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My research interests

Development of fundamental computational methods for structural
dynamics and uncertainty quantification
A. Dynamics of complex systems
B. Inverse problems for linear and non-linear dynamics
C. Uncertainty quantification in computational mechanics
Applications of computational mechanics to emerging multidisciplinary
research areas
D. Vibration energy harvesting / dynamics of wind turbines
E. Dynamics and mechanics of metamaterials and multi-scale systems
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Mathematical models for dynamic systems
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A general overview of computational mechanics
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Uncertainty in structural dynamical systems

Many structural dynamic systems are manufactured in a production line
(nominally identical systems). On the other hand, some models are complex!
Complex models can have ‘errors’ and/or ‘lack of knowledge’ in its formulation.
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Model quality

The quality of a model of a dynamic system depends on the following three
factors:

Fidelity to (experimental) data:
The results obtained from a numerical or mathematical model undergoing
a given excitation force should be close to the results obtained from the
vibration testing of the same structure undergoing the same excitation.
Robustness with respect to (random) errors:
Errors in estimating the system parameters, boundary conditions and
dynamic loads are unavoidable in practice. The output of the model
should not be very sensitive to such errors.
Predictive capability:
In general it is not possible to experimentally validate a model over the
entire domain of its scope of application. The model should predict the
response well beyond its validation domain.
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Sources of uncertainty

Different sources of uncertainties in the modeling and simulation of dynamic
systems may be attributed, but not limited, to the following factors:

Mathematical models: equations (linear, non-linear), geometry, damping
model (viscous, non-viscous, fractional derivative), boundary
conditions/initial conditions, input forces.
Model parameters: Young’s modulus, mass density, Poisson’s ratio,
damping model parameters (damping coefficient, relaxation modulus,
fractional derivative order).
Numerical algorithms: weak formulations, discretisation of displacement
fields (in finite element method), discretisation of stochastic fields (in
stochastic finite element method), approximate solution algorithms,
truncation and roundoff errors, tolerances in the optimization and iterative
methods, artificial intelligent (AI) method (choice of neural networks).
Measurements: noise, resolution (number of sensors and actuators),
experimental hardware, excitation method (nature of shakers and
hammers), excitation and measurement point, data processing
(amplification, number of data points, FFT), calibration.
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Few general questions

How does system uncertainty impact the dynamic response?
How can we model uncertainty in dynamic systems? Do we ‘know’ the
uncertainties?
How can we efficiently quantify uncertainty in the dynamic response for
large multi degrees of freedom systems?
What about using ‘black box’ type response surface methods?
Can we use modal analysis for stochastic systems? Does stochastic
systems has natural frequencies and mode shapes as we understand
them?
What about the computational cost? Can we compute stochastic
response ‘cheaply’? What are the consequences of cheap computational
techniques?
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Stochastic SDOF systems
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Consider a normalised single degrees of freedom system (SDOF):

ü(t) + 2ζωn u̇(t) + ω2
n u(t) = f (t)/m (1)

Here ωn =
√

k/m is the natural frequency and ξ = c/2
√

km is the damping
ratio.

We are interested in understanding the motion when the natural
frequency of the system is perturbed in a stochastic manner.
Stochastic perturbation can represent statistical scatter of measured
values or a lack of knowledge regarding the natural frequency.
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Frequency variability
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Figure: We assume that the mean of r is 1 and the standard deviation is σa.

Suppose the natural frequency is expressed as ω2
n = ω2

n0
r , where ωn0 is

deterministic frequency and r is a random variable with a given
probability distribution function.
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Frequency samples
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Figure: 1000 sample realisations of the frequencies for the three distributions
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Response in the time domain
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Figure: Response due to initial velocity v0 with 5% damping
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Frequency response function
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Figure: Normalised frequency response function |u/ust |2, where ust = f/k
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Key observations

The mean response response is more damped compared to deterministic
response.
The higher the randomness, the higher the “effective damping”.
The qualitative features are almost independent of the distribution the
random natural frequency.
We often use averaging to obtain more reliable experimental results - is it
always true?

Assuming uniform random variable, we aim to explain some of these
observations.
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Equivalent damping

Assume that the random natural frequencies are ω2
n = ω2

n0
(1 + εx), where

x has zero mean and unit standard deviation.
The normalised harmonic response in the frequency domain

u(iω)

f/k
=

k/m
[−ω2 + ω2

n0 (1 + εx)] + 2iξωωn0

√
1 + εx

(2)

Considering ωn0 =
√

k/m and frequency ratio r = ω/ωn0 we have

u
f/k

=
1

[(1 + εx)− r2] + 2iξr
√

1 + εx
(3)
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Equivalent damping

The squared-amplitude of the normalised dynamic response at ω = ωn0

(that is r = 1) can be obtained as

Û =

(
|u|
f/k

)2

=
1

ε2x2 + 4ξ2(1 + εx)
(4)

Since x is zero mean unit standard deviation uniform random variable, its
pdf is given by px (x) = 1/2

√
3,−
√

3 ≤ x ≤
√

3
The mean is therefore

E
[
Û
]

=

∫
1

ε2x2 + 4ξ2(1 + εx)
px (x)dx

=
1

4
√

3εξ
√

1− ξ2
tan−1

( √
3ε

2ξ
√

1− ξ2
− ξ√

1− ξ2

)

+
1

4
√

3εξ
√

1− ξ2
tan−1

( √
3ε

2ξ
√

1− ξ2
+

ξ√
1− ξ2

)
(5)
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Equivalent damping

Note that
1
2
{

tan−1(a + δ) + tan−1(a− δ)
}

= tan−1(a) + O(δ2) (6)

Provided there is a small δ, the mean response

E
[
Û
]
≈ 1

2
√

3εζn
√

1− ζ2
n

tan−1

( √
3ε

2ζn
√

1− ζ2
n

)
+ O(ζ2

n ). (7)

Considering light damping (that is, ζ2 � 1), the validity of this
approximation relies on the following inequality

√
3ε

2ζn
� ζ2

n or ε� 2√
3
ζ3

n . (8)

Since damping is usually quite small (ζn < 0.2), the above inequality will
normally hold even for systems with very small uncertainty. To give an
example, for ζn = 0.2, we get εmin = 0.0092, which is less than 0.1%
randomness.
In practice we will be interested in randomness of more than 0.1% and
consequently the criteria in Eq. (8) is likely to be met.
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Equivalent damping

For small damping, the maximum determinestic amplitude at ω = ωn0 is
1/4ξ2

e where ξe is the equivalent damping for the mean response
Therefore, the equivalent damping for the mean response is given by

(2ξe)2 =
2
√

3εξ
tan−1(

√
3ε/2ξ)

(9)

For small damping, taking the limit we can obtain1

ξe ≈
31/4√ε√

π

√
ξ (10)

The equivalent damping factor of the mean system is proportional to the
square root of the damping factor of the underlying baseline system

1Adhikari, S. and Pascual, B., ”The ’damping effect’ in the dynamic response of stochastic oscillators”, Probabilistic Engineering Mechanics, 44[4]

(2016), pp. 2-17.
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Equivalent frequency response function
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Figure: Normalised frequency response function with equivalent damping (ξe = 0.05
in the ensembles). For the two cases ξe = 0.0643 and ξe = 0.0819 respectively.
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Stochastic partial differential equation

We consider a stochastic partial differential equation (PDE) for a linear
dynamic system

ρ(r, θ)
∂2U(r, t , θ)

∂t2 + Lα
∂U(r, t , θ)

∂t
+ LβU(r, t , θ) = p(r, t) (11)

The stochastic operator Lβ can be
Lβ ≡ ∂

∂x AE(x , θ) ∂∂x axial deformation of rods

Lβ ≡ ∂2

∂x2 EI(x , θ) ∂
2

∂x2 bending deformation of beams
Lα denotes the stochastic damping, which is mostly proportional in nature.

