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The stochastic finite element analysis of elliptic type partial differential equations are considered. An alternative approach by projecting the solution of the discretized equation into a finite
dimensional orthonormal vector basis is investigated. It is shown that the solution can be obtained using a finite series comprising functions of random variables and orthonormal vectors.
These functions, called as the spectral functions, can be expressed in terms of the spectral properties of the deterministic coefficient matrices arising due to the discretization of the governing
partial differential equation. Based on the projection in the orthonormal vector basis, a Galerkin error minimization approach is proposed. The constants appearing in the Galerkin method are
solved from a system of linear equations which has the same dimension as the original discretized equation. A hybrid analytical and simulation based computational approach is proposed to
obtain the moments and pdf of the solution. The method is illustrated using the stochastic nanomechanics of a Zinc Oxide (ZnO) nanowire deflected under the atomic force microscope (AFM)
tip. The results are compared with the direct Monte Carlo simulation results for different correlation lengths and strengths of randomness.

Elliptic Stochastic Partial Differential Equation
We consider the stochastic elliptic partial differential equation
(PDE)

−∇ [a(r, ω)∇u(r, ω)] = p(r); r in D (1)

with suitable boundary conditions. Here a : Rd×Ω → R (d ≤ 3)
is a random field and ω ∈ Ω is a sample point from the sampling
space Ω. We assume the random field a(r, ω) to be stationary and
square integrable. The random field a(r, ω) can be expressed by
Karhunen-Loève expansion as

a(r, ω) = a0(r) +
∞∑
i=1

√
νiξi(ω)φi(r) (2)

Here a0(r) is the mean function, ξi(ω) are uncorrelated standard
Gaussian random variables, νi and φi(r) are eigenvalues and eigen-
functions of the autocorrelation function. Truncating the series (2)
upto the M -th term, substituting a(r, ω) in the governing PDE
(1) and applying the boundary conditions, the discretized equation
can be written as[

A0 +

M∑
i=1

ξi(ω)Ai

]
u(ω) = f (3)

Our aim is to propose a new solution technique of this equation.
Polynomial Chaos Expansion: After a finite truncation, the
polynomial chaos expansion for the solution of Eq. (3) can be
written as

û(ω) =
P∑
k=1

Hk(ξ(ω))uk; whereP =

r∑
j=0

(M + j − 1)!

j!(M − 1)!
(4)

HereHk(ξ(ω)) are the polynomial chaoses. Since P increases very
rapidly with the order of the chaos r and the number of random
variables M , the final number of unknown constants Pn becomes
very large.

Spectral decomposition in the vector space

Remark 1. (The spanning property) Suppose {ϕ1,ϕ2, . . . ,ϕn}
is a complete basis in the Hilbert space H. Then for every
nonzero u ∈ H, it is possible to choose α1, α2, . . . , αn ̸= 0
uniquely such that u = α1ϕ1 + α2ϕ2 + . . . αnϕn.

We can ‘split’ the Polynomial Chaos type of expansions as û(ω) =∑n
k=1Hk(ξ(ω))uk+

∑P
k=n+1Hk(ξ(ω))uk. According to the span-

ning property of a complete basis in Rn it is always possible to
project û(ω) in a finite dimensional vector basis for any ω ∈ Ω.
Therefore, in a vector polynomial chaos expansion, all uk for k > n
must be linearly dependent. This is the motivation behind seeking
a finite dimensional expansion.
Theorem 1. There exist a finite set of functions Γk :
(Rm × Ω) → (R × Ω) and an orthonormal basis ϕk ∈ Rn for
k = 1, 2, . . . , n such that the series

û(ω) =
n∑

k=1

Γk(ξ(ω))ϕk (5)

converges to the exact solution of the discretized stochastic
finite element equation (3) with probability 1.
Outline of the proof: The first step is to generate a complete
orthonormal basis. We use the eigenvectors ϕk ∈ Rn of the matrix
A0 such that

A0ϕk = λ0kϕk; k = 1, 2, . . . n (6)
We define the matrix of eigenvalues Λ0 = diag [λ01, λ02, . . . , λ0n]
and eigenvectors Φ = [ϕ1,ϕ2, . . . ,ϕn]. Suppose the solution of
Eq. (3) is given by

