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Damping models

In general a physically realistic model of
damping may not be a viscous damping model.

Damping models in which the dissipative forces
depend on any quantity other than the
instantaneous generalized velocities are
non-viscous damping models.

Possibly the most general way to model
damping within the linear range is to use
non-viscous damping models which depend on
the past history of motion via convolution
integrals over kernel functions.
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Equation of motion

The equations of motion of a N -DOF linear system:

Mü(t) +

∫ t

0

G(t − τ) u̇(τ) dτ + Ku(t) = f(t) (1)

together with the initial conditions

u(t = 0) = u0 ∈ R
N and u̇(t = 0) = u̇0 ∈ R

N . (2)

u(t): displacement vector, f(t): forcing vector, M,K: mass
and stiffness matrices.

In the limit when G(t − τ) = C δ(t − τ), where δ(t) is the Dirac-

delta function, this reduces to viscous damping.
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Damping functions - 1

Model Damping function Author and year of publication

Number

1 G(s) =
∑n

k=1

aks

s + bk
Biot[1] - 1955

2 G(s) =
E1sα − E0bsβ

1 + bsβ
(0 < α, β < 1) Bagley and Torvik[2] - 1983

3 sG(s) = G∞

[

1 +
∑

k αk
s2 + 2ξkωks

s2 + 2ξkωks + ω2
k

]

Golla and Hughes[3] - 1985

and McTavish and Hughes[4] - 1993

4 G(s) = 1 +
∑n

k=1

∆ks

s + βk
Lesieutre and Mingori[5] - 1990

5 G(s) = c
1 − e−st0

st0
Adhikari[6] - 1998

6 G(s) =
c

st0

1 + 2(st0/π)2 − e−st0

1 + 2(st0/π)2
Adhikari[6] - 1998

7 G(s) = c es2/4µ

[

1 − erf

(

s

2
√

µ

)]

Adhikari and Woodhouse[7] - 2001

Some damping functions in the Laplace domain.
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Damping functions - 2

We use a damping model for which the kernel function
matrix:

G(t) =
n

∑

k=1

µke
−µktCk (3)

The constants µk ∈ R
+ are known as the relaxation

parameters and n denotes the number relaxation
parameters.

When µk → ∞,∀ k this reduces to the viscous damping
model:

C =
n

∑

k=1

Ck. (4)
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State-space Approach

Eq (1) can be transformed to

B ż(t) = A z(t) + r(t) (5)

where the m (m = 2N + nN ) dimensional matrices and vectors are:

B =

























n
∑

k=1

Ck M −C1/µ1 · · · −Cn/µn

M O O O O

−C1/µ1 O C1/µ2
1 O O

... O O
. . . O

−Cn/µn O O O Cn/µ2
n

























, r(t) =











































f(t)

0

0

...

0











































(6)

A =























−K O O O O

O M O O O

O O −C1/µ1 O O

O O O
. . . O

O O O O −Cn/µn























, z(t) =











































u(t)

v(t)

y1(t)

...

yn(t)











































(7)
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Main issues

The main reasons for not using a frequency dependent
non-viscous damping model include, but not limited to:

although exact in nature, the state-space approach
usually needed for this type of damped systems is
computationally very intensive for real-life systems;

the physical insights offered by methods in the original
space (eg, the modal analysis) is lost in a state-space
based approach

the experimental identification of the parameters of a
frequency dependent damping model is difficult.
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Dynamic Response - 1

Taking the Laplace transform of equation (1) and considering
the initial conditions in (2) we have

s2Mq̄ − sMq0 − Mq̇0 + sG(s)q̄ − G(s)q0 + Kq̄ = f̄(s)

or D(s)q̄ = f̄(s) + Mq̇0 + [sM + G(s)]q0.