Here α, β : Rd ×Θ→ R are stationary square integrable random fields, which
can be viewed as a set of random variables indexed by r ∈ Rd . Based on the
physical problem the random field a(r, θ) can be used to model different
physical quantities (e.g., AE(x , θ), EI(x , θ)).
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Discretisation of random fields

The random process a(r, θ) can be expressed in a generalized Fourier
type of series known as the Karhunen-Loève expansion

a(r, θ) = a0(r) +
∞∑
i=1

√
νiξi (θ)ϕi (r) (12)

Here a0(r) is the mean function, ξi (θ) are uncorrelated standard
Gaussian random variables, νi and ϕi (r) are eigenvalues and
eigenfunctions satisfying the integral equation∫

D

Ca(r1, r2)ϕj (r1)dr1 = νjϕj (r2), ∀ j = 1,2, · · · (13)
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Exponential autocorrelation function

The autocorrelation function:

C(x1, x2) = e−|x1−x2|/b (14)

The underlying random process H(x , θ) can be expanded using the
Karhunen-Loève (KL) expansion in the interval −a ≤ x ≤ a as

H(x , θ) =
∞∑
j=1

ξj (θ)
√
λjϕj (x) (15)

Using the notation c = 1/b, the corresponding eigenvalues and
eigenfunctions for odd j and even j are given by

λj =
2c

ω2
j + c2

, ϕj (x) =
cos(ωjx)√

a +
sin(2ωja)

2ωj

, where tan(ωja) =
c
ωj
,

(16)

λj =
2c

ωj
2 + c2 , ϕj (x) =

sin(ωjx)√
a−

sin(2ωja)

2ωj

, where tan(ωja) =
ωj

−c

(17)
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KL expansion
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The eigenvalues of the Karhunen-Loève expansion for different correlation
lengths, b, and the number of terms, N, required to capture 90% of the infinite
series. An exponential correlation function with unit domain (i.e., a = 1/2) is
assumed for the numerical calculations. The values of N are obtained such
that λN/λ1 = 0.1 for all correlation lengths. Only eigenvalues greater than λN
are plotted.
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Example: A beam with random properties

The equation of motion of an undamped Euler-Bernoulli beam of length L
with random bending stiffness and mass distribution:

∂2

∂x2

[
EI(x , θ)

∂2Y (x , t)
∂x2

]
+ ρA(x , θ)

∂2Y (x , t)
∂t2 = p(x , t) (18)

Y (x , t): transverse flexural displacement, EI(x): flexural rigidity, ρA(x):
mass per unit length, and p(x , t): applied forcing. Consider

EI(x , θ) = EI0 (1 + ε1F1(x , θ)) (19)
and ρA(x , θ) = ρA0 (1 + ε2F2(x , θ)) (20)

The subscript 0 indicates the mean values, 0 < εi << 1 (i=1,2) are
deterministic constants and the random fields Fi (x , θ) are taken to have
zero mean, unit standard deviation and covariance Rij (ξ).
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Random beam element

1 3

2 4

EI(x),   m(x),    c    , c
1 2

l

y

x

Random beam element in the local coordinate.
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Realisations of the random field
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Example: A beam with random properties

We express the shape functions for the finite element analysis of
Euler-Bernoulli beams as

N(x) = Γ s(x) (21)

where

Γ =



1 0
−3
`e

2
2
`e

3

0 1
−2
`e

2
1
`e

2

0 0
3
`e

2
−2
`e

3

0 0
−1
`e

2
1
`e

2


and s(x) =

[
1, x , x2, x3 ]T (22)

The element stiffness matrix:

Ke(θ) =

∫ `e

0
N
′′

(x)EI(x , θ)N
′′T

(x)dx =

∫ `e

0
EI0 (1 + ε1F1(x , θ)) N

′′
(x)N

′′T
(x)dx

(23)
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Example: A beam with random properties

Expanding the random field F1(x , θ) in KL expansion

Ke(θ) = Ke0 + ∆Ke(θ) (24)

where the deterministic and random parts are

Ke0 = EI0
∫ `e

0
N
′′

(x)N
′′T

(x) dx and ∆Ke(θ) = ε1

NK∑
j=1

ξKj (θ)
√
λKjKej

(25)
The constant NK is the number of terms retained in the Karhunen-Loève
expansion and ξKj (θ) are uncorrelated Gaussian random variables with
zero mean and unit standard deviation. The constant matrices Kej can be
expressed as

Kej = EI0
∫ `e

0
ϕKj (xe + x)N

′′
(x)N

′′T
(x) dx (26)
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Example: A beam with random properties

The mass matrix can be obtained as

Me(θ) = Me0 + ∆Me(θ) (27)

The deterministic and random parts is given by

Me0 = ρA0

∫ `e

0
N(x)NT (x) dx and ∆Me(θ) = ε2

NM∑
j=1

ξMj (θ)
√
λMjMej

(28)
The constant NM is the number of terms retained in Karhunen-Loève
expansion and the constant matrices Mej can be expressed as

Mej = ρA0

∫ `e

0
ϕMj (xe + x)N(x)NT (x) dx (29)

Both Kej and Mej can be obtained in closed-form.
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Example: A beam with random properties

These element matrices can be assembled to form the global random
stiffness and mass matrices of the form

K(θ) = K0 + ∆K(θ) and M(θ) = M0 + ∆M(θ). (30)

Here the deterministic parts K0 and M0 are the usual global stiffness and
mass matrices obtained form the conventional finite element method. The
random parts can be expressed as

∆K(θ) = ε1

NK∑
j=1

ξKj (θ)
√
λKjKj and ∆M(θ) = ε2

NM∑
j=1

ξMj (θ)
√
λMjMj (31)

The element matrices Kej and Mej can be assembled into the global matrices
Kj and Mj . The total number of random variables depend on the number of
terms used for the truncation of the infinite series. This in turn depends on the
respective correlation lengths of the underlying random fields.
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Stochastic equation of motion

The equation for motion for stochastic linear multiple-degrees-of-freedom
dynamic systems is given by

M(θ)ü(t) + C0u̇(t) + K(θ)u(t) = f0(t) (32)

with the initial conditions set as

u(0) = 0 ∈ RN and u̇(0) = 0 ∈ RN (33)

In Equation (32) M(θ) and K(θ) denote the random mass and stiffness
matrices respectively. C0 and f0(t) denote the deterministic damping
matrix and the deterministic applied force whilst t represents the time.
The displacement is represented by u(t) and (̇•) represents the
time-derivative
The random mass and stiffness matrices can be expressed as follows

