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Accurate and conclusive identification of bacteria and foreign bodies in cells is a vital part of correctly diagnosing disease and infection. In the past decade the process has been further developed in order to 

calculate this more accurately. This poster provides an accurate method to identify bacteria to further speed diagnosis. This has been done using cantilever beam theory in order to calculate the mass and rotary 

inertia which will then be used to find the size and shape of a mass on the end of the cantilever beam. This has been researched theoretically using equations of motion and energy conservation equations, and 

computationally using finite element method to model the beam and mass. 

 
 

 

I. Analytical Analyses 
a. Equations of Motion 

 

The first step in identifying the natural frequencies of the cantilever 

beam analytically is to assemble the equations of motion[1]. This 

enables us to find the first mode shape and natural frequency (1) for 

differing values of mass ratio and rotational inertia (2-3). 
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Here E is the Young’s Modulus, I is the inertia of the mass, L is the 
length of the beam in the x-direction, m is the mass per unit length, ω 
is the rotational speed, M is the mass of the object at the end of the 
beam and J is rotary inertia. By assuming that the solution will be 
harmonic it is possible to define   (4), the damping ratio. By 
assuming the equations of motion take a specified form (5) we are 
able to calculate the equation of motion (6) and hence express the 
motion (7) in terms of rotary inertia and natural frequency. 
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By applying boundary conditions to the equation of motion at x=0 
(12-13) and x=L (14-15) we can conclude something about the 
equation of motion (16). 
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From these equations it is possible to see that the most vital terms 
that help to identify the length of the attached mass were the non-

dimensional rotary inertia (3), the mass ratio (2) and the non-

dimensional frequency parameter (1). Once these variables have 

been isolated and formed into an equation (17), it can be solved to 

find the natural frequency for different values of mass ratio and 

rotary inertia. The natural frequencies of the beam can be calculated 

by solving (17) for Ω. In order to make this simpler it is a  eptable 
to model α and β at zero values (18). 
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As a (11) is a  onstant value, it  an’t be zero, therefore for Eqn 

(16) to be correct the following (21) must be true; which results in 
the governing natural frequency (22). 
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From the graph in Error! Reference source not found. it can 
be clearly perceived that the frequency decreases as the mass 
ratio increases. It can also be seen that the frequency is most 
greatly affected by the mass ratio change initially and then the 
cumulative effect lessens as the mass ratio increases. As there 
are multiple values of beta used, it was possible to examine the 
change of frequency with different rotary inertias. It can be 
observed that for a greater value of rotary inertia the frequency 
was smaller. 

 

 

 

 

 

 

 

 

 
 

b. Energy Methods 
 

By using the equations of motion in the previous section it is possible 

to find the first natural frequency, however for this project it is 
important to investigate into the second natural frequency in addition 

to this. The energy method equations [3] required finding the overall 

equivalent mass (21) and the equivalent stiffness (22), in order to 

make the process of finding the natural frequency simpler. 
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Where    is the vibration mode shape,    is the mode of vibration 

value and      . When mass is added to the end of the cantilever 
beam the overall equivalent mass of the system will change which 
will in turn change the natural frequency of the beam. The natural 
frequency of a SWNT can be found using the following equation: 
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The mass ratio (2) and non-dimensional rotary inertia (3) have been 
previously defined for the expression. Therefore it is possible to 
display the natural frequency (30) in the form of    as below. 
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The resonant frequency of the beam with no additional mass can then 
be calculated by substituting in the fact that the mass ratio will be 
zero. 
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Where 
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 (rotary calibration constant).     

 

c. Sensor Equations 
 

The natural frequency of the beam can be expressed in the form of the 
natural frequency of the beam with no additional mass (54). The frequency 
change can then be expressed as a function of the natural frequency with 
no additional mass (55). 
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It is now possible to acquire the following expression 
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Rearranging this equation we obtain the expression 
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Hence 
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From these equations the actual value of the mass added to the end of 
the SWNT can be calculated as 
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This equation relates the mass added to the end of the SWNT to the 
frequency shift with the calibration constants. However these 
calibration constants can change depending on the size and shape of 
the mass added as well as the boundary conditions. 

The next step is to calculate the value of the calibration constants, 
however to do this we need to evaluate the value of the integrals       
and the calibration constants (Table 1). This can be done by using the 

vibration mode shape (28) and the mode of vibration (28). 

From the values that have been calculated in Table 1 it is possible to 

calculate the normalized frequency of the beam at two different mode 

shapes.  

 
 

 
 
 
 
 
 
 
 
 
 
 

From the graph in Fig. 3 it can be clearly perceived that for the 
second mode, in addition to the first mode as shown in Fig. 2 
the frequency decreases as the mass ratio increases. It can also 
be seen that the natural frequencies do change with rotary 
inertia. This means that the frequency will change with a 
different shape on the end of the mass. Therefore as we can see 
that as the frequency changes with the volume and shape of the 
mass it is possible to identify different sizes and shapes of 
masses on the end of cantilever beams. 

 
d. Conclusion 

 

 The natural frequency of a beam changes with the size 
and shape of the mass on the end of it 

 The natural frequency of the beam is at its lowest when 
the mass on the end is in the form of the smallest shape 
of the lowest density 

 The natural frequency of the beam is at its highest when 
the mass on the end of the cantilever beam is in the form 
of the largest shape and highest density 
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Fig.1: SWNT cantilever beam with mass 

attached[2] 

 
 

 
 

 

 
Fig. 1: Change in the normalized resonance 

frequency of first mode of a nano-cantilever 

due to variation in the mass and inertia of an 

attached object 

 
 

 
  Mode Shape 

 Mode shpae 1 2 

 Mode of 

vibration 

1.87510407 4.69409113 

In
te

g
ra

l 1 0.9816621314 0.9922188006 

2 2.2697318239 1.962067694 

3 12.8013923239 88.10845968 

4 3.5779033419 3096.760908 

C
al
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ti
o
n
 

C
o
n
st

an
t 

Stiffness 1.9091202443 55.8663261 

Mass 2.3121313854 1.977454911 

Rotary 13.0405278093 88.79942572 

Table 1: Calculated constants for each mode shape 

 

 
Fig. 2: Change in the normalized resonance frequency of second mode of a 

nano-cantilever due to variation in the mass and inertia of an attached 

object 

 
 

 


