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Introduction

Complex engineering dynamical systems are
often investigated running computer codes, also
known as simulators (O’Hagan, 2006).

A simulator is a function η(·) that, given an input
x, it produces an output y.

Sophisticated simulators can have a high cost
of execution, measured in terms of:

CPU time employed

Floating point operations performed

Computer capability required
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Introduction

A possible solution is to build an emulator of the
expensive simulator.

An emulator is a statistical approximation to the
simulator, i.e., it provides a probability
distribution for η(·).

Emulators have already been implemented in a
number of fields, which include:

Environmental science (Challenor et al., 2006)

Climate modeling (Rougier, 2007)

Medical science (Haylock and O’Hagan, 1996)
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Introduction

In Structural Dynamics, an example of an
expensive simulator is a high-resolution finite
element model, which can be difficult to run
even for obtaining a dynamic response at few
frequency points.

Emulation can thus be a useful computational
tool to be implemented in a Structural Dynamics
context.
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Introduction

To test the convenience of the use of emulators
for studying engineering dynamical systems,
the following problems will be addressed:

1. Computational cost. Can the output of a computer
code be approximated using only a few trial runs?

2. Efficiency. Can the number of floating point
operations in an expensive code be reduced but still
produce a satisfactory output?

3. Interpolation of experimental data. Can experimental
data be confidently interpolated to cope with the lack
of a mathematical/computer model?
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Emulators

An emulator is built by first choosing n design
points in the input domain of the simulator and
obtaining the training set {η(x1), . . . , η(xn)}.

After that initial choice is made, an emulator
should:

Reproduce the known output at any design point.

At any untried input, provide a distribution whose
mean value constitutes a plausible interpolation of the
training data. The probability distribution around this
mean value should also express the uncertainty
about how the emulator might interpolate.
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Emulators

To illustrate what do the above criteria mean, an
emulator was constructed to approximate the
simple simulator y = cos(x).

In the following figures, the solid line is the true
output of the simulator. The circles represent
the training runs, and the dots are the mean of
the emulator, which provides the approximation.

Note how the approximation improves when
more design points are chosen.
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Emulators

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Simulator Input, x

S
im

ul
at

or
 O

ut
pu

t, 
y

Figure 1: Approximation using 5 design points.
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Figure 2: Approximation using 7 design points.
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Emulators

In the same way, the following figures show
upper and lower probability bounds of two
standard deviations for the mean of the
emulator. The solid line is the true output of the
simulator. The circles represent the training
runs, and the dots are the bounds.

Note how the uncertainty about the
approximation is reduces as more design points
are chosen.
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Emulators
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Figure 3: Uncertainty using 5 design points.
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Figure 4: Uncertainty using 7 design points.
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Emulators

From the perspective of Bayesian Statistics, η(·)
is a random variable in the sense that it is
unknown until the simulator is run.

Assume that η(·) deviates from the mean of its
distribution in the following way

η(x) =
n∑

j=1

βjhj(x) + Z(x) (1)

where for all j, hj(x) is a known function and βj

is an unknown coefficient.
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Emulators

The function Z(·) in Eq.(1) is assumed to be a
Gaussian stochastic process (GP) with mean
zero and covariance given by

Cov(η(x), η(x
′

)) = σ2e−(x−x
′

)T B(x−x
′

) (2)

where B is a positive definite diagonal matrix
that contains smoothness parameters.

If the mean of η(·) is of the form m(·) = h(·)Tβ

then η(·) has a GP distribution with mean m(·)
and covariance given by Eq.(2).
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Emulators

The latter is symbolized as

η(·)|β, σ2 ∼ N(h(·)Tβ, σ2C(·, ·)) (3)

This prior distribution contains subjective
information about the relation of the input and
the unknown output . The next step is to update
this belief by adding objective information,
represented by the vector of observations
y = [y1 = η(x1), . . . , yn = η(xn)]

T .
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Emulators

Using standard integration techniques, it can be
shown (Haylock and O’Hagan, 1996) that such
update is

η(·)|y, σ2 ∼ N(m∗∗(·), σ2C∗∗(·, ·)) (4)

where m∗∗(·) constitutes the fast approximation
of η(x) for any x in the input domain.

Moreover, it can be shown that

η(x) − m∗∗(x)

σ̂

√
(n−q−2)C∗∗(x)

n−q

∼ tn−q (5)
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Structural Dynamics

Consider the problem of modeling the response
of a structural system to different frequency
ranges of vibration.

To obtain the corresponding Frequency
Response Function (FRF), the following
equation of motion must be solved:

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (6)

where K, C and M ∈ R
N×N are respectively the

stiffness, damping and mass matrices, f(t) is
the forcing vector and q(t) the response vector.
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Structural Dynamics

Equation(6) can be solved in terms of the
excitation frequency level, ω ∈ [0, ...,∞), as

q(ω) = [−ω2M + iωC + K]−1f(ω) (7)

where q(ω) and f(ω) are the Fourier transforms
of q(t) and f(t). Since it is a complex-valued
function, the relevant simulator becomes:

η(ω) =
∣∣∣[−ω2M + iωC + K]−1f(ω)

∣∣∣ (8)
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Structural Dynamics

To emulate the FRF expressed in Eq.(8), the
following algorithm is proposed.
1. Select n initial frequency values ω1, . . . , ωn.

2. Obtain the vector of observations
y = [y1 = η(ω1), . . . , y

n
= η(ωn)]T .

