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Linear non-viscous system
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The equation of motion:
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Freqguency domain
representation

d(s) u(s) = p(s) (2)

where

d(s) = s° + 5 2Cwy, (sﬁcf:w ) +w? (3)

p(s) is the equivalent forcing function and

L

c Wy
C_ 2\/%7 and 6 — ? (4)

w,. undamped natural frequency, (: viscous damping factor

and 3. non-viscous damping factor.
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Conditions for oscillatory motion
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Frequency response function
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Partial summary of new results

mA non-viscously damped oscillator will have oscillatory
motion if < f or 5 > f

mifg< 3[’ the oscillatory motion is possible if and only if
¢ ¢ (1, Cyl. (¢ and (y are the lower and upper critical
damping factors.

m If 5 > 1/4, the natural frequency of a non-viscously
damped oscillator will be more than that of an equivalent
undamped oscillator.

® The amplitude of the frequency response function of a
non-viscously damped oscillator can reach a maximum

value if ¢ < 1v/v/5—1or3>1y/
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Equation of motion

The governing equation is

d’z 7=t d:z:'
) g—r(i=7) Of
m !Lﬁ)u = (),

m 1. the displacement of mass m; k: linear spring stiffness
B o4, oy Strength of linear and nonlinear spring stiffness
B c: viscous damping coefficient

B The non-viscous damping effect is represented by the
parameter u via the convolution integral. ;1 — oo Implies
viscous damping, i.e., classical Duffing oscillator
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The nondimensional equation

The nondimensional governing equation is

o 5=
T+ 2{,‘/ 5 TdT + o + apx® = 0 cos(wt),
0
We now define the integral term as

/t e—%(t—T) .
Y = TdT
o B

Then by using the Leibniz rule for differentiation of an integral
we can write
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The first-order form

We can then write a set of three first order ordinary differential

equations
jjl = I,
Ty = —2(y — a7 — Qs + 0 cos(wt),
, 1 1
Yy = ZT2— 7Y,
b b

Note that if we multiply through the last line by 3, thenas 3 — 0,

y — x9 and the viscous damping case is obtained.
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Computing solutions

= 4th order Runge-Kutta integration algorithm
m Start at the lowest w value
m Compute transient periods (typically 100-200)

m Max displacement recorded for 20-50 steady
state periods

m |[ncrease w and repeat

m At max w, reverse increment and the process
continued to w,,;,,
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Weak coupling: «; = 1.0 and
vy = 0.05
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Strong coupling: o7 = 0 and
oo = 1
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Conclusions

m Qualitative changes in dynamics have been
observed
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Conclusions

m Qualitative changes in dynamics have been
observed

= Many new features cannot be predicted (or
Institutively guessed) by 'simple extension’ of
the classical results known for viscously
damped systems
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Conclusions

m Qualitative changes in dynamics have been
observed

= Many new features cannot be predicted (or
Institutively guessed) by 'simple extension’ of
the classical results known for viscously
damped systems

= More new dynamical features are yet to be
discovered in the future ... this is far from over!
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