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Uncertainties need to be taken into account for credible predictions of the response of complex mechanical systems. Such uncertainties should include uncertainties in the system parameters and
those arising due to the modelling of a complex system. In spite of extensive research over the past four decades a general purpose probabilistic predictive code for real-life mechanical systems
is still not available. The reasons behind this include: (a) the computational time can be prohibitively high compared to a deterministic analysis, and (b) the detailed and complete information
regarding parametric and model uncertainties are in general not available. In this work various methods are investigated to address these two problems in the context of computational mechanics.
The proposed methods can be broadly categorised as (a) parametric methods and (b) non-parametric methods. Under the parametric approaches, we have developed (1) high dimensional model
representation (HDMR) method, and (2) Gaussian Process (GP) emulator approach. Under the nonparametric approaches we have developed a random matrix based approach. Several
numerical and analytical techniques have been proposed and the results were validated against experimental results. As an application sensitivity and calibration of carbon nanotube base
bio-sensors have been discussed. This poster is aimed at summarise these works and present some representative results.

Uncertainty quantification using Gaussian process

emulators

A computer code implementation of a mathematical model, also
known as simulator , can be understood as a function η : Ω → R

d

whose domain is the p-dimensional parameter space Ω = Ω1×. . .×
Ωp. If a simulator is computationally intensive, a surrogate model
can be employed to approximate its output. One such surrogate
modeling strategy, known as Gaussian process emulation, makes
it is possible to obtain a statistical approximation to the output
of the simulator after evaluating only a small number of design
points {xi}n

i=1 ⊆ Ω. A Gaussian process emulator should satisfy
some minimal criteria:

1. Since by definition the output at each design point is known,
the emulator should reproduce this output with no uncertainty.

2. At any x that is not a design point, the probability distribution
provided by the emulator should produce a mean value that
constitutes a plausible interpolation of the training data. The
probability distribution around this predictive mean should also
express the uncertainty about how the emulator might interpo-
late.

Emulation works by generating a set of training runs y =
{xi, η(xi)}n

i=1 that are treated as data used to update some prior
beliefs about the simulator’s output. These beliefs are represented
by a Gaussian stochastic process prior distribution of the form

η(·) ∼ N (m(·), V (·, ·)) (1)

with V (x,x
′
) = σ2C(x,x

′
), where

C(x,x
′

) = e−(x−x
′
)TB(x−x

′
) (2)

and σ2 estimated from the data. B is a positive-definite diagonal
matrix containing smoothness parameters that can be estimated
using a maximum likelihood scheme.
Adopting the Bayesian paradigm, this prior distribution is up-
dated with the objective information contained in the training
runs y, resulting in the posterior distribution

η(·)|y ∼ N (m∗(·), V ∗(·, ·)) (3)

The posterior mean m∗(·) approximates the output of the simula-
tor at any untried x ∈ Ω, whereas it reproduces the known output
at each design point. Additionally, the posterior variance V ∗(·, ·)
quantifies the uncertainty that arises from having only a limited
number of evaluations of η(·)
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(a) Predictive mean of the emulator (b) Uncertainty bounds for the predictive mean

Emulation of the mean frequency response of a plate with random
Young’s modulus (in black). The posterior mean of the emulator
(in red) interpolates the training runs (circles) and predicts the
output at untried inputs. Simultaneously, the posterior variance
provides uncertainty bounds (in gray) for such prediction. Note
how the uncertainty is equal to zero in each one of the training
runs.

Carbon nanotube based bio-sensor

The potential of single-walled carbon nanotubes (SWCNTs) as a
mass sensor is examined using continuum mechanics based ap-
proach. The carbon nanotube resonators are assumed to be either
in cantilevered or in bridged configurations. Simple analytical
formulas are developed for CNT-based nanoresonators with at-
tached mass. A closed-form expression has been derived to detect
the mass of biological objects from the frequency-shift. A simple
linear approximation of the nonlinear sensor equation has been
investigated. The validity and the accuracy of these formulas are
examined for a wide range of cases.

In order to obtain simple analytical expressions of the mass of
attached biochemical entities, we model a single walled CNT using
a rod based on the Euler-Bernoulli beam theory. The equation of
motion of free-vibration can be expressed as

EI
∂2y

∂x2
+ ρA

∂2y

∂t2
= 0 (4)

where E the Youngs modulus, I the second moment of
the cross-sectional area A, and ρ is the density of the
material. Suppose the length of the SWCNT is L.
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The general relationship between the normalized frequency-shift
and normalized added mass of the bio-particles in a SWCNT
with effective density ρ, cross-section area A and length L. Here
β =

√
EI

ρAL4s
−1, the nondimensional constant α depends on the

boundary conditions and µ depends on the location of the mass.