M(θ) = M0 +

p1∑
j=1

µj (θ)Mj (34)

K(θ) = K0 +

p2∑
j=1

νj (θ)Kj (35)
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Stochastic equation of motion

M0 corresponds to the deterministic mass matrix and K0 to the
deterministic stiffness matrix. Mi and Ki are symmetric matrices which
contribute towards the random components of M(θ) and K(θ).
The random mass matrix has been modelled with p1 random variables
whilst the random stiffness matrix contains p2 random variables.
µi (θ) represents the random variables associated with the random mass
matrix, and νi (θ) represents the random variables associated with the
random stiffness matrix.
ζ denotes a diagonal matrix which contains modal damping factors, thus

ζ = diag[ζ1, ζ2, . . . ζN ] ∈ RN×N (36)

It it assumed that the all the diagonal entries are equal, therefore
ζ1 = ζ2 = · · · = ζN . In order to satisfy this condition, the damping matrix
C0 takes the following form

C0 = 2ζM0

√
M−1

0 K0 (37)

We have made the assumption that the deterministic damping matrix has
been simultaneously diagonalized with the mass and stiffness matrices
by utilising the deterministic undamped eigenmodes.
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Stochastic equation of motion

In order to compute the dynamic response in the frequency domain,
taking the Fourier transform of Equation (32) results in

[−ω2M(θ) + iωC0 + K(θ)]ũ(ω, θ) = f̃0(ω) (38)

Here ũ and f̃0 are the dynamic response and the forcing in the frequency
domain.
The random variables associated with both the random mass and the
stiffness matrices can be grouped so that ξj (θ) = µj (θ) for j = 1,2, . . .p1
and ξj+p1 (θ) = νj (θ) for j = 1,2, . . .p2. In turn, Equation (38) can be
re-written and expressed asD0(ω) +

M∑
j=1

ξj (θ)Dj (ω)

 ũ(ω, θ) = f̃0(ω) (39)

where D0(ω) ∈ CN×N represents the complex deterministic part of the
system and Dj (ω) ∈ RN×N the random components.
The total number of random variables, M, can be computed through
summing p1 and p2.
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Stochastic equation of motion

For the given configuration, the expressions for D0 and Dj are as follows

D0(ω) = −ω2M0 + iωC0 + K0 (40)

Dj (ω) = −ω2Mj for j = 1,2, . . . ,p1

Dj (ω) = Kj−p1 for j = p1 + 1,p1 + 2, . . . ,p1 + p2
(41)

Therefore by combining the definitions of D0(ω) and Dj (ω) with Equation
(39), all the necessary components have been obtained in order to solve
the discretized system of equations in the frequency domain.
Next we discuss general methods to obtain the solution for θ ∈ Θ and for
every frequency value ω ∈ Ω.
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Possibilities of solution types

The frequency domain response vector of the stochastic system is governed
by [

−ω2M(ξ(θ)) + iωC0 + K(ξ(θ))
]

ũ(ω, θ) = f̃0(ω) (42)
There are two broad approaches to solve this equation:

The direct Monte Carlo Simulation (MCS) which involves the generation
of samples in the space θ for all frequency values ω.
Reduced Order Methods (ROM), which generally involve a projection in a
suitable space and minimising certain error norms. Some possibilities:

ũ(ω, θ) =

P1∑
k=1

Hk (ξ(θ))uk (ω)

or =

P2∑
k=1

Γk (ω, ξ(θ))φk

or =

P3∑
k=1

ak (ω)Hk (ξ(θ))φk

or =

P4∑
k=1

ak (ω)Hk (ξ(θ))Uk (ξ(θ)) . . . etc.

(43)
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Computational paradigm for ROM

Stochastic dimension (M)

Deterministic

dimension (N)

Time

dimension (t)

open research

existing research
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Polynomial Chaos expansion

Polynomial Chaos Expansion (PCE) is a projection in the space of orthogonal
polynomials. The orthogonal polynomial basis is derived using the probability
density function of the underlying random variable.
The PCE can be written as

u(θ) =
P∑

k=1

Hk (ξ(θ))uk (44)

where Hk (ξ(θ)) are the polynomial chaoses. We need to solve a nP × nP
linear equation to obtain all uk ∈ Rn.

A0,0 · · · A0,P−1
A1,0 · · · A1,P−1

...
...

...
AP−1,0 · · · AP−1,P−1




u0
u1
...

uP−1

 =


f0
f1
...

fP−1

 (45)

The number of terms P increases exponentially with M:
M 2 3 5 10 20 50 100

2nd order PC 5 9 20 65 230 1325 5150
3rd order PC 9 19 55 285 1770 23425 176850
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Polynomial Chaos expansion for dynamics
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The application for classical PC directly leads to poor convergence of the
frequency response around the resonance2

2Jacquelin, E., Adhikari, S., Sinou, J.-J., and Friswell, M. I., Polynomial chaos expansion and steady-state response of a class of random dynamical
systems, ASCE Journal of Engineering Mechanics, Vol. 106, No. 6, 2015, pp. 061901:1-4.
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Outline of the projection methods

Three different projection methods are proposed. In order to compare the
accuracy and effectiveness of the three proposed methods, the
benchmark solution obtained by implementing a direct Monte Carlo
approach [DMCS]

ũDMCS(ω, θ) = [−ω2M(θ) + iωC0 + K(θ)]−1 f̃0(ω) (46)

for each frequency and realisation.
We aim to propose a set of methods which computes the response by
projecting onto a vector basis with scalar coefficients. The rationale
behind proposing different methods is to analyse the effect of the nature
of the coefficients and their associated vectors.

The first three methods have the following characteristics:
1 Projecting onto a stochastic basis with stochastic coefficients (M1)
2 Projecting onto a deterministic basis with stochastic coefficients (M2)
3 Projecting onto a deterministic basis with deterministic coefficients (M3)

Adhikari (Swansea) Dynamics of structures with uncertainties December 18, 2019 42



The outline of the projection methods

The basis vectors are kept independent of the frequency for
computational efficiency.
The response is represented by projecting onto a stochastic basis with
stochastic coefficients

ũ1(ω, θ) =
N∑

j=1

αj (ω, θ)aj (θ) (47)

where αj (ω, θ) ∈ C denotes the random scalars which are contained in
α(ω, θ) ∈ CN , and aj (θ) ∈ CN denotes the stochastic basis. These basis
are contained within the matrix a(θ) ∈ CN×N .
The values of αj (ω, θ) and aj (θ) can be obtained through numerous
approaches.
One such approach is by solving the following multi-objective optimisation
problem:

α̂(ω, θ) = arg min
α∈CN

||ũDMCS(ω, θ)−
N∑

j=1

αj (ω, θ)1âj (θ)||L2(Θ)×RN (48)

â(θ) = arg min
a∈CN×N

||ũDMCS(ω, θ)−
N∑

j=1

α̂j (θ)aj (ω, θ)||L2(Θ)×RN (49)
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The outline of the projection methods

While the above approach gives the generic framework for the evaluation
of the α(ω, θ) and a(θ), the process can be computationally expensive
due to the method’s slow convergence rate.
In order to avoid calculating ũDMCS(ω, θ), an expression for the above L2
relative error can be obtained by observing the residual and by noting
that the approximate error of the solution obtained when using Equation
(47) is

