
Response Variability of Linear
Stochastic Systems: A General
Solution Using Random Matrix

Theory
S Adhikari

School of Engineering, Swansea University, Swansea, UK

Email: S.Adhikari@swansea.ac.uk

URL: http://engweb.swan.ac.uk/∼adhikaris

Schaumburg, Illinois, 8 April 2008 Response Variability using RMT – p.1/32

mailto:S.Adhikari@swansea.ac.uk?subject=Enquiry regarding your paper
http://engweb.swan.ac.uk/~adhikaris


Outline of the presentation

Uncertainty in structural dynamics

Review of current UQ approaches

Random matrix models

Derivation of response statistics

Numerical implementations and example

Conclusions

Schaumburg, Illinois, 8 April 2008 Response Variability using RMT – p.2/32



Sources of Uncertainty - 1

(a) parametric uncertainty - e.g., uncertainty in
geometric parameters, friction coefficient, strength
of the materials involved;
(b) model inadequacy - arising from the lack of
scientific knowledge about the model which is
a-priori unknown;
(c) experimental error - uncertain and unknown
error percolate into the model when they are
calibrated against experimental results;
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Sources of Uncertainty - 2

(d) computational uncertainty - e.g, machine
precession, error tolerance and the so called ‘h’ and
‘p’ refinements in finite element analysis, and
(e) model uncertainty - genuine randomness in the
model such as uncertainty in the position and
velocity in quantum mechanics, deterministic chaos.
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Structural dynamics

The equation of motion:

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (1)

Due to the presence of uncertainty M, C and K
become random matrices.

The main objectives in the ‘forward problem’
are:

to quantify uncertainties in the system
matrices
to predict the variability in the response
vector x
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Current UQ approaches - 1

Two different approaches are currently available

Parametric approaches : Such as the
Stochastic Finite Element Method (SFEM):

aim to characterize parametric uncertainty
(type ‘a’)
assumes that stochastic fields describing
parametric uncertainties are known in details
suitable for low-frequency dynamic
applications
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Current UQ approaches - 2

Nonparametric approaches : Such as the
Statistical Energy Analysis (SEA) and Wishart
random matrix theory:

aim to characterize nonparametric
uncertainty (types ‘b’ - ‘e’)
does not consider parametric uncertainties
in details
suitable for high-frequency dynamic
applications
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Current UQ approaches - 3

The reasons for not having a general purpose UQ code:
(a) the computational time can be prohibitively high compared
to a deterministic analysis for real problems,
(b) the volume of input data can be unrealistic to obtain for a
credible probabilistic analysis,
(c) the predictive accuracy can be poor if considerable
resources are not spend on the previous two items, and
(d) as the state-of-the art methodology stands now (such as
the Stochastic Finite Element Method), only very few highly
trained professionals (such as those with PhDs) can even
attempt to apply the complex concepts (e.g., random fields)
and methodologies to real-life problems.
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Main Objectives

This paper is aimed at developing an approach [the
10-10-10 challenge] with the ambition that it should:
(a) not take more than 10 times the computational
time required for the corresponding deterministic
approach;
(b) result a predictive accuracy within 10% of direct
Monte Carlo Simulation (MCS);
(c) use no more than 10 times of input data needed
for the corresponding deterministic approach; and
(d) enable ‘normal’ engineering graduates to
perform probabilistic structural dynamic analyses
with a reasonable amount of training.
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Wishart Random Matrix Model

The probability density function of the mass
(M), damping (C) and stiffness (K) matrices
should be such that they are symmetric and
non-negative matrices.

Wishart random matrix (a non-Gaussian matrix)
is the simplest mathematical model which can
satisfy these two criteria:
[M,C,K] ≡ G ∼ Wn(p,Σ).

The parameters of the distribution can be fitted
with ‘measured’ data, such as the mean (G0)
and the standard deviation (σG) of the system
matrices.
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Parameters of the Wishart
Distribution

Suppose we ‘know’ the mean (G0) and the
(normalized) standard deviation (σG) of the system
matrices:

σ2
G =

E
[

‖G − E [G] ‖2
F

]

‖E [G] ‖2
F

. (2)

The parameters p and Σ can be obtained as

p = n + 1 + θ, Σ = G0/θ (3)

θ = (1 + β)/σ2
G − (n + 1); β = {Trace (G0)}

2 /Trace
(

G0
2
)

.
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Dynamic Response

The dynamic response of the system can be
expressed in the Frequency domain as

q(ω) = D−1(ω)f(ω) (4)

where the dynamic stiffness matrix is defined
as

D(ω) = −ω2M + iωC + K. (5)

This is a complex symmetric random matrix.