For a cantilevered SWCNT with a tip mass α2 =
√

140/11,
µ = 140/33 and for a bridged SWCNT with a mass at the mid-

point α2 =
√

6720/13, µ = 35/13. Relationship between the
frequency-shift and added mass of bio-particles obtained from fi-
nite element simulation are also presented here to visualize the
effectiveness of analytical formulas.
The numerical results indicate that the mass sensitivity of carbon
nanotube-based nanobalances can reach upto 10−24 kg.

Random Matrix Theory for complex dynamical sys-

tems

The equation of motion of a damped n-degree-of-freedom linear
dynamic system can be expressed as

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (5)

where M, C and K are the mass, damping and stiffness matri-
ces respectively. In order to completely quantify the uncertainties
associated with system (5), we need the probability density func-
tions of the random matrices M, C and K. These matrices can
be expressed as Wishart matrices:
Wishart matrix : An n × n random symmetric positive definite
matrix S is said to have a Wishart distribution with parameters
p ≥ n and Σ ∈ R

+
n , if its pdf is given by

pS (S) =
{

2
1

2
np Γn

(
1

2
p
)

|Σ|
1

2
p
}−1

|S|
1

2
(p−n−1)etr

{

−
1

2
Σ−1S

}

(6)

Consider that a random symmetric and positive definite matrix
G has mean G0 and dispersion parameter defined as

δ2
G =

E
[

‖G − E [G] ‖2
F

]

‖E [G] ‖2
F

(7)

G can be modeled by a Wishart matrix with parameters p and
Σ so that G ∼ Wn(p,Σ) where p = n + 1 + θ, Σ = G0/θ,

θ = 1
δ2

G
{1 + γG} − (n + 1) and γG = {Trace (G0)}2/Trace

(

G0
2
)

.

Based on the theory of Wishart matrices, we have rigorously
proved that the eigenvalue density of large stochastic dynam-
ical systems has very strong convergence property. In partic-
ular we have shown that the rate of convergence is O(n−2).
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Uncertainty quantification using HDMR

The high dimensional model representation (HDMR) of an ar-
bitrary M-dimensional response function f (x), x ∈ ℜM can be
derived by partitioning the identity operator I, to be called IM in
the M-dimensional case and in the 1D case hereafter, with respect
to the projectors P1,P2, . . . ,PM as follows:

IM =
M∏

m=1

(Pm + (I1 − Pm))

=
M∏

m=1

Pm

︸ ︷︷ ︸
1 term

+
M∑

m=1

(I1 − Pm)
∏

s6=m

Ps

︸ ︷︷ ︸



M
1



terms

+

+ · · · +
M∑

m=1

Pm

∏

s6=m

(I1 − Ps)

︸ ︷︷ ︸



M

M − 1



terms

+
M∏

m=1

(I1 − Pm)

︸ ︷︷ ︸
1 term

(8)

composed of 2M mutually orthogonal terms. The orthogonal rep-
resentation of the above is a manifestation of the HDMR and can
be rewritten as,

f (x) =L∗
x +

M∑

i=1

L∗
x/xi

+
M∑

i1=1

M∑

i2=i1+1

L∗
x/xi1/xi2

+ · · · +
∑

1≤i1≤i2≤···≤iα

L∗
x/xi1/xi2/···/xiα

+ L∗
x/x1/x2/···/xM

(9)

where L∗
x is a constant term representing the zeroth-order compo-

nent function or the mean response of any response function f (x),
L∗

x/xi
is the first-order term expressing the effect of variable xi act-

ing alone, although generally nonlinear, upon the output f (x).
The function L∗

x/xi1/xi2

a second-order term which describes the

cooperative effects of the variables xi1 and xi2 upon the output.
The higher order terms gives the cooperative effects of increas-
ing numbers of input variables acting together to influence the
output response. Usually the higher order terms in Eq. 9 are
negligible such that HDMR with only few low order correlations,
amongst the input variables are typically adequate in describing
the output behavior resulting in rapid convergence of HDMR ex-
pansion. The above HDMR expansion has a finite number of terms
and is always exact. Other popular expansions (e.g., polynomial
chaos) commonly have an infinite number of terms with some
specified functions, such as Hermite polynomials. Estimation of
failure probability due to the exceedance of base shear for a 10-
DOF system with vibration absorber, using HDMR is illustrated:
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