ε̂(ω, θ) = ũ1(ω, θ)− ũDMCS(ω, θ) (50)
Here the error measure is defined by using the DMCS approach as a
benchmark solution. A closed form of the error in the domain space of
D(ω, θ) can be obtained. The residual can be re-written as

r(ω, θ) = D(ω, θ)ũ1(ω, θ)− f̃0(ω) = D(ω, θ)
[
ũ1(ω, θ)− ũ∗(ω, θ)

]
(51)

where ũ∗(ω, θ) is the true solution of the system which can not be
evaluated exactly.
We can treat the solution of the DMCS approach, ũDMCS(ω, θ), as the
benchmark solution.
It is assumed the DMCS approach gives a better approximation of the
true solution compared to ũ1(ω, θ).
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The outline of the projection methods

Using e(ω, θ) = ũ1(ω, θ)− ũ∗(ω, θ) as the true error, we write following
Equation (51)

D(ω, θ)e(ω, θ) = r(ω, θ) (52)
Thus the resulting true error vector is obtained as

e(ω, θ) = D−1(ω, θ)r(ω, θ) (53)

But e(ω, θ) can not be computed exactly and we have to resort to the
approximate error indicator. We can define a bilinear form as
D̄(a,b) = 〈D(ω, θ)a(ω, θ),b(ω, θ)〉 where 〈·, ·〉 denotes an inner product in
L2(Θ)× RN .
Hence, from Equation (53) we can deduce

D̄(e, ε̂) = Rε̂ where Rε̂ = 〈r(ω, θ), ε̂(ω, θ)〉 (54)

Using Cauchy-Schwarz inequality, we have∣∣D̄(e, ε̂)
∣∣2 ≤ D̄(e,e) D̄(ε̂, ε̂) = ||e||E ||ε̂||E (55)

where || · ||E denotes the norm consistent with the bilinear form D̄(·, ·) on
L2(Θ)× RN (analogous to the elastic potential energy norm for structural
dynamic systems).
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The outline of the projection methods

Combining Equations (54) and (55) we obtain

|Rε̂|2

||ε̂||E
≤ ||e||E (56)

which indicates a lower bound for the true error e(ω, θ) in terms of the
approximate error indicator ε̂(ω, θ).
Note that the computation capacity required to implement such an
approach is vastly higher than that required for the benchmark solution, a
different approach is needed.
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Projecting onto a stochastic basis with stochastic coefficients (M1)

In order to implement a different approach, the generalised random
eigenvalue problem for the undamped case is considered

K(θ)φk (θ) = λk (θ)M(θ)φk (θ); k = 1,2, . . .N (57)

where λk (θ) and φk (θ) are the k th undamped random eigenvalue and
eigenvector.
For convenience, matrices that contain the whole set of random
eigenvalues and eigenvectors are defined as follows

Ω2(θ) = diag [λ1(θ), λ2(θ), . . . , λn(θ)] ∈ RN×N and

Φ(θ) = [φ1(θ),φ2(θ), . . . ,φn(θ)] ∈ RN×N
(58)

The eigenvalues are arranged in ascending order so
λ1(θ) < λ2(θ) < . . . < λn(θ) and their corresponding eigenvectors are
mass normalised and arranged in the same order.
It is apparent that

ΦT (θ)M(θ)Φ(θ) = I

ΦT (θ)K(θ)Φ(θ) = Ω2(θ)
(59)
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Projecting onto a stochastic basis with stochastic coefficients (M1)

As the undamped eigenvectors from a complete basis, it is possible to
obtain the response of Equation (39) through projecting on the undamped
eigenvectors.
This can be done through using the previous identities and the dynamic
equation

[−ω2M(θ) + iωC0 + K(θ)]ũ(ω, θ) = f̃0(ω) (60)

The modal damping matrix is defined as follows

C′(θ) = ΦT (θ)C0Φ(θ) = 2ζΩ(θ) (61)

where ζ corresponds to the diagonal modal damping matrix introduced in
Equation (36).
By using the following modal transformation ũ(ω, θ) = Φ(θ)ȳ(ω, θ) and by
pre-multiplying Equation (60) with ΦT (θ), we obtain

ΦT (θ)
{

[−ω2M(θ) + iωC0 + K(θ)]Φ(θ)
}

ȳ(ω, θ) = ΦT (θ)̃f0(ω) (62)
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Projecting onto a stochastic basis with stochastic coefficients (M1)

By combining the modal damping matrix and the orthogonality
relationships defined above, it can be shown that[

−ω2I + 2iωζΩ(θ) + Ω2(θ)
]

ȳ(ω, θ) = ΦT (θ)̃f0(ω) (63)

Then by inverting
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]
, one has

ȳ(ω, θ) =
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]−1
ΦT f̃0(ω) (64)

As
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]
is a diagonal matrix, its inverse is easy to

compute and computationally inexpensive. By pre-multiplying both sides
of the above equation with Φ(θ), we have

Φ(θ)ȳ(ω, θ) = Φ(θ)
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]−1
ΦT (θ)̃f0(ω) (65)

By reintroducing ũ(ω, θ) for Φ(θ)ȳ(ω, θ) a dynamic response in the
frequency domain can be obtained

ũ1(ω, θ) = Φ(θ)
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]−1
ΦT (θ)̃f0(ω) (66)
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Projecting onto a stochastic basis with stochastic coefficients (M1)

This expression can then be rewritten as a summation, where N
corresponds to the number of degrees of freedom associated with the
dynamic structure

ũ1(ω, θ) =
N∑

j=1

αj (ω, θ)aj (θ) =
N∑

j=1

(
φT

j (θ)̃f0(ω)

λj (θ)− ω2 + 2i
√
λj (θ)ωζ

)
φj (θ)

(67)
The response of the dynamic stochastic system under consideration has
been represented in the same form as Equation (47).
The random scalars, αj (ω, θ), correspond to the expression

φT
j (θ)

˜f0

λj (θ)−ω2+2i
√
λj (θ)ωζ

.

In turn, these random scalars are projected onto the space spanned by
φj (θ).
However, how to obtain the random eigenvalues and eigenvectors λk (θ)
and φk (θ)? [to be discussed]
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Projecting onto a deterministic basis with stochastic coefficients (M2)

If the value of N is large, the computational effort associated with
computing the undamped random eigenvalues and eigenvectors can be
considered very high.
This is especially true if we sample for every θ ∈ Θ.
In an attempt to lower the computational effort, we will consider a method
that projects random scalars onto a deterministic basis

ũ2(ω, θ) =
N∑

j=1

βj (ω, θ)bj (68)

The polynomial chaos approach is a method which projects onto a
deterministic basis with stochastic coefficients

ũ2(ω, θ) =
P∑

k=1

Hk (ξ(θ))uk (ω) (69)

where where Hk (ξ(θ)) represents the polynomial chaoses (corresponding
to the random scalars) and uk represents unknown deterministic vectors
that need to be determined.
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Projecting onto a deterministic basis with stochastic coefficients (M2)

The value of P is governed by the value of M and by the order of the
polynomial chaos expansion. However the polynomial chaos approach is
a notoriously costly method if the value of P or N is high. More
importantly the basis uk is a function of ω, thus this method does not
comply with the desired form stated earlier in this section.
Although mathematically strictly inconsistent, this method combines
undamped random eigenvalues with undamped deterministic
eigenvectors.
By exchanging the undamped random eigenvectors seen in Equation
(67) for their deterministic counterparts, the response vector for this new
method can be expressed as

ũ2(ω, θ) =
N∑

j=1

(
φT

0j
f̃0

λj (θ)− ω2 + 2i
√
λj (θ)ωζ

)
φ0j

(70)

where φ0j
denotes the j th deterministic undamped eigenvector.