3. Update the prior distribution (3), which contains
subjective information, by adding the objective
information y. This will enable the calculation of
m∗∗(·), the mean of the updated posterior distribution
(4) given the data y. As already mentioned, such
mean constitutes an approximation of η(ω) for any ω.
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Structural Dynamics

For a damped three-degree-of-freedom
spring-mass system, it can be shown that the
FRF for k fixed is

η(ω) =
3∑

j=1

x̃T

j f̄(iω)
√

(ω2
j − ωj)2 + (2ωωjζj)2

x̃kj (9)

where k = 1, . . . , 3 and for all j, ωj are the
natural frequencies, x̃j are the normal modes
and ζj are the damping ratios.
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Applications

In the figure below, the mass of each block is 1
kg and the stiffness of each spring is 1 N/m.
The viscous damping constant of the damper
associated with each block is 0.2 Ns/m.
Suppose he dynamic response when only the
first mass is subjected to unit initial
displacement is to be obtained.

m m m

k k

u1 u2 u3

k k

ccc
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Applications

Twenty-one equally-spaced design points were
selected and the smoothness parameters
calculated. The above algorithm was then
applied to construct the corresponding emulator
for the FRF.

The results for k = 1 are shown below. As
before, the circles represent the training runs,
the dots represent the mean emulator and the
uncertainty bounds respectively, and the solid
line is the true value of the simulator.
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Applications
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Figure 5: Approximation using 21 design points.
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Applications
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Figure 6: Uncertainty using 21 design points.
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Applications

Unfortunately, Eq.(8) cannot always be solved
analytically. Furthermore, a simulator can be
very expensive to run for real-life engineering
applications, v.g., modeling the response of an
aircraft, or parts of it, to vibration.

The potential use of intensive computation is a
suitable scenario to apply emulators.

The following figures refer to a realization of a
simulator (Adhikari et al., 2007) of the frequency
response of a steel plate with a fixed edge.
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Figure 7: Simulator of the FRF of a steel plate subject to vibration.
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Applications

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8
−0.5

0

0.5

1

6

4

X direction (length)

5

Outputs

2

3

Input

1

Y direction (width)

Fixed edge

Figure 8: The plate is divided into 25 × 15 elements, resulting in 1200 DOF.
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Applications

To test the potential application of emulation to
engineering dynamical systems, the input
domain of the previously shown simulator was
divided in low (0-1 kHz), medium (1-2.5 kHz)
and high (2.5-4 kHz) frequency ranges.

The following figure shows a comparison
between selecting a different number of design
points to approximate the response of node 1 to
vibration in the medium-frequency range. Note
how the approximation is improved, the more
design points are used.
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Applications
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Figure 9: Emulation with 25, 50, 75 and 100 design points, mid-freq range.
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Applications

One hundred equally-spaced design points
were selected in each range, upon which an
emulator was constructed to infer the value of
the output at untried inputs. The results for the
mean of the emulator in the different frequency
ranges and the corresponding probability
bounds are shown in the following figures.
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Figure 10: Emulation of the response of node 1, low-frequency range.
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Figure 11: Emulation of the response of node 1, medium-frequency range.

Schaumburg, Illinois, 10 April 2008 Bayesian Emulators for Dynamical Systems – p.33/44



Applications

2500 3000 3500 4000
−20

−10

0

10

20

30

40

50

Frequency,Hz

Lo
g 

am
pl

itu
de

, d
B

2500 3000 3500 4000
−20

−10

0

10

20

30

40

50

Frequency,Hz
Lo

g 
am

pl
itu

de
, d

B

Figure 12: Emulation of the response of node 1, high-frequency range.
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Applications

A setup in which there is no simulator available,
due perhaps to the lack of knowledge of the
physics of the system, was also considered.

To approximate the response function of a plate
subject to vibration, an experiment (Adhikari et
al., 2007) was performed.

The physical and geometrical properties of the
plate are shown in the following table.
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Applications

Figure 13: Experimental setup
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Applications

Plate Properties Numerical values
Length 998 mm
Width 530 mm
Thickness 3.0 mm
Mass density 7860 kg/m3

Young’s modulus 2.0 × 105 MPa
Poisson’s ratio 0.3
Total weight 12.47 kg

Table 1: Material and geometric properties of the plate considered for the experiment.
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Applications

In an experimental context like the one
described, there would only be real
measurements available.

These measurements would act as the training
runs and emulation should be applied the same
way as in the previous cases. This would
reduce the number of experimental runs
necessary to obtain an empirical FRF.

The results of doing so for the referred
experiment are shown below, for every
frequency range.
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Figure 14: Emulation of the response of node 1, low-frequency range. The initial design

is based on experimental measurements.
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Figure 15: Emulation of the response of node 1, medium-frequency range. The initial

design is based on experimental measurements.
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Figure 16: Emulation of the response of node 1, high-frequency range. The initial design

is based on experimental measurements.
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Conclusions

Computer codes for structural dynamics can
become very expensive to run, as the number
of degrees of freedom in the system increases.

The use of emulators has been proposed, since
they provide a fast approximation to the output
of the original code using in only a few training
runs.

With regards to computational cost, an emulator
for a simple spring-mass system with three
degrees of freedom was constructed to
illustrate how the mean of the emulator
approximates the FRF.
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Conclusions

Regarding efficiency, the dynamic response of
a system with 1200 degrees of freedom was
emulated using only 300 training runs, thus
reducing the number of necessary floating point
operations. The results were particularly
appealing for the medium and high-frequency
ranges.

To interpolate experimental data, real
measurements were used as the set of training
runs necessary to construct an emulator and
the real experimental output was compared with
the corresponding approximation.
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