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Complex aerospace system

Complex aerospace system can have millions of degrees of freedom and signifi-
cant uncertainty in its numerical (Finite Element) model
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The role of uncertainty in computational science
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Sources of uncertainty

(a) parametric uncertainty - e.g., uncertainty in geometric
parameters, friction coefficient, strength of the materials involved;
(b) model inadequacy - arising from the lack of scientific
knowledge about the model which is a-priori unknown;
(c) experimental error - uncertain and unknown error percolate
into the model when they are calibrated against experimental
results;
(d) computational uncertainty - e.g, machine precession, error
tolerance and the so called ‘h’ and ‘p’ refinements in finite
element analysis, and
(e) model uncertainty - genuine randomness in the model such
as uncertainty in the position and velocity in quantum mechanics,
deterministic chaos.
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Problem-types in computational sciences

Input System Output Problem name Main techniques

Known (deter-
ministic)

Known (deter-
ministic)

Unknown Analysis (forward
problem)

FEM/BEM/Finite
difference

Known (deter-
ministic)

Incorrect (deter-
ministic)

Known (deter-
ministic)

Updating/calibration Modal updating

Known (deter-
ministic)

Unknown Known (deter-
ministic)

System identifica-
tion

Kalman filter

Assumed (de-
terministic)

Unknown (de-
terministic)

Prescribed Design Design optimisa-
tion

Unknown Partially Known Known Structural Health
Monitoring (SHM)

SHM methods

Known (deter-
ministic)

Known (deter-
ministic)

Prescribed Control Modal control

Known (ran-
dom)

Known (deter-
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Unknown Random vibration Random vibration
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Problem-types in computational sciences

Input System Output Problem name Main techniques

Known (deter-
ministic)

Known (ran-
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Unknown Stochastic analysis
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Partially known
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Particle Kalman
Filter/Ensemble
Kalman Filter
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dom/deterministic)

Known (ran-
dom)
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Model validation Validation methods

Known (ran-
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Known (ran-
dom)

Known from dif-
ferent computa-
tions (random)

Model verification verification meth-
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Structural dynamics

The equation of motion:

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (1)

Due to the presence of (parametric/nonparametric or both)
uncertainty M, C and K become random matrices.

The main objectives in the ‘forward problem’ are:
to quantify uncertainties in the system matrices
to predict the variability in the response vector q

Probabilistic solution of this problem is expected to have
more credibility compared to a deterministic solution
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UQ approaches: challenges

The main difficulties are due to:

the computational time can be prohibitively high compared to
a deterministic analysis for real problems,

the volume of input data can be unrealistic to obtain for a
credible probabilistic analysis,

the predictive accuracy can be poor if considerable
resources are not spend on the previous two items, and

as the state-of-the art methodology stands now (such as the
Stochastic Finite Element Method), only very few highly
trained professionals (such as those with PhDs) can even
attempt to apply the complex concepts (e.g., random fields)
and methodologies to real-life problems.
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Main objectives

Our work is aimed at developing methodologies [the 10-10-10
challenge] with the ambition that they should:

not take more than 10 times the computational time required
for the corresponding deterministic approach;

result a predictive accuracy within 10% of direct Monte Carlo
Simulation (MCS);

use no more than 10 times of input data needed for the
corresponding deterministic approach; and

enable ‘normal’ engineering graduates to perform
probabilistic structural dynamic analyses with a reasonable
amount of training.
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Current UQ approaches - 1

Two different approaches are currently available

Parametric approaches : Such as the Stochastic Finite
Element Method (SFEM):

aim to characterize parametric uncertainty (type ‘a’)
assumes that stochastic fields describing parametric
uncertainties are known in details
suitable for low-frequency dynamic applications
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Current UQ approaches - 2

Nonparametric approaches : Such as the Statistical Energy
Analysis (SEA) and Wishart random matrix theory:

aim to characterize nonparametric uncertainty (types ‘b’ -
‘e’)
does not consider parametric uncertainties in details
suitable for high/mid-frequency dynamic applications
extensive works over the past decade → general
purpose commercial software is now available
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Random Matrix Method (RMM)

The objective : To have an unified method which will work
across the frequency range.

The methodology :

Derive the matrix variate probability density functions of
M, C and K

Propagate the uncertainty (using Monte Carlo simulation
or analytical methods) to obtain the response statistics
(or pdf)
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Matrix variate distributions

The probability density function of a random matrix can be
defined in a manner similar to that of a random variable.

If A is an n × m real random matrix, the matrix variate
probability density function of A ∈ Rn,m, denoted as pA(A),
is a mapping from the space of n × m real matrices to the
real line, i.e., pA(A) : Rn,m → R.
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Gaussian random matrix

The random matrix X ∈ Rn,p is said to have a matrix variate
Gaussian distribution with mean matrix M ∈ Rn,p and covariance
matrix Σ ⊗ Ψ, where Σ ∈ R

+
n and Ψ ∈ R

+
p provided the pdf of X

is given by

pX (X) = (2π)−np/2det {Σ}−p/2 det {Ψ}−n/2

etr

{
−

1

2
Σ−1(X − M)Ψ−1(X − M)T

}
(2)

This distribution is usually denoted as X ∼ Nn,p (M,Σ ⊗ Ψ).

ICNPAA, Genoa, 26 June 2008 UQ of complex systems – p.15/44



Wishart matrix

A n × n symmetric positive definite random matrix S is said to
have a Wishart distribution with parameters p ≥ n and Σ ∈ R

+
n , if

its pdf is given by

pS (S) =

{
2

1

2
np Γn

(
1

2
p

)
det {Σ}

1

2
p

}−1

|S|
1

2
(p−n−1)etr

{
−

1

2
Σ−1S

}

(3)

This distribution is usually denoted as S ∼ Wn(p,Σ).