Therefore we aim to see if the vast majority of the stochastic nature of the
system can be incorporated by only using the undamped random
eigenvalues.
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Projecting onto a deterministic basis with deterministic coefficients (M3)

As a simplest scenario we consider the case of when all the
eigensolutions are deemed deterministic. For this case, the response
vector takes the following form

ũ3(ω, θ) =
N∑

j=1

γ0j (ω)cj (71)

where γ0j (ω) ∈ C and cj ∈ CN are deterministic scalars and basis
respectively.
If both the undamped random eigenvalues and eigenvectors seen in
Equation (67) are exchanged for their deterministic counterpart, the
response vector can be expressed as

ũ3(ω) =
N∑

j=1

(
φT

0j
f̃0

λ0j − ω2 + 2i
√
λ0jωζ

)
φ0j

(72)

where λ0j and φ0j
denote the j th undamped deterministic eigenvalue and

eigenvector respectively.
Due to all the terms in Equation (72) being deterministic, the stochastic
nature of the system is not at all incorporated into the response vector.
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Projecting onto a deterministic basis with deterministic coefficients (M3)

Equation (72) provides the deterministic solution and therefore can be
established as a worst case scenario. However if the coefficient of
variation associated with the stochastic process is low, this method
expected to provide an adequate approximation of the mean of the true
solution.
If the matrices UDMCS ∈ CN×m and U3 ∈ CN×m contain the solution
vectors for all realisations of a given frequency for the benchmark and M3
methods, the Frobenius norm of the relative error is given by

||UDMCS − U3||F =

√√√√ N∑
i=1

m∑
j=1

∣∣{UDMCS − U3}ij
∣∣2 (73)

where m corresponds to the number of realisations.
If the matrices U1 ∈ CN×m and U2 ∈ CN×m are similarly defined for the
M1 and M2 methods the following propositions can be made

||UDMCS − U1||F ≤ ||UDMCS − U2||F ≤ ||UDMCS − U3||F (74)
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Critical review of the proposed methods

Due to both the eigenvalues and the eigenvectors retaining their
stochastic properties in M1 method, it is intuitively expected that the M1
method would induce the least amount of error.
As the entire stochasticity of the response vector is expected to be
captured by the stochastic eigenvalues in the M2 method, this method is
not expected to outperform the M1 method. In a similar manner, as the
M3 is deemed to be a worst-case scenario, naturally this method will not
outperform both the M1 and M2 methods.
At present, the computational time associated with both the M1 and M2
methods can be considered quite high, especially for a high degree of
freedom finite element system.
This is due to two reasons. The first being the large number of terms in
the summations seen in Equations (67) and (70). At present, the number
of terms in the series corresponds to the number of degrees of freedom.
Secondly, calculating the random eiegnsolutions is computationally
expensive.
Combining these reasons with the need to simulate the methods for each
θ ∈ Θ accumulates to a high computational effort.
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Approximating the undamped eigensolutions

Calculating the exact undamped random eigensolutions can be extremely
expensive, especially if the number of degrees of freedom is large.
Thus a sensitivity approach to approximate the eigensolutions could
computationally be a better option.
The random eigenvalues can be approximated as

λj ≈ λj0 +
M∑

k=1

(
∂λj

∂ξk

)
dξk (θ) (75)

where λj0 is the j th deterministic undamped eigenvalue and dξk (θ) a set
of Gaussian random variables with mean zero and unit variance.
The derivative of the undamped random eigenvalues with respect to ξk
can be obtained through differentiating and manipulating the eigenvalue
equation and is expressed through this closed-form expression

∂λj

∂ξk
=

φT
0j

[
∂K
∂ξk
− λ0j

∂M
∂ξk

]
φ0j

φT
0j

M0φ0j

(76)

where λ0j and φ0j correspond to the deterministic undamped eigenvalues
and eigenvectors.
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Approximating the undamped eigensolutions

As the deterministic undamped eigenvectors are mass normalised, the
denominator in the above equation equates to one i.e. φT

0j
M0φ0j

= 1, thus
resulting in

∂λ0j

∂ξk
= φT

0j

[
∂K
∂ξk
− λ0j

∂M
∂ξk

]
φ0j

(77)

The values of both ∂M
∂ξk

and ∂K
∂ξk

are as follows

∂M
∂ξk

=

{
Mk , for j = 1,2, . . . ,p1

0, otherwise

∂K
∂ξk

=

{
Kk−p1 , for k = p1 + 1,p1 + 2, . . . ,p1 + p2

0, otherwise

(78)

where Mk and Kk − p1 correspond to the random components of M(θ)
and K(θ) introduced through Equations (34) and (35).
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Approximating the undamped eigensolutions

In a similar manner, the random undamped eigenvectors can also be
expressed as

φj ≈ φj0 +
M∑

k=1

(
∂φj

∂ξk

)
dξk (θ) (79)

where φj0 is the j th deterministic undamped eigenvector.
The derivative of the j th undamped random eigenvector with respect to ξk
is expressed as a linear combination of deterministic eigenvectors

∂φj

∂ξk
=

N∑
r=1

αjrφ0r
(80)

The closed-form expression for
∂φj
∂ξk

is given by

∂φj

∂ξk
= −1

2

(
φT

j0
∂M
∂ξk

φj0

)
+

N∑
i=1 6=j

φT
k0

[
∂K
∂ξk
− λj0

∂M
∂ξk

]
φj0

λj0 − λk0

φk0
(81)
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Model order reduction using a reduced basis

From the ordering of the eigenvalues it can be deduced that

λ1 < λ2 < . . . < λN (82)

where λj corresponds to the j th eigenvalue.
Recall that for scalar αj the eigenvalues appear in the denominator

αj (ω, θ) =
φT

j (θ)̃f0

λj (θ)− ω2 + 2i
√
λj (θ)ωζ

(83)

For the values of j satisfying λj (θ) + 2i
√
λj (θ)ωζ > ω2, it is apparent that

the value of the denominator increases as the value of j increases.
We use this observation to truncate the three series epressions proposed
before.

Adhikari (Swansea) Dynamics of structures with uncertainties December 18, 2019 59



Model order reduction using a reduced basis

The reduced-order expressions are given by

ũ1(ω, θ) ≈
nr∑

j=1

(
φT

j (θ)̃f0

λj (θ)− ω2 + 2i
√
λj (θ)ωζ

)
φj (θ) (84)

ũ2(ω, θ) ≈
nr∑

j=1

(
φT

0j
f̃0

λj (θ)− ω2 + 2i
√
λj (θ)ωζ

)
φ0j

(85)

ũ3(ω) ≈
nr∑

j=1

(
φT

0j
f̃0

λ0j − ω2 + 2i
√
λ0jωζ

)
φ0j

(86)

Here nr < N � NP. The value of nr can be defined in two ways (a) the
value can be predefined depending on the system under consideration
(b) by selecting a value for ε which is sufficiently small, nr can be selected
such that λ0(nr )

is the largest deterministic eigenvalue that satisfies
λ01
λ0(nr )

> ε.