The dynamic stiffness matrix is defined as

D(s) = s2M + sG(s) + K ∈ C
N×N . (8)

The inverse of the dynamics stiffness matrix, known as the
transfer function matrix, is given by

H(s) = D−1(s) ∈ C
N×N . (9)
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Dynamic Response - 2

Using the residue-calculus the transfer function matrix can be
expressed like a viscously damped system as

H(s) =
m

∑

j=1

Rj

s − sj

; Rj =
res

s=sj
[H(s)] =

zjz
T
j

zT
j

∂D(sj)

∂sj
zj

(10)

where m is the number of non-zero eigenvalues (order) of the
system, sj and zj are respectively the eigenvalues and
eigenvectors of the system, which are solutions of the
non-linear eigenvalue problem

[s2
jM + sj G(sj) + K]zj = 0, for j = 1, · · · ,m (11)
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Dynamic Response - 3

The expression of H(s) allows the response to be expressed
as modal summation as

q̄(s) =
m

∑

j=1

γj

zT
j f̄(s) + zT

j Mq̇0 + szT
j Mq0 + zT

j G(s)q0(s)

s − sj

zj

(12)

where

γj =
1

zT
j

∂D(sj)

∂sj
zj

. (13)

We aim to derive the eigensolutions in ‘N’-space by solving
the non-linear eigenvalue problem.
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Non-linear Eigenvalue Problem

The eigenvalue problem associated with a linear system
with exponential damping model:
[

s2
jM + sj

n
∑

k=1

µk

sj + µk

Ck + K

]

zj = 0, for j = 1, · · · ,m.

(14)

Two types of eigensolutions:

2N complex conjugate solutions -
underdamped/vibrating modes

p real solutions [p =
∑n

k=1 rank (Ck)] - overdamped
modes
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Non-linear Eigenvalue Problem

The following four cases are considered:

single-degree-of-freedom system with single exponential
kernel (N = 1, n = 1)

single-degree-of-freedom system with multiple
exponential kernels (N = 1, n > 1)

multiple-degree-of-freedom system with single
exponential kernel (N > 1, n = 1)

multiple-degree-of-freedom system with multiple
exponential kernels (N > 1, n > 1)
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SDOF systems

Computational cost and other relevant issues identified
before do not strictly affect the eigenvalue problem of a
single-degree-of-freedom system (SDOF) with
exponential damping.

The main reason for considering a SDOF system is that
in many cases the underlying approximation method can
be extended to MDOF systems in a relatively
straight-forward manner.
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Complex-conjugate solutions

The main motivation of the approximations is that the
approximate solution can be ‘constructed’ from the
solution of equivalent viscously damped system.

The solution of equivalent viscously damped system can
in turn be expressed in terms of the undamped
eigensolutions.

Combining these together, one can therefore obtain the
eigensolutions of frequency-dependent systems by
simple ‘post-processing’ of undamped solutions only.
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Complex-conjugate solutions

The eigenvalues of the equivalent viscously damped
system:

s0 = −ζnωn ± iωn

√

1 − ζ2
n ≈ −ζnωn ± iωn (15)

ωn =
√

ku/mu and ζn = c/2
√

kumu.

Viscous damped system is a special case when the
function g(s) is replaced by g(s → ∞). For that case this
solution would have been the exact solution of the
characteristic equation.

The difference between the viscous solution and the true
solution is essentially arising due to the ‘varying’ nature
of the function g(s).
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Complex-conjugate solutions

The central idea here is that the actual solution can be
obtained by expanding the solution in a Taylor series
around s0. We assume s = s0 + δ, (δ is small).