Note: If p = n + 1, then the matrix is non-negative definite.
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Matrix variate Gamma distribution

A n × n symmetric positive definite matrix random W is said to
have a matrix variate gamma distribution with parameters a and
Ψ ∈ R

+
n , if its pdf is given by

pW (W) =
{
Γn (a) det {Ψ}−a}−1

det {W}a− 1

2
(n+1) etr {−ΨW} ; ℜ(a)

(4)

This distribution is usually denoted as W ∼ Gn(a,Ψ). Here the
multivariate gamma function:

Γn (a) = π
1

4
n(n−1)

n∏

k=1

Γ

[
a −

1

2
(k − 1)

]
; forℜ(a) > (n − 1)/2 (5)
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Wishart random matrix approach

The probability density function of the mass (M), damping
(C) and stiffness (K) matrices should be such that they are
symmetric and non-negative matrices.

Wishart random matrix (a non-Gaussian matrix) is the
simplest mathematical model which can satisfy these two
criteria: [M,C,K] ≡ G ∼ Wn(p,Σ).

Suppose we ‘know’ (e.g, by measurement or stochastic
modeling) the mean (G0) and the (normalized) standard
deviation (σG) of the system matrices:

σ2

G
=

E
[
‖G − E [G] ‖2

F

]

‖E [G] ‖2

F

. (6)
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Wishart parameter selection - 1

The parameters p and Σ can be obtained based on what criteria
we select. We investigate four possible choices.

1. Criteria 1: E [G] = G0 and σG = σ̃G which results

p = n + 1 + θ and Σ = G0/p (7)

where θ = (1 + β)/σ̃2
G − (n + 1) and

β = {Trace (G0)}
2 /Trace

(
G0

2
)
.

2. Criteria 2: ‖G0 − E [G]‖F and
∥∥G0

−1 − E
[
G−1

]∥∥
F

are
minimum and σG = σ̃G. This results:

p = n + 1 + θ and Σ = G0/α (8)

where α =
√

θ(n + 1 + θ).
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Wishart parameter selection - 2

1. Criteria 3: E
[
G−1

]
= G0

−1 and σG = σ̃G. This results:

p = n + 1 + θ and Σ = G0/θ (9)

2. Criteria 4: The mean of the eigenvalues of the distribution is
same as the ‘measured’ eigenvalues of the mean matrix and
the (normalized) standard deviation is same as the
measured standard deviation:

E
[
M−1

]
= M0

−1, E [K] = K0, σM = σ̃M and σK = σ̃K .

(10)
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A cantilever plate: front view

The test rig for the cantilever plate; front view.
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A cantilever plate: side view

The test rig for the cantilever plate; side view.
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Physical properties

Plate Properties Numerical values

Length (Lx) 998 mm

Width (Ly) 530 mm

Thickness (th) 3.0 mm

Mass density (ρ) 7860 kg/m3

Young’s modulus (E) 2.0 × 105 MPa

Poisson’s ratio (µ) 0.3

Total weight 12.47 kg
Material and geometric properties of the cantilever plate considered
for the experiment. The data presented here are available from
http://engweb.swan.ac.uk/∼adhikaris/uq/.
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Mean of cross-FRF
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Mean of the amplitude of the response of the cross-FRF of the plate, n = 1200,
σM = 0.1326 and σK = 0.3335.
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Error in the mean of cross-FRF
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Mean of Driving-point-FRF
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Mean of the amplitude of the response of the driving-point-FRF of the plate, n =

1200, σM = 0.1326 and σK = 0.3335.
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Error in the Mean of Driving-point-FRF
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Standard Deviation of Cross-FRF
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Standard deviation of the amplitude of the response of the cross-FRF of the plate,
n = 1200, σM = 0.1326 and σK = 0.3335.
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Error in the Standard Deviation of Cross-FRF
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Standard deviation of driving-point-FRF
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Standard deviation of the amplitude of the response of the driving-point-FRF of
the plate, n = 1200, σM = 0.1326 and σK = 0.3335.
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Error in the standard deviation of driving-point-FRF
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Main observations

Error in the low frequency region is higher than that in the
higher frequencies

In the high frequency region all methods are similar

Overall, parameter selection 3 performs best; especially in
the low frequency region.
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Standard deviation: low frequency
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Standard deviation of the amplitude of the response of the driving-point-FRF of
the plate in the low frequency region, n = 1200, σM = 0.1326 and σK = 0.3335.
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Error in the standard deviation: low frequency
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Finite element & Wishart matrix model
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Comparison of driving-point-FRF
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Comparison of the mean and standard deviation of the amplitude of the driving-
point-FRF, n = 1200, δM = 0.1166 and δK = 0.2711.
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Comparison of driving-point-FRF: Low Freq
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Comparison of the mean and standard deviation of the amplitude of the driving-
point-FRF, n = 1200, δM = 0.1166 and δK = 0.2711.
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Comparison of driving-point-FRF: Mid Freq
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point-FRF, n = 1200, δM = 0.1166 and δK = 0.2711.
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Comparison of driving-point-FRF: High Freq
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Comparison of cross-FRF
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Comparison of cross-FRF: Low Freq
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Comparison of cross-FRF: Mid Freq
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Comparison of cross-FRF: High Freq
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Conclusions

When uncertainties in the system parameters (parametric
uncertainty) and modelling (nonparametric uncertainty) are
considered, the discretized equation of motion of linear
dynamical systems is characterized by random mass,
stiffness and damping matrices.

Wishart matrices may be used as the model for the random
system matrices in structural dynamics.

Only the mean matrix and normalized standard deviation is
required to model the system.

Our results show that experimental results and Wishart
matrix based results match well in the mid and high
frequency region.
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