The calculation of the response statistics
requires the calculation of statistical moments
of the inverse of this matrix.
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Main Assumptions

1. Damping matrix is ‘small’ compared to the mass and
stiffness matrices.

2. The damping matrix is deterministic.

3. The mass and stiffness matrices are statistically
independent Wishart matrices.

4. The input force is deterministic.

(no assumptions related to proportional damping, small ran-

domness or Gaussianity).
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Response Statistics

Since engineering interest often lies in the absolute
value of the response, we are interested in the
statistical moments of

|q| (ω) =
∣

∣D−1(ω)
∣

∣ |f(ω)| = |D(ω)|−1 |f(ω)| (6)

where the absolute of the dynamic stiffness matrix
is given by

|D(ω)| =
{

[−ω2M + K]2 + ω2C2
}1/2

. (7)
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Response Moments - 1

The first-order moment of the absolute of the response:

q̄ = E [|q|] = E
[

|D|−1]
f̄ (8)

where f̄ = |f|.

The second-order moment of the absolute of the
response:

cov|q| = E
[

(|q| − E [|q|])(|q| − E [|q|])T
]

= E
[

|q| |q|T
]

− q̄q̄T

= E
[

|D|−1
f̄ f̄

T
|D|−1

]

− q̄q̄T .

(9)
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Response Moments - 2

The dynamic response statistics is obtained in two
steps:

A Wishart distribution is fitted to |D| matrix,
which is symmetric and non-negative definite.
Note that D cannot be a Wishart matrix unless
the system is undamped.

Once the parameters of the Wishart distribution
corresponding to |D| is identified, the inverse
moments are obtained exactly in closed-from
using the inverted Wishart distribution.
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Random Dynamic Stiffness
Matrix

Consider that |D| (ω) ∼ Wn(pD,ΣD) = S where pD(ω) and
ΣD(ω) are the unknown parameters of the Wishart distribution
to be identified. We employ the following criteria

The square-root of the mean of |D|2 is same as the mean
of S, that is

√

E
[

|D|2
]

= E [S] . (10)

The standard deviation of of |D|2 is same as the standard
deviation of S2, that is

σ
|D|

2 = σ
S

2 . (11)
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Response Moments - 3

After some algebra we have

q̄ =
pD(ω)

θD(ω)
q0(ω) (12)

Here q0(ω) is the absolute value of the response for to the
baseline or ‘mean’ system

q0(ω) = |D0(ω)|−1 |f(ω)| (13)

with |D0(ω)| = |−ω2M0 + iωC + K0|

θD(ω) = pD(ω) − n − 1, pD(ω) = Trace (AB) /Trace
(

A
2
)

where
A = ω4pM

(

M0
2 + M0Trace (M0)

)

/θM + pK

(

K0
2 + K0Trace (K0)

)

/θK

B = |D0(ω)|2 + |DD0|Trace (|D0(ω)|).
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Response Moments - 4

The covariance of the absolute of the response can be
obtained as

cov|q| (ω) =
(θD(ω) + n + 1)Trace

(

q0(ω)f̄(ω)T
)

Σ
−1

D
(ω) + (θD(ω) + 2)q0(ω)qT

0
(ω)

(θD(ω) + 1)(θD(ω) − 2)
.

(14)
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Example: A cantilever Plate
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A steel cantilever plate with a slot; Ē = 200 × 109N/m2, µ̄ = 0.3, t̄ = 7.5mm, Lx = 0.998m,

Ly = 0.59m; 25 × 15 elements resulting n = 1200.
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Stochastic properties

The Young’s modulus, Poissons ratio, mass density and
thickness are random fields of the form

E(x) = Ē (1 + ǫEf1(x)) (15)

µ(x) = µ̄ (1 + ǫµf2(x)) (16)

ρ(x) = ρ̄ (1 + ǫρf3(x)) (17)

and t(x) = t̄ (1 + ǫtf4(x)) (18)

The strength parameters: ǫE = 0.15, ǫµ = 0.10, ǫρ = 0.15

and ǫt = 0.15.