Substituting this into the characteristic equation we have

(s0 + δ)2mu + (s0 + δ)g(s0 + δ) + ku = 0. (16)

First-order approximation

δ(1) =
s0(s0mu + g(s0)) + ku

s0(2mu + g′(s0)) + g(s0)
(17)
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Complex-conjugate solutions

Second-order approximation:

δ(2) =
−B −

√
B2 − 4AC

2A
(18)

where

A = (mu +
g′′(s0)

2!
s0 + g′(s0)) (19)

B = (2mus0 + s0g
′(s0) + g(s0)) (20)

and C = (s2
0mu + s0g(s0) + k). (21)

g′(s0) and g′′(s0) are respectively the first and second
order derivative of g(s) evaluated at s = s0.
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Real solutions

When N = 1, n = 1 the eigenvalue equation:

s2mu + sg(s) + ku = 0 where g(s) =
µ

s + µ
c. (22)

While the complex-conjugate solution can be expected to
be close to the solution of the equivalent viscously
damped system, no such analogy can be made for the
real solution as the equivalent viscously damped system
doesn’t have one.

Rewrite the characteristic equation as

(s2mu + ku)(µ + s) + scµ = 0. (23)
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Real solutions

Consider that the damping is small so that scµ ≈ 0. Since
(s2mu + ku) 6= 0 as we are considering the real solution
only, the first guess is obtained as
µ + s + 0 = 0 or s0 = −µ.

We take the first approximation of the real root as
s = s0 + ∆ = −µ + ∆

Substituting into the characteristic equation and
neglecting all the higher-order terms:

∆ ≈ µ2c

µ2mu + ku + µc
(24)
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Real solutions: General case

The characteristic equation:

s2mu + s

n
∑

k=1

µk

s + µk

ck + ku = 0. (25)

This a polynomial in s of order (n + 2) - it has (n + 2)

roots [2 complex conjugate and n real].

Multiplying the characteristic equation by the product
∏n

j (s + µj):

(s2mu + ku)
n

∏

j=1

(s + µj) + s

n
∑

k=1

(µkck

n
∏

j=1
j 6=k

(µj + s)) = 0. (26)
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Real solutions: General case

Use the approximation sk = µk + ∆k, k = 1, 2, · · ·n.

Substituting into the characteristic equation and retaining
only the first-order terms in ∆k, after some simplifications:

∆k ≈

ckµ2
k

n
∏

j=1
j 6=k

(µj − µk)

(µ2
km + k)

n
∏

r=1
n6=k

(µr − µk) + µkθk

for k = 1, 2, · · · , n.

where θk =





−µkck

∑n
j=1
j 6=k

∏n
m=1
m6=j
m6=k

(µm − µk) −
∑n

r=1
r 6=k

µrcr
∏n

j=1
j 6=n
j 6=k

(µj − µk) +
∏n

j=1
j 6=k

ck(µj − µk)
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Numerical Results

SDOF system with eight exponential kernels: m = 1

kg, k = 2 N/m, µk for k = 1, 2.., 8 are 1.9442, 1.5231,

1.9317, 1.7657, 1.7454, 1.9558, 2.0677, 1.4973.
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Numerical Results

µ Exact solution (state-
space)

Proposed approximate
solution

Percentage error

1.9442 -1.4649 -1.5135 3.3169

1.5231 -1.5136 -1.5185 0.3237

1.9317 -1.7123 -1.7579 2.6643

1.7657 -1.7576 -1.7613 0.2101

1.7454 -1.8954 -1.9253 1.5767

1.9558 -1.9380 -1.9375 0.0282

2.0677 -1.9517 -1.9527 0.0516

1.4973 -2.0560 -2.0592 0.1559

Complex Conjugate
solution

-0.0619± 1.4718i -0.0619±1.4718i 0.0003±0i

Exact and approximate eigenvalues of the SDOF system.

Schaumburg, Illinois, 9 April 2008 Frequency Dependent Damping – p.24/35



Frequency response function
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exact solution
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Frequency response function of the SDOF system obtained using exact and approximate

eigenvalues.
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Complex solutions: MDOF

Complex modes can be expanded as a complex linear
combination of undamped modes zj =

∑N
l=1 α

(j)
l xl

Substituting in to the eigenvalue equation (11):

N
∑

l=1

s2
jα

(j)
l Mxl + sjα

(j)
l G(sj)xl + α

(j)
l Kxl = 0. (27)

