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Introduction

Hexagonal lattices/ lattice like structural forms are present in materials
and structures across different length scales. Spatial irregularity in such
hexagonal honeycombs may occur due to various reasons such as
manufacturing/fabrication uncertainty, structural defects, variation in
temperature, pre-stressing and micro-structural variability.

Quantifying the effects of such irregularities in a stochastic framework
using finite element based approach is computationally very expensive.
We have developed an efficient analytical approach leading to closed
form formulae for different elastic moduli of irregular honeycombs.

Key Idea

A bottom up approach has been proposed for deriving expressions of effective
elastic moduli for irregular honeycombs, wherein the entire irregular honeycomb
structure is considered to be consisted of several representative unit cell elements
having different individual elastic moduli depending on its structural geometry
and material properties.

In the elementary local level, effect of irregularity is accounted by analysing the
representative unit cell elements (RUCEsS) first and then this effect of irregularity
IS propagated towards the global properties of the entire structure in a multi-scale
framework through a multi-stage process [1-2].
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regular honeycomb) are presented below:
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A novel and computationally efficient analytical framework has been
developed for predicting effective elastic moduli of hexagonal lattices
with spatial irregularity. The closed form formulae can also be used to
predict effective elastic properties of honeycombs having spatially
random variation in intrinsic material properties.

The proposed analytical approach can be extended further for other
forms of lattices considering appropriate representative unit cell
element. Future research will follow dynamic characterization of

Irregular lattices.
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Figure: Variation of non-denominational elastic moduli with cell angle for regular honeycombs
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Figure: Deformed honeycomb configuration (Legends: — regular undeformed configuration; — irregular
undeformed configuration; ¢ Location of nodes for regular undeformed honeycomb; ¢ Location of nodes for
regular deformed honeycomb; » Location of nodes for irregular deformed honeycomb; o o Location of
nodes for regular deformed honeycomb corresponding to three different stress levels in increasing order
respectively)
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Figure: Variation of normalized elastic moduli with different degree of irregularity

Variation of mean normalized elastic moduli with
different degree of irregularities are shown in the
above figure, wherein it is evident that E,, G,, and.
12 are most sensitive to spatially random structural
Irregularity.
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