û(ω) =

[
A0 +

M∑
i=1

ξi(ω)Ai

]−1

f (7)

Using the orthonormality of Φ one has û(ω) = ΦΨ (ξ(ω))ΦT f

with Ψ (ξ(ω)) =
[
Λ0 +

∑M
i=1 ξi(ω)Ãi

]−1

. Separating the diago-

nal and off-diagonal terms we have

Ψ (ξ(ω)) =

Λ0 +

M∑
i=1

ξi(ω)Λi︸ ︷︷ ︸
Λ(ξ(ω))

+

M∑
i=1

ξi(ω)∆i︸ ︷︷ ︸
∆(ξ(ω))


−1

(8)

where Λ (ξ(ω)) ∈ Rn×n is a diagonal matrix and ∆ (ξ(ω)) is an
off-diagonal only matrix.

Expanding this in a Neumann type of matrix series we have

Ψ (ξ(ω)) =

∞∑
s=0

(−1)s
[
Λ−1 (ξ(ω))∆ (ξ(ω))

]s
Λ−1 (ξ(ω)) (9)

Defining

Γk (ξ(ω)) =

n∑
j=1

Ψkj (ξ(ω))
(
ϕT

j f
)

(10)

and rearranging one has

û(ω) =
n∑

k=1

Γk (ξ(ω))ϕk (11)

Spectral functions

Definition 1. The functions Γk (ξ(ω)) , k = 1, 2, . . . n are
called the spectral functions as they are expressed in terms
of the spectral properties of the coefficient matrices of the gov-
erning discretized equation.

The main difficulty in applying this result is that each of the spec-
tral functions Γk (ξ(ω)) contain infinite number of terms and they
are highly nonlinear functions of the random variables ξi(ω). For
computational purposes, it is necessary to truncate the series after
certain number of terms. Different order of spectral functions can
be obtained by using truncation in the expression of Γk (ξ(ω)).

Definition 2.The first-order spectral functions Γ
(1)
k (ξ(ω)), k =

1, 2, . . . , n are obtained by retaining one term in the series (9).

Retaining one term in (9) we have

Ψ(1) (ξ(ω)) = Λ−1 (ξ(ω)) or Ψ
(1)
kj (ξ(ω)) =

δkj

λ0k +
∑M

i=1 ξi(ω)λik
(12)

Using the definition of the spectral function in Eq. (10), the first-
order spectral functions can be explicitly obtained as

Γ
(1)
k (ξ(ω)) =

n∑
j=1

Ψ
(1)
kj (ξ(ω))

(
ϕT

j f
)
=

ϕT
k f

λ0k +
∑M

i=1 ξi(ω)λik

(13)

From this expression it is clear that Γ
(1)
k (ξ(ω)) are non-Gaussian

random variables even if ξi(ω) are Gaussian random variables.

Definition 3. The second-order spectral functions
Γ
(2)
k (ξ(ω)), k = 1, 2, . . . , n are obtained by retaining two

terms in the series (9).

Retaining two terms in (9) we have
Ψ(2) (ξ(ω)) = Λ−1 (ξ(ω))−Λ−1 (ξ(ω))∆ (ξ(ω))Λ−1 (ξ(ω))

Using the definition of the spectral function in Eq. (10), the
second-order spectral functions can be obtained in closed-form as

Γ
(2)
k (ξ(ω)) =

ϕT
k f

λ0k +
∑M

i=1 ξi(ω)λik

−

n∑
j=1

(
ϕT

j f
)∑M

i=1 ξi(ω)∆ikj(
λ0k +

∑M
i=1 ξi(ω)λik

)(
λ0j +

∑M
i=1 ξi(ω)λij

) (14)

The spectral basis functions are not simple polynomials, but ratio
of polynomials in ξ(ω).

Error minimization: The Galerkin approach
Theorem 2. There exist a set of finite functions Γ̂k :
(Rm × Ω) → (R× Ω), constants ck ∈ R and orthonormal vec-
tors ϕk ∈ Rn for k = 1, 2, . . . , n such that the series

û(ω) =
n∑

k=1

ckΓ̂k(ξ(ω))ϕk (15)

converges to the exact solution of the discretized stochastic
finite element equation (3) in the mean-square sense provided
the vector c = {c1, c2, . . . , cn}T satisfies the n × n algebraic
equations S c = b with

Sjk =

M∑
i=0

ÃijkDijk; ∀ j, k = 1, 2, . . . , n; Ãijk = ϕT
j Aiϕk, (16)

Dijk = E
[
ξi(ω)Γ̂j(ξ(ω))Γ̂k(ξ(ω))

]
, bj = E

[
Γ̂j(ξ(ω))

] (
ϕT

j f
)
.