The random fields fi(x), i = 1, · · · , 4 are delta-correlated
homogenous Gaussian random fields.
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Compared Methods

Direct Monte Carlo Simulation: Response statistics is
obtained using 1000 samples (considered as the
benchmark).

Monte Carlo Simulation using Wishart Matrices:
Response statistics is obtained using 1000 samples of
the fitted Wishart matrices with σM = 0.0999 and
σK = 0.2151.

Proposed Analytical Method using Wishart Matrices:
Closed-form expressions given by Eqs. (12) and (14) are
used to obtain the mean and standard-deviation of the
response.
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Mean of Cross-FRF

0 50 100 150 200 250 300 350 400 450 500
−160

−140

−120

−100

−80

−60

−40

Frequency (Hz)

Lo
g 

am
pli

tu
de

 (d
B)

 o
f H (1

00
0,

81
7) (ω

)

 

 

Ensemble average: SFEM MCS
Ensemble average: Wishart MCS
Ensemble average: Wishart analytical

Mean of the amplitude of the response of the cross-FRF of the plate, n = 1200, σM = 0.0999

and σK = 0.2151.
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Error in the Mean of Cross-FRF
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Error in ensemble average: Wishart MCS
Error in ensemble average: Wishart analytical

Error in the mean of the amplitude of the response of the cross-FRF of the plate, n = 1200,

σM = 0.0999 and σK = 0.2151.
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Mean of Driving-point-FRF
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Ensemble average: SFEM MCS
Ensemble average: Wishart MCS
Ensemble average: Wishart analytical

Mean of the amplitude of the response of the driving-point-FRF of the plate, n = 1200,

σM = 0.0999 and σK = 0.2151.
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Error in the Mean of
Driving-point-FRF

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

Frequency (Hz)

Pe
rce

nta
eg

e e
rro

r in
 H (8

17
,81

7) (ω
)

 

 

Error in ensemble average: Wishart MCS
Error in ensemble average: Wishart analytical

Error in the mean of the amplitude of the response of the driving-point-FRF of the plate,

n = 1200, σM = 0.0999 and σK = 0.2151.
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Standard Deviation of Cross-FRF
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Standard deviation: SFEM MCS
Standard deviation: Wishart MCS
Standard deviation: Wishart analytical

Standard deviation of the amplitude of the response of the cross-FRF of the plate, n = 1200,

σM = 0.0999 and σK = 0.2151.
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Error in the Standard Deviation
of Cross-FRF
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Error in standard deviation: Wishart MCS
Error in standard deviation: Wishart analytical

Error in the standard deviation of the amplitude of the response of the cross-FRF of the plate,

n = 1200, σM = 0.0999 and σK = 0.2151.
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Standard Deviation of
Driving-point-FRF
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Standard deviation: SFEM MCS
Standard deviation: Wishart MCS
Standard deviation: Wishart analytical

Standard deviation of the amplitude of the response of the driving-point-FRF of the plate,

n = 1200, σM = 0.0999 and σK = 0.2151.
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Error in the Standard Deviation
of Driving-point-FRF
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Error in standard deviation: Wishart MCS
Error in standard deviation: Wishart analytical

Error in the standard deviation of the amplitude of the response of the driving-point-FRF of

the plate, n = 1200, σM = 0.0999 and σK = 0.2151.
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Conclusions - 1

The probabilistic characterization of the response of
linear stochastic dynamical systems is considered. This
problem requires the solution of a set of coupled complex
algebraic equations, which in turn involves the inverse of
a complex symmetric random matrix.

Assuming the damping is small and not random, a
Wishart distribution is fitted to the amplitude of the
dynamic stiffness matrix for every frequency point.

Properties of the inverted Wishart distribution are used to
obtain the statistics of the amplitude of the dynamic
response.
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Conclusions - 2

Approximate closed-form expressions of the mean and
covariance of the amplitude of the dynamic response in
the frequency domain is derived. These expressions are
simple post-processing of the results corresponding to
the baseline system.

The method is applied to frequency response analysis of
a cantilever plate with uncertainties. Error obtained using
the proposed analytical method is less than 10% when
compared with the results obtained from direct Monte
Carlo simulation.

Proposed method has the potential to solve the 10-10-10
challenge problem.
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