If the accuracy of the truncated series is not sufficient, the accuracy can
be improved by increasing the predefined value of nr or selecting a lower
value for ε.
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Galerkin error minimisation

Three different projection methods have been proposed.
The first projects random scalars onto a stochastic basis whilst the
second projects random scalars onto a deterministic basis. The third
method projects deterministic scalars onto a deterministic basis.
We have shown that it’s possible to approximate the random
eigensolutions that arise in the proposed methods in order to lower the
computational effort.
However, these approximations, in addition to the modal reduction,
introduces error into the calculation.
This has motivated an error minimisation technique through applying a
Galerkin approach.
As a result, the following three new projection methods are proposed:

Galerkin approach with projecting onto a stochastic basis with stochastic
coefficients (M1G)
Galerkin approach with projecting onto a stochastic basis with deterministic
coefficients (M2G)
Galerkin approach with projecting onto a deterministic basis with
deterministic coefficients (M3G)
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Galerkin+projecting onto a stochastic basis with stochastic coefficients
(M1G)

The response vector for the given case is modified to take the following
series representation

ũ1G(ω, θ) ≈
nr∑

j=1

cj (ω, θ)

(
φT

j (θ)̃f0

λj (θ)− ω2 + 2i
√
λj (θ)ωζ

)
φj (θ)

=
nr∑

j=1

cj (ω, θ)αj (ω, θ)φj (θ)

(87)

Here αj (ω, θ) and φj (θ) correspond to the random scalars and random
eigenvectors seen in Equation (67) whilst cj (ω, θ) ∈ C are constants
which need to be obtained for each realisation.
This can be done by applying a sample based Galerkin approach. We
initially consider the following residual

r(ω, θ) =

(
M∑

i=0

Di (ω)ξi (θ)

)(
nr∑

j=1

cj (ω, θ)αj (ω, θ)φj (θ)

)
− f̃0(ω) ∈ CN (88)

where ξ0 = 1 is used in order to simplify the summation.
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Galerkin+projecting onto a stochastic basis with stochastic coefficients
(M1G)

By making the residual orthogonal to a basis function, the unknown
cj (ω, θ) can be computed.
As Equation (87) can be viewed as a projection onto a stochastic basis,
the residual is made orthogonal to the undamped random eigenvectors

r(ω, θ) ⊥ φk (θ) ∀ k = 1,2, . . .nr (89)

As a sample based Galerkin approach is considered, applying the
orthogonality condition results in

φT
k (θ)

[(
M∑

i=0

Di (ω)ξi (θ)

)(
nr∑

j=1

cj (ω, θ)αj (ω, θ)φj (θ)

)
− φT

k (θ)̃f0(ω)

]
= 0

(90)
Through manipulating Equation (90) it is possible to re-write the equation
in the following form

nr∑
j=1

(
M∑

i=0

[
φT

k (θ)Di (ω)φj (θ)
] [
ξi (θ)αj (ω, θ)

])
︸ ︷︷ ︸

Z1(ω,θ)

cj (ω, θ)︸ ︷︷ ︸
c1(ω,θ)

= φT
k (θ)̃f0(ω)︸ ︷︷ ︸

y1(ω)

(91)
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Galerkin+projecting onto a stochastic basis with stochastic coefficients
(M1G)

By defining the vector c1 (ω, θ) = [c1 (ω, θ) c2 (ω, θ) . . . cnr (ω, θ)]T ,
Equation (91) can be re-written as

Z1(ω, θ)c1(ω, θ) = y1(ω, θ) j , k = 1,2, . . . ,nr (92)

Here Z1kj (ω, θ) =
∑M

i=0

[
φT

k (θ)Di (ω)φj (θ)
] [
ξi (θ)αj (ω, θ)

]
;

∀j , k = 1,2, . . .nr and y1(ω, θ) = φT
k (θ)̃f0(ω).

The number of equations that need to be solved in order to calculate the
unknown vector c(ω, θ) corresponds to the value of nr .
By increasing the number of terms from nr to nr + 1, the number of terms
in Z1(ω, θ) increases by 2n + 1.
Therefore the lower the dimension of the reduced system, the fewer the
number of equations that need to be solved. This is of importance as the
given procedure needs to be repeated for every realisation and for every
frequency under consideration.
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Galerkin+projecting onto a stochastic basis with deterministic
coefficients (M2G)

The response contains undamped random eigenvalues and deterministic
eigenvectors. The response vector with the Galerkin approach takes the
following form

ũ2G(ω, θ) ≈
nr∑

j=1

cj (ω, θ)

(
φT

0j
f̃0

λj (θ)− ω2 + 2i
√
λj (θ)ωζ

)
φ0j

=
nr∑

j=1

cj (ω, θ)βj (ω, θ)φ0j

(93)

Here βj (ω, θ) corresponds to the scalars introduced in Equation (70) and
φ0j

to the deterministic eigenvectors also introduced in Equation (70).

cj (ω, θ) ∈ C are the unknown constants that need to obtained for each
realisation of each frequency.
The residual is projected onto deterministic eigenvectors rather than the
random eigenvectors seen before.
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Galerkin+projecting onto a stochastic basis with deterministic
coefficients (M2G)

The unknown constants cj (ω, θ) can be computed by solving the following
set of linear equations.

Z2(ω, θ)c2(ω, θ) = y2(ω) j , k = 1,2, . . . ,nr (94)

where Z2kj (ω, θ) =
M∑

i=0

[
φT

0k
Di (ω)φ0j

] [
ξi (θ)βj (ω, θ)

]
;

βj (ω, θ) =
nr∑

j=1

(
φT

0j
f̃0

λj (θ)− ω2 + 2i
√
λj (θ)ωζ

)
y2(ω) = φT

k (θ)̃f0(ω) ∀ j , k = 1,2, . . .nr

and c2(ω, θ) is a vector that contains the unknown constants cj (ω, θ)

The number of equations that need to be solved to compute the unknown
coefficients corresponds to the number of modes retained in the reduced
model.
Note that this procedure needs to be repeated for every realisation and
for every ω ∈ Ω.
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Galerkin+projecting onto a deterministic basis with deterministic
coefficients (M3G)

A Galerkin approach can also be considered for the case that contains
undamped deterministic eigenvalues and eigenvectors. For this case, the
response vector is defined as follows

ũ3G(ω, θ) ≈
nr∑

j=1

cj (ω, θ)

(
φT

0j
f̃0

λ0j − ω2 + 2i
√
λ0jωζ

)
φ0j

=
nr∑

j=1

cj (ω, θ) γ0j (ω)φ0j

(95)

Here γ0j (ω) and φ0j
correspond to the deterministic scalars and the

undamped deterministic eigenvector introduced in Equation (72).
cj (ω, θ) ∈ C are unknown constants which need to obtained for each
realisation of each frequency.
Similarly to the two preceding methods, the following set of equations is
required to be solved for every realisation in each considered frequency

