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Uncertainties need to be taken into account for credible predictions of the response of complex mechanical systems. Such uncertainties should include uncertainties in the system parameters and
those arising due to the modelling of a complex system. In spite of extensive research over the past four decades a general purpose probabilistic predictive code for real-life mechanical systems
is still not available. The reasons behind this include: (a) the computational time can be prohibitively high compared to a deterministic analysis, and (b) the detailed and complete information
regarding parametric and model uncertainties are in general not available. In this work various methods are investigated to address these two problems in the context of computational mechanics.
The proposed methods can be broadly categorised as (a) parametric methods and (b) non-parametric methods. Under the parametric approaches, we have developed (1) doubly spectral stochastic
finite elements method, and (2) Gaussian Process (GP) emulator approach. Under the nonparametric approaches we have developed a random matrix based approach. Several numerical and
analytical techniques have been proposed and the results were validated against experimental results. This poster is aimed at summarise these works and present some representative results.

Uncertainty Quantification

Complex mechanical systems can have millions of degrees of free-
dom and significant uncertainty in their computational models.
The Sources of uncertainty include:
(a) parametric uncertainty - e.g., uncertainty in geometric param-
eters, friction coefficient, strength of the materials involved;
(b) model inadequacy - arising from the lack of scientific knowledge
about the model which is a-priori unknown;
(c) experimental error - uncertain and unknown error percolate
into the model when they are calibrated against experimental re-
sults;
(d) computational uncertainty - e.g, machine precession, error tol-
erance and the so called ‘h’ and ‘p’ refinements in finite element
analysis, and
(e) model uncertainty - genuine randomness in the model such as
uncertainty in the position and velocity in quantum mechanics,
deterministic chaos.
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The role of uncertainty in computational mechanics.
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Problem-types in computational mechanics.

There are two approaches to quantify uncertainties in a model:

•Parametric approach: This is suitable to quantify aleatoric
uncertainties. Here the uncertainties associated with the system
parameters are quantified and propagated, for example, using
the stochastic finite element method1–7.

•Nonparametric approach: This is aimed at quantifying
epistemic uncertainty which do not explicitly depend on the
system parameters. For example, there can be unquantified
errors associated with the equation of motion. Random matrix
theory based on central and non-central Wishart distribution8–10

has been proposed for this purpose.

Doubly Spectral Finite Element Method for Stochas-
tic Field Problems in Structural Dynamics
For distributed parameter systems, parametric uncertainties can
be represented by random fields leading to stochastic partial dif-
ferential equations. A linear damped distributed parameter dy-
namical system in which the displacement variable U(r, t), where
r is the spatial position vector and t is time, specified in some
domain D, is governed by a linear partial differential equation

ρ(r, θ)
∂2U(r, t)

∂t2
+L1

∂U(r, t)

∂t
+L2U(r, t) = p(r, t); r ∈ D. (1)

Here ρ(r, θ) is the random mass distribution of the system, p(r, t)
is the distributed time-varying forcing function, L1 is the random
spatial self-adjoint damping operator and L2 is the random spatial
self-adjoint stiffness operator. When parametric uncertainties are
considered, the mass density ρ(r, θ) as well as the damping and
stiffness operators involve random processes. A random process
H(r, θ) can be expressed in a spectral decomposition as

H(r, θ) = H0(r) +
∞∑

i=1

√
λiξi(θ)ϕi(r) (2)

where ξi(θ) are uncorrelated random variables, λi and ϕi(r) are
eigenvalues and eigenfunctions satisfying an integral equation over
the auto-correlation function. Over the past two decades spectral
stochastic finite element method has been developed to discretise
the random fields based on this decomposition. On the other hand,
for deterministic distributed parameter linear dynamical systems,
spectral finite element method has been developed to efficiently
solve the problem in the frequency domain. In spite of the fact that
both approaches use spectral decomposition (one for the random
fields and while the other for the dynamic displacement fields),
there has been very little overlap between them in literature. In
this work these two spectral techniques have been unified with
the aim that the unified approach would outperform any of the
spectral methods considered on its own.

Random Matrix Theory
The equation of motion of a damped n-degree-of-freedom linear
dynamic system can be expressed as

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (3)

where M, C and K are the mass, damping and stiffness matrices
respectively. In order to completely quantify the uncertainties as-
sociated with system (3), we need the probability density functions
of the random matrices M, C and K. We have shown8–11 that
these matrices can be expresses as central or non-central Wishart
matrices:
Wishart matrix : An n × n random symmetric positive definite
matrix S is said to have a Wishart distribution with parameters
p ≥ n and Σ ∈ R+

n , if its pdf is given by

pS (S) =
{

2
1
2np Γn

(
1

2
p
)
|Σ|12p

}−1

|S|12(p−n−1)etr
{
−1

2
Σ−1S

}
(4)

Noncentral Wishart matrix : A n×n symmetric positive definite
random matrix S is said to have a noncentral Wishart distribution
with parameters p ≥ n, Σ ∈ R+

n and Θ ∈ R+
n , if its pdf is given

by

pS (S) =
{

2
1
2np Γn

(
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p
)
|Σ|12p

}−1

etr
{
−1

2
Θ

}
etr

{
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}

|S|12(p−n−1)
0F1(p/2,ΘΣ−1S/4). (5)

where 0F1 the hypergeometric function (Bessel function) of matrix
argument.
Here etr {•} ≡ exp {Tr (•)} and | • | ≡ determinant of a matrix.
The function Γn (a) is the multivariate gamma function, which

can be expressed as Γn (a) = π
1
4n(n−1) ∏n

k=1 Γ
[
a− 1

2(k − 1)
]
; for

<(a) > 1
2(n− 1).

Experimental Validation
The uncertain dynamics is realized by 10 sprung-mass oscilla-
tors with randomly distributed stiffness properties attached at
random locations. One hundred nominally identical dynamical
systems are created and individually tested. The probabilistic
characteristics of the frequency response functions are obtained
in the low, medium and high frequency ranges. Special measures
were taken so that the uncertainty in the response of the main
structure primarily emerges from the random attachment config-
urations of the subsystems having random natural frequencies.

Attached oscillators at random locations. The determinis-
tic properties are: Ē = 200 × 109N/m2, µ̄ = 0.3, ρ̄ =
7860kg/m3, t̄ = 7.5mm, Lx = 998mm, Ly = 530mm.
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(a) Response across the frequency range (b) Low-frequency response
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(c) Medium-frequency response (d) High-frequency response

Comparison of the mean and standard deviation of the amplitude
of the near-field cross-FRF of the plate at point 2 (nodal coor-
dinate: (6,11)) with 10 randomly placed oscillators; − ensemble
mean from Wishart model; - - - ensemble mean from experiment; -.
-. standard deviation from Wishart model; .... standard deviation
from experiment.
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