This can be proved by defining the error vector ε(ω) =(∑M
i=0Aiξi(ω)

)(∑n
k=1 ckΓ̂k(ξ(ω))ϕk

)
−f and making it orthog-

onal to the basis functions
{
Γ̂k(ξ(ω))ϕk

}
∈ Rn, that is, mathe-

matically ε(ω)⊥
(
Γ̂j(ξ(ω))ϕj

)
or

⟨
Γ̂j(ξ(ω))ϕj, ε(ω)

⟩
= 0.

Post processing and computational approach
The spectral functions Γ̂k(ξ(ω)) are highly non-Gaussian in na-
ture and do not in general enjoy any orthogonality properties like
the Hermite polynomials or any other orthogonal polynomials with
respect to the underlying probability measure. The coefficient ma-
trix S and the vector b should be obtained numerically using the
Monte Carlo simulation or other numerical integration technique.
The simulated spectral functions can also be ‘recycled’ to obtain
the statistics and probability density function (pdf) of the solu-
tion.
Summary of the proposed computational approach:

1. Solve the eigenvalue problem associated with the mean matrix
A0 to generate the orthonormal basis vectors: A0Φ = Λ0Φ

2. Select a number of samples, say Nsamp. Generate the samples of
basic random variables ξi(ω), i = 1, 2, . . . ,M .

3. Calculate the spectral basis functions (for example, first-order):

Γk (ξ(ω)) =
ϕ

T

k f
λ0k

+
∑M

i=1 ξi(ω)λik

4. Obtain the coefficient vector: c = S−1b ∈ Rn, where
b = f̃ ⊙ Γ, S = Λ0 ⊙ D0 +

∑M
i=1 Ãi ⊙ Di and Di =

E
[
Γ(ω)ξi(ω)Γ

T (ω)
]
,∀ i = 0, 1, 2, . . . ,M

5. Obtain the samples of the response from the spectral series:
û(ω) =

∑n
k=1 ckΓk(ξ(ω))ϕk

Numerical Example
We consider the tip deflection of ZnO nanowire of length
L = 600nm, diameter d = 50nm and the lateral point force at the
tip fT = 80nN. The bending stiffness of the NW is assumed to
be Gaussian random field with exponential correlation function.
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(a) Pdf for σa = 0.1 (b) Pdf for σa = 0.2

The mean, standard deviation and probability density function of
the normalized deflection δ/δ0 of the ZnO NW under the AFM tip
(δ0=145nm). The correlation length of the random field describ-
ing the bending rigidity is assumed to be µa = L/10. The number
of random variable used: M = 67. The number of degrees of
freedom: n = 100 . The results are obtained with 10,000-sample
MCS and four values of σa (standard deviation of the random
field) have been used. If the second-order PC was used, one
would need to solve a linear system of equation of size 234,500.
The results shown here are obtained by solving a linear system
of equation of size 100 using the proposed Galerkin approach.
Statistics Methods σa = 0.05 σa = 0.10 σa = 0.15 σa = 0.20

Mean 1st order 0.1761 0.7206 1.6829 3.1794
2nd order 0.0007 0.0113 0.0642 0.6738

Standard 1st order 3.9543 5.9581 9.0305 14.6568
deviation 2nd order 0.3222 1.8425 4.6781 8.9037
Percentage error in the mean and standard deviation of δ/δ0.

Conclusions
We consider discretised stochastic elliptic partial differential equa-
tions. The solution is projected into a finite dimensional complete
orthonormal vector basis and the associated coefficient functions
are obtained. The coefficient functions, called as the spectral func-
tions, are expressed in terms of the spectral properties of the sys-
tem matrices. If n is the size of the discretized matrices and M
is the number of random variables, then the computational com-
plexity grows in O(Mn2) +O(n3) for large M and n in the worse
case.
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