Premultiplying by xT
k and using the mass-orthogonality

property of the undamped eigenvectors:

s2
jα

(j)
k +sj

N
∑

l=1

α
(j)
l G′

kl(sj)+ω2
kα

(j)
k = 0, G′

kl(sj) = xT
k G(sj)xl

(28)
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Complex solutions: MDOF

Considering the j-th set of equation and neglecting the
second-order terms involving α

(j)
k and G′

kl(sj), ∀k 6= l:

s2
j + sjG

′
jj(sj) + ω2

j ≈ 0 (29)

Similar to the SDOF case (replace mu by 1, ku by ω2
j and

g(s) by G′
jj(s)).

To obtain the eigenvectors rewrite Eq. (28) for j 6= k as

s2
jα

(j)
k + sj



G′
kj(sj) + α

(j)
k G′

kk(sj) +

N
∑

l6=k 6=j

α
(j)
l G′

kl(sj)



 +ω2
kα

(j)
k = 0,

∀k = 1, · · · , N ; 6= j.

(30)
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Complex solutions: MDOF

Retaining only the product terms α
(j)
l G′

kl:

zj ≈ xj −
N

∑

k=1
k 6=j

sjG
′
kj(sj)xk

ω2
k + s2

j + sjG′
kk(sj)

. (31)

A second-order expressions is given in the paper.

The results derived here are based on ‘small
non-proportional damping’.
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Real solutions: MDOF

For systems with single exponential kernel assume

sl = −µ + ∆l (32)

Substituting in the approximate characteristic Eq (29)

∆l ≈
µ2C ′

ll

µ2 + ω2
l + µC ′

ll

; ∀l = 1, 2, · · · , N (33)
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Real solutions: MDOF

Assuming all coefficient matrices are of full rank, for systems with n kernels there are
in general nN number of purely real eigenvalues.

The approximate eigenvalues can be obtained as

slk = −µk + ∆lk (34)

where

∆lk ≈

Ckll
µ2

k

n
∏

j=1
j 6=k

(µj − µk)

(µ2
k + ω2

l )

n
∏

r=1
n6=k

(µr − µk) + µkθlk

∀k = 1, 2, · · · , n; l = 1, 2, · · · , N

θlk =

−µkCkll

∑n
j=1
j 6=k

∏n
m=1
m6=j
m6=k

(µm−µk)−
∑n

r=1
r 6=k

µrcr
∏n

j=1
j 6=n
j 6=k

(µj−µk)+
∏n

j=1
j 6=k

Ckll
(µj−µk)

and Ckll
= xT

l Ckxl.
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Numerical example

We consider a three degree-of-freedom system:

M =









mu 0 0

0 mu 0

0 0 mu









, K =









2ku −ku 0

−ku 2ku −ku

0 −ku 2ku









(35)

G(s) = C

6
∑

k=1

µk

s + µk

, where C =









0.30 −0.15 −0.05

−0.15 0.30 −0.15

−0.05 −0.15 0.30









.

(36)

mu = 1 kg, ku = 1 N/m and µk are 1.4565, 1.0185, 1.8214,
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Numerical results

Exact solution (state-space) Proposed approximate
solution

Percentage error

Real solutions

-0.9380 -0.9425 0.4797

-1.2995 -1.3044 0.3771

-1.4507 -1.7413 20.0317

-1.5754 -1.8096 14.8661

-1.7405 -1.5761 9.4456

-1.8095 -1.4507 19.8287

-0.6301 -0.5614 10.89

-1.1276 -1.0760 4.57

-1.4505 -1.7096 17.8628

-1.5507 -1.8081 16.5990

-1.7096 -1.5507 9.2946
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Numerical results

Exact solution (state-space) Proposed approximate
solution

Percentage error

Real solutions

-1.8081 -1.4505 19.7777

-0.6798 -0.6731 0.9856

-1.1295 -1.1289 0.0531

-1.4505 -1.7085 17.7870

-1.5501 -1.8080 16.6376

-1.7086 -1.5501 9.2766

-1.8080 -1.4505 19.7732

Complex Conjugate solu-
tions

-0.4109 ± 2.6579i -0.4116 ± 2.6591i 0.1704 ± 0.0451i

-0.4359 ± 2.0939i -0.4306 ± 2.0937i 1.2011 ± 0.0492i

-0.1674 ± 0.8523i -0.1649 ± 0.8528i 1.4934 ± 0.0587i
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Conclusions - 1

Multiple degree-of-freedom linear systems with frequency
depended damping kernels is considered.

