(s)

∂p̄(s)

∂p
(23)

Using the direct approach,

∂D−1(s)

∂p
= D−1(s)

∂D(s)

∂p
D−1(s) (24)

where

∂D(s)

∂p
= s2 ∂M

∂p
+ s

∂

∂p

{

n
∑

k=1

µk

s + µk

Ck

}

+
∂K

∂p
(25)
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Response variability: Modal approach

D−1(s) =

m
∑

j=1

Rj

s − sj
; Rj =

zjz
T
j

θj
(26)

Using the modal approach,

∂D−1(s)

∂p
=

m
∑

j=1

∂Rj

∂p

s − sj

−
Rj

(s − sj)2

∂sj

∂p
(27)

∂Rj

∂p
=

(

∂zj

∂p
zT

j + zj
∂zj

∂p

T )

/θj (28)
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Eigensolution derivative

It can be shown that (Adhikari: AIAA Journal, 40[10] (2002), pp.
2061-2069)

∂sj

∂p
= −

1

θj

(

zT
j

∂D(s)

∂p
|s=sj

zj

)

. (29)

∂zj

∂p
= ajjzj −

m
∑

k=1

k 6=j

uT
k

∂D(s)

∂p
|s=sj

zj

θk(sj − λk)
uk (30)

where

ajj = −

zT
j

∂2[D(s)]

∂s ∂p
|s=sj

zj

2

(

zT
j

∂D(s)

∂s
|s=sj

zj

) . (31)
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Example of a 2 DOF system

km m

k2

1 2

g(t)k1

3

The two degrees-of-freedom spring-mass system with non-viscous damping,
m = 1 Kg, k1 = 1000 N/m, k3 = 100 N/m, g(t) = c

(

µ1e−µ1t + µ2e−µ2t
)

,
c = 4.0 Ns/m, µ1 = 10.0 s−1, µ2 = 2.0 s−1
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Example: system matrices

M =





m 0

0 m



 , K =





k1 + k3 −k3

−k3 k2 + k3



 (32)

and

G(t) = g(t)Î, where Î =





1 −1

−1 1



 . (33)

The damping function g(t) is assumed to be the GHM model[3, 4]
so that

g(t) = c
(

µ1e
−µ1t + µ2e

−µ2t
)

; c, µ1, µ2 ≥ 0, (34)
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System matrix derivative

We consider the derivative of eigenvalues with respect to the
relaxation parameter µ1. The derivative of the system matrices:

∂M

∂µ1

= O,
∂G(s)

∂µ1

= Î
c s

(s + µ1)
2 and

∂K

∂µ1

= O. (35)

Thus we have

∂G(s)

∂s
= −Îc

{

µ1

(s + µ1)
2 +

µ2

(s + µ2)
2

}

∂2[G(s)]

∂s ∂µ1

= −Îc
s − µ1

(s + µ1)
3 .

(36)
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Numerical Results
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Numerical Results
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Numerical Results
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Numerical Results
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Numerical Results
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Numerical Results
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Conclusions - 1

Multiple degree-of-freedom linear systems with viscoelastic
damping is considered.

The transfer function matrix of the system was derived in
terms of the eigenvalues and eigenvectors of the
second-order system.

The eigensolutions are obtained using an approximate
perturbation method (although an exact but computationally
more expensive state-space method can be used).
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Conclusions - 2

Parametric sensitivity of the dynamic response was derived
using two approaches - namely the direct approach and
modal approach.

The direct approach is easy to implement but
computationally expensive as one has to differentiate the
dynamic stiffness matrix at every frequency point.

The modal approach utilizes derivatives of the complex
eigensolutions and generally computationally more efficient.
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Future Directions

The results derived here extend the equivalent results
available for viscously damped systems. The expressions
can be useful to any problems which require parametric
sensitivity information. Such problems include (a)
probabilistic analysis, (b) optimal design, (c) model updating
and system identification

Future work will look into (a) sensitivity of transient dynamic
response of viscoelastically damped systems in the time
domain (this problem has relevance to vehicle noise
reduction), and (b) joint sensitivity analysis of multiple
parameters.
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