Z3(ω, θ)c3(ω, θ) = y3(ω, θ) j , k = 1,2, . . . ,nr (96)
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Galerkin+projecting onto a deterministic basis with deterministic
coefficients (M3G)

where Z3kj (ω, θ) =
M∑

i=0

[
φT

0k
Di (ω)φ0j

] [
ξi (θ)γ0j (ω)

]
;

γ0j (ω) =
nr∑

j=1

(
φT

0j
f̃0

λ0j − ω2 + 2i
√
λ0jωζ

)
y3(ω) = φT

0k
f̃0(ω) ∀ j , k = 1,2, . . .nr

and c3(ω, θ) is the vector that contains the unknown constants cj (ω, θ)

The computational effort associated with this method is considerably
lower than the other Galerkin methods as the scalars γ0j only need to be
calculated once for each given frequency.
The aim of this method is to incorporate the whole stochastic nature of
system within the unknown scalars cj (ω, θ).
This method is of significant interest as it is known that the behaviour of
deterministic and stochastic systems can differ substantially especially if
the coefficient of variation is significantly large.
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Euler-Bernoulli cantilever beam

An Euler-Bernoulli cantilever beam with stochastic bending modulus for a
specified value of the correlation length and for different degrees of
variability of the random field.

(a) Euler-Bernoulli beam
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(b) Natural frequency distribution.

Length : 1.0 m, EI = 4.66 Nm2.
Load: Unit harmonic excitation at the free end of the beam.
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Problem details

The bending modulus of the cantilever beam is taken to be a
homogeneous stationary Gaussian random field of the form

EI(x , θ) = EI0(1 + a(x , θ)) (97)

where x is the coordinate along the length of the beam, EI0 is the
estimate of the mean bending modulus, a(x , θ) is a zero mean stationary
random field.
The covariance kernel associated with this random field is

Ca(x1, x2) = σ2
ae−(|x1−x2|)/µa (98)

where µa is the correlation length and σa is the standard deviation.
A correlation length of µa = L/2 is considered in the present numerical
study.
The K.L. expansion is truncated at a finite number of terms such that 90%
variability is retained. The number of random variables M = 4.
The amplitude of the vertical displacement at the tip of the beam under
an unit harmonic point load at the free is considered.
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Problem details

The random field is assumed to be Gaussian. The results are compared with
the direct Monte Carlo Simulation results

After applying the appropriate boundary conditions, the dimension of the
corresponding discretized system is 200× 200 (N = 200)
direct MCS have been performed with 10,000 random samples and for
two different values of standard deviation of the random field,
σa = 0.05,0.2.
Constant modal damping is taken with 2% damping factor for all modes.
The number of reduced mode used nr = 12. This is a vast reduction as
188 terms have been discarded from each method.
Galerkin error minimisation technique requires a linear set of 12× 12
equations to solved for each sample. Although this could be seen as a
tedious method, the dimension of the linear equations are much smaller
than that of a 4th order polynomial chaos approach. Such an approach
for the given configuration would require a 14,000× 14,000 set of linear
equations to be solved for each frequency step.
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Mean of the response
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(a) σa = 0.05
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(b) σa = 0.20

The mean response is shown for two different values of the standard deviation
of the bending rigidity: (a) σa = 0.05 (b) σa = 0.20.
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Standard deviation of the response
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The standard deviation response is shown for two different values of the
standard deviation of the bending rigidity: (a) σa = 0.05 (b) σa = 0.20.
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The probability density function of the response
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The probability density function of the response at 84 Hz is shown for two
different values of the standard deviation of the bending rigidity: (a) σa = 0.05
(b) σa = 0.20.
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The error norm

The L2 relative error of the mean of the response vector for each
frequency step is defined as follows

ε̂
µ
L2

(ω) =
||µDMCS(ω)− µCM(ω)||L2

||µDMCS(ω)||L2

(99)

Here µDMCS denotes the mean of the response vector obtained by using
the DMCS method and µCM denotes the mean of the response vector
obtained by using a comparable method.
This norm ensures that the error arising from each of the projection
methods are characterised by a single value for each ω ∈ Ω.
We obtain the log of the L2 relative error for different values of nr for both
values of σa.

Adhikari (Swansea) Dynamics of structures with uncertainties December 18, 2019 75



L2 relative error for the mean response for σa = 0.5 for different nr (y-axis)
and different values of frequency (x-axis)
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L2 relative error for the mean response for σa = 0.20 for different nr
(y-axis) and different values of frequency (x-axis)
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L2 relative error for the response standard deviation for σa = 0.5 for
different nr (y-axis) and different values of frequency (x-axis)
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L2 relative error for the response standard deviation for σa = 0.20 for
different nr (y-axis) and different values of frequency (x-axis)
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L2 relative error of the mean of the response

Number M1 M2 M3 M1G M2G M3G
of modes

σa = 0.05 6 0.0071 0.0075 0.3126 0.0064 0.0064 0.0064
9 0.0042 0.0048 0.3136 0.0024 0.0024 0.0024

12 0.0038 0.0044 0.3139 0.0012 0.0012 0.0012
15 0.0037 0.0044 0.3140 0.0007 0.0007 0.0007
18 0.0037 0.0043 0.3141 0.0004 0.0004 0.0004

σa = 0.20 6 0.0193 0.0197 1.7920 0.0152 0.0152 0.0152
9 0.0159 0.0154 1.7942 0.0054 0.0054 0.0054

12 0.0158 0.0151 1.7942 0.0027 0.0027 0.0027
15 0.0158 0.0151 1.7949 0.0016 0.0016 0.0016
18 0.0158 0.0151 1.7952 0.0010 0.0100 0.0010

Table: The L2 relative error of the mean of the response vector obtained by using the
six reduced order methods for different values of nr . The approximate L2 relative error
is shown for two different values of the standard deviation of the bending rigidity: (a)
σa = 0.05 (b) σa = 0.20 at a frequency of 42 Hz.
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L2 relative error of the standard deviation of the response

Number M1 M2 M3 M1G M2G M3G
of modes

σa = 0.05 6 0.0149 0.0166 1.0000 0.0004 0.0004 0.0004
9 0.0147 0.0166 1.0000 0.0001 0.0001 0.0001

12 0.0147 0.0166 1.0000 4× 10−5 4× 10−5 4× 10−5

15 0.0147 0.0166 1.0000 1× 10−5 1× 10−5 1× 10−5

18 0.0147 0.0166 1.0000 1× 10−5 1× 10−5 1× 10−5

σa = 0.20 6 0.0134 0.0214 1.0000 0.0005 0.0005 0.0005
9 0.0132 0.0213 1.0000 0.0002 0.0002 0.0002

12 0.0132 0.0213 1.0000 0.0001 0.0001 0.0001
15 0.0132 0.0213 1.0000 0.0001 0.0001 0.0001
18 0.0132 0.0213 1.0000 3× 10−5 3× 10−5 3× 10−5

Table: The approximate L2 relative error of the standard deviation of the response
vector obtained by using the six reduced order methods for different values of nr . The
approximate L2 relative error is shown for two different values of the standard deviation
of the bending rigidity: (a) σa = 0.05 (b) σa = 0.20 at a frequency of 42 Hz.
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Kirchhoff-Love plate

Figure: The configuration of the stochastic Kirchhoff-Love plate with a harmonic point
load asserted at coordinate (0.42, 0.00).

