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Linear non-viscous system

The equation of motion:

m ü(t) +

t
∫

0

c µe−µ(t−τ)u̇(τ) dτ + k u(t) = f(t) (1)
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Frequency domain
representation

d(s) u(s) = p(s) (2)

where

d(s) = s2 + s 2ζωn

(

ωn

sβ + ωn

)

+ ω2
n (3)

p(s) is the equivalent forcing function and

ωn =

√

k

m
, ζ =

c

2
√

k m
, and β =

ωn

µ
. (4)

ωn: undamped natural frequency, ζ: viscous damping factor

and β: non-viscous damping factor.
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Conditions for oscillatory motion
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Frequency response function
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Partial summary of new results

A non-viscously damped oscillator will have oscillatory
motion if ζ < 4

3
√

3
or β > 1

3
√

3
.

If β < 1
3
√

3
, the oscillatory motion is possible if and only if

ζ /∈ [ζL, ζU ]. ζL and ζU are the lower and upper critical
damping factors.

If β > 1/4, the natural frequency of a non-viscously
damped oscillator will be more than that of an equivalent
undamped oscillator.

The amplitude of the frequency response function of a
non-viscously damped oscillator can reach a maximum

value if ζ < 1
2

√√
5 − 1 or β > 1

2

√

3
√

3 − 4.
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Equation of motion

The governing equation is

m
d2x

dt̂2
+ c

∫ τ̂=t̂

τ̂=0

µe−µ(t̂−τ̂) dx

dτ̂
dτ̂ + α1kx + α2kx3 = A cos(Ωt̂),

x: the displacement of mass m; k: linear spring stiffness

α1, α2: strength of linear and nonlinear spring stiffness

c: viscous damping coefficient

The non-viscous damping effect is represented by the
parameter µ via the convolution integral. µ → ∞ implies
viscous damping, i.e., classical Duffing oscillator
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The nondimensional equation

The nondimensional governing equation is

ẍ + 2ζ

∫ t

0

e−
1

β
(t−τ)

β
ẋdτ + α1x + α2x

3 = x0 cos(ωt),

We now define the integral term as

y =

∫ t

0

e−
1

β
(t−τ)

β
ẋdτ

Then by using the Leibniz rule for differentiation of an integral
we can write

ẏ =
1

β
ẋ −

1

β
y
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The first-order form

We can then write a set of three first order ordinary differential
equations

ẋ1 = x2,

ẋ2 = −2ζy − α1x1 − α2x
3
1 + x0 cos(ωt),

ẏ =
1

β
x2 −

1

β
y,

Note that if we multiply through the last line by β, then as β → 0,

y → x2 and the viscous damping case is obtained.
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Computing solutions

4th order Runge-Kutta integration algorithm

Start at the lowest ω value

Compute transient periods (typically 100–200)

Max displacement recorded for 20–50 steady
state periods

Increase ω and repeat

At max ω, reverse increment and the process
continued to ωmin
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Weak coupling: α1 = 1.0 and
α2 = 0.05
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(b) beta=0.1
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(c) beta=0.5
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Strong coupling: α1 = 0 and
α2 = 1
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Conclusions

Qualitative changes in dynamics have been
observed
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Conclusions

Qualitative changes in dynamics have been
observed

Many new features cannot be predicted (or
institutively guessed) by ’simple extension’ of
the classical results known for viscously
damped systems
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Conclusions

Qualitative changes in dynamics have been
observed

Many new features cannot be predicted (or
institutively guessed) by ’simple extension’ of
the classical results known for viscously
damped systems

More new dynamical features are yet to be
discovered in the future ... this is far from over!
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