The transfer function matrix of the system was derived in
terms of the eigenvalues and eigenvectors of the
second-order system. The response can be expressed
as a sum of two parts, one that arises in usual viscously
damped systems and the other that occurs due to
non-viscous damping.

The calculation of the eigensolutions of
frequency-depended damped systems requires the
solution of a non-linear eigenvalue problem.
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Conclusions - 2

Approximate expressions are derived for the complex and
real eigenvalues of the SDOF system with single and
multiple exponential kernels. These results are extended
to MDOF systems.

These approximations allow one to obtain the dynamic
response of general frequency-depended damped
systems by simple post-processing of undamped
eigensolutions.

The accuracy of the proposed approximations were
verified using numerical examples. The complex
conjugate eigensolutions turn out to be more accurate
compared to the real eigensolutions.

Schaumburg, Illinois, 9 April 2008 Frequency Dependent Damping – p.35/35



References

[1] Biot, M. A., “Variational principles in irreversible
thermodynamics with application to viscoelasticity,”
Physical Review , Vol. 97, No. 6, 1955, pp. 1463–1469.

[2] Bagley, R. L. and Torvik, P. J., “Fractional calculus–
a different approach to the analysis of viscoelastically
damped structures,” AIAA Journal , Vol. 21, No. 5,
May 1983, pp. 741–748.

[3] Golla, D. F. and Hughes, P. C., “Dynamics of vis-
coelastic structures - a time domain finite element
formulation,” Transactions of ASME, Journal of Ap-

plied Mechanics, Vol. 52, December 1985, pp. 897–
906.

[4] McTavish, D. J. and Hughes, P. C., “Modeling of
linear viscoelastic space structures,” Transactions of

ASME, Journal of Vibration and Acoustics, Vol. 115,
January 1993, pp. 103–110.

[5] Lesieutre, G. A. and Mingori, D. L., “Finite element
modeling of frequency-dependent material proper-
ties using augmented thermodynamic fields,” AIAA

Journal of Guidance, Control and Dynamics, Vol. 13,
1990, pp. 1040–1050.

[6] Adhikari, S., Energy Dissipation in Vibrating Struc-

tures, Master’s thesis, Cambridge University Engi-
neering Department, Cambridge, UK, May 1998,
First Year Report.

35-1



[7] Adhikari, S. and Woodhouse, J., “Identification of
damping: part 1, viscous damping,” Journal of

Sound and Vibration, Vol. 243, No. 1, May 2001,
pp. 43–61.

35-2


	Outline of the presentation
	Damping models
	Equation of motion
	Damping functions - 1
	Damping functions - 2
	State-space Approach
	Main issues
	Dynamic Response - 1
	Dynamic Response - 2
	Dynamic Response - 3
	Non-linear Eigenvalue Problem
	Non-linear Eigenvalue Problem
	SDOF systems
	Complex-conjugate solutions
	Complex-conjugate solutions
	Complex-conjugate solutions
	Complex-conjugate solutions
	Real solutions
	Real solutions
	Real solutions: General case
	Real solutions: General case
	Numerical Results
	Numerical Results
	Frequency response function
	Complex solutions: MDOF
	Complex solutions: MDOF
	Complex solutions: MDOF
	Real solutions: MDOF
	Real solutions: MDOF
	Numerical example
	Numerical results
	Numerical results
	Conclusions - 1
	Conclusions - 2