The rectangular plate under consideration has a length (L) of 1.00 m and
a width (W ) of 0.56 m.
The centre of the plate has coordinates (0.00, 0.00).
The plate is clamped along its width (x = −0.50 m), thus the
displacement and rotational degrees of freedom along the clamped edge
are zero.
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Kirchhoff-Love plate

The bending rigidity of the plate, D, can be assumed to be a stationary
Gaussian random filed of the form

D(x , y , θ) = D(1 + a(x , y , θ)) (100)

Here a(x , y , θ) is a stationary Gaussian field with zero mean and x and y
the coordinate directions of the length and width of the plate. D
corresponds to the deterministic value of the bending rigidity of the plate.
The correlation function of the random field can be assumed to take the
following form

Ca(x1, x2, y1, y2) = σ2
ae−(|x1−x2|)/µx e−(|y1−y2|)/µy (101)

where σa is the standard deviation of the bending rigidity, and µx and µy
are the correlation lengths for both the x and y directions respectively.
The forcing vector is again deemed deterministic with an unit norm. This
is applied as a harmonic point load at coordinate (0.42,0.00). The
deterministic modal damping matrix consists of a 2% damping factor for
each mode.
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Kirchhoff-Love plate

The parameters of the plate are as follows: thickness h = 0.003 m, mass
density ρ = 7860 kg m−3 and a Young’s modulus of E = 200× 109 Nm−2

thus resulting in D0 = 494.51 Nm.
The correlation length is set at µx = L

5 i.e. a fifth of respective length in
the x direction, and set at µy = W

5 in the y direction.
The thin plate has been divided into 25 elements in the x direction and 14
elements in the y direction. This leads to the system containing 1,125
degrees of freedom (N = 1125).
Three terms have been retained in the KL expansion along both the x
and y axis. Thus by using a tensor product the full KL expression for the
whole system contains 9 random variables (M = 9).
The response of the plate has been analysed for two different values of
the standard deviation

σa = {0.05,0.15} (102)
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Kirchhoff-Love plate

For the case of the unit amplitude harmonic point load acting on plate, the
frequency range under consideration is 0− 200 Hz at an interval of 2 Hz.
This corresponds to considering 101 different frequency values. 5,000
samples have been considered for each frequency step. 5,000 samples
gives a satisfactory convergence for the first two moments of the
quantities of interest.
For each of the proposed methods thirty terms have been retained in
their respective summations, hence nr = 30.
If all the terms were retained, all the summations would contain 1,125
terms.
The methods implementing the Galerkin error minimisation technique
require a linear set of 30× 30 equations to be solved for each sample.
In comparison, a fourth order polynomial chaos method would require a
804,375× 804,375 set of linear equations to be solved for each
frequency step. Solving a set of linear equations of such a high
dimension would require a large computational effort.
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Mean of the response at the corner of the plate (0.50,−0.28)
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(b) σa = 0.15

The mean response is shown for two different values of the standard deviation
of the bending rigidity: (a) σa = 0.05 (b) σa = 0.15.
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Standard deviation of the response at the corner of the plate (0.50,−0.28)
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(b) σa = 0.15

The standard deviation response is shown for two different values of the
standard deviation of the bending rigidity: (a) σa = 0.05 (b) σa = 0.15.
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The L2 relative error of the mean of the response
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The relative error norm of the mean is shown for two different values of the
standard deviation of the bending rigidity: (a) σa = 0.05 (b) σa = 0.15.
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The L2 relative error of the response standard deviation
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The relative error norm of the standard deviation is shown for two different
values of the standard deviation of the bending rigidity: (a) σa = 0.05 (b)
σa = 0.15.
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The probability density function of the response at 168 Hz at (0.42,0.00)
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168 Hz corresponds to the 16th deterministic resonance frequency. The
probability density function of the response at (0.42,0.00) is shown for two
different values of the standard deviation of the bending rigidity: (a) σa = 0.05
(b) σa = 0.15.
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Summary and Conclusion

Three projection methods have been developed by utilising the random
eigenvalue problem.
The first method utilises both random eigenvalues and eigenvectors, the
second random eigenvalues and deterministic eigenvectors and the third
only uses deterministic eigensolutions.
In order to reduce the computational effort associated with each of these
methods, the random eigensolutions have been approximated by a first
order perturbation and only the dominant projection terms have been
retained.
Due to the approximations and the reduced modal basis, three additional
projection methods have been proposed. These methods utilise a sample
based Galerkin error minimization approach in order to lower the error.
Both the coefficients and their corresponding basis have been computed
by utilising the stochastic and deterministic eigensolutions of the
structural system.
The computational effort is reduced by approximating the stochastic
eigensolutions and by reducing the modal basis.
To compensate for the error induced by the computational reduction a
sample based Galerkin error minimization approach is presented.
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Summary and Conclusion

If the sample based Galerkin error minimization approach is omitted it is
necessary for both the coefficients and their associated basis to be
stochastic in order to capture an accurate response for a system.
If the Galerkin error minimization approach is applied calculating the
stochastic eigensolutions is unwarranted. The accuracy of the response
is equally as good if deterministic basis and deterministic coefficients are
utilised.
It is apparent that if the sample based Galerkin error minimization
approach were not to be implemented the stochastic properties of the
random eigenvalues and eigenvectors must be retained in order to
capture the variation of the governing equation.
A surprising outcome is that the application of the Galerkin error
minimization approach in conjunction with projecting onto a deterministic
basis with deterministic coefficients (M3G) produces a level of accuracy
compared with to any of the other proposed methods. Although appears
to be non-intuitive, our study leads us to suggest that this simple
approach has significant potential for analysing stochastic structural
systems.
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Summary and Conclusion

Method
Form of the

Coefficient Basis
Vector of

response Galerkin
vector coefficients

M1
∑nr

j=1 αj (ω, θ)aj (θ)
φT

j (θ)
˜f0

λj (θ)−ω2+2i
√
λj (θ)ωζ

φj (θ) -

M2
∑nr

j=1 βj (ω, θ)bj
φT

j0

˜f0

λj (θ)−ω2+2i
√
λj (θ)ωζ

φj0 -

M3
∑N

j=1 γj (ω)cj
φT

j0

˜f0

λj0
−ω2+2i

√
λj0
ωζ

φj0 -

M1G
∑nr

j=1 cj (ω, θ)αj (ω, θ)aj (θ)
φT

j (θ)
˜f0

λj (θ)−ω2+2i
√
λj (θ)ωζ

φj (θ) Z−1
1 (θ, ω)y1(θ, ω)

M2G
∑nr

j=1 cj (ω, θ)βj (ω, θ)bj
φT

j0

˜f0

λj (θ)−ω2+2i
√
λj (θ)ωζ

φj0 Z−1
2 (θ, ω)y2(ω)

M3G
∑nr

j=1 cj (ω, θ)γj (ω)cj
φT

j0

˜f0

λj0
−ω2+2i

√
λj0
ωζ

φj0 Z−1
3 (θ, ω)y3(ω)

Table: Summary of the proposed methods
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