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Lattice based metamaterials

• Metamaterials are artificial materials designed to outperform
naturally occurring materials in various fronts. These include, but
are not limited to, electromagnetics, acoustics, optics, terahertz,
infrared, dynamics and mechanical properties.

• Lattice based metamaterials are abundant in man-made and
natural systems at various length scales

• Lattice based metamaterials are made of periodic
identical/near-identical geometric units
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Hexagonal lattices in 2D

• Among various lattice geometries (triangle, square, rectangle,
pentagon, hexagon), hexagonal lattice is most common (note
that hexagon is the highest “space filling” pattern in 2D).

• This talk is about in-plane viscoelastic properties of 2D
hexagonal lattice structures - commonly known as “honeycombs”
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Lattice structures - nano scale

Illustrations of a single layer graphene sheet and a born nitride nano sheet
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Lattice structures - nature

Top left: cork, top right: balsa, next down left: sponge, next down right: trabecular bone, next down left: coral, next down right: cuttlefish bone, bottom left:
leaf tissue, bottom right: plant stem, third column - epidermal cells (from web.mit.edu)
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Some questions of general interest

• Shall we consider lattices as “structures” or “materials” from a
mechanics point of view?

• At what relative length-scale a lattice structure can be
considered as a material with equivalent elastic properties?

• In what ways structural irregularities “mess up” equivalent elastic
/ viscoelastic properties? Can we evaluate it in a quantitative as
well as in a qualitative manner?

• What is the consequence of random structural irregularities on
the homogenisation approach in general? Can we obtain
statistical measures?

• How can we efficiently compute equivalent elastic / viscoelastic
properties of random lattice structures?
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Regular lattice structures

• Hexagonal lattice structures have been modelled as a continuous
solid with an equivalent elastic moduli throughout its domain.

• This approach eliminates the need of detail finite element
modelling of lattices in complex structural systems like sandwich
structures.

• Extensive amount of research has been carried out to predict the
equivalent elastic / viscoelastic properties of regular lattices
consisting of perfectly periodic hexagonal cells (Gibson and
Ashby, 1999).

• Analysis of two dimensional hexagonal lattices dealing with
in-plane elastic properties are commonly based on an unit cell
approach, which is applicable only for perfectly periodic cellular
structures.

• For the dynamic analysis of perfectly periodic structures,
Floquet-Bloch theorem is normally employed to characterise
wave propagation.
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Equivalent elastic properties of regular hexagonal
lattices

• Unit cell approach - Gibson and Ashby (1999)

(a) Regular hexagon (θ = 30◦) (b) Unit cell

• We are interested in homogenised equivalent in-plane elastic
properties

• This way, we can avoid a detailed structural analysis considering
all the beams and treat it as a material
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Equivalent elastic properties of regular hexagonal
lattices

• The cell walls are treated as beams of thickness t , depth b and
Young’s modulus Es. l and h are the lengths of inclined cell walls
having inclination angle θ and the vertical cell walls respectively.

• The equivalent elastic properties are:
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)3 cos θ
( h

l + sin θ) sin2 θ
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Finite element modelling and verification
• A finite element code has been developed to obtain the in-plane

elastic moduli numerically for hexagonal lattices.
• Each cell wall has been modelled as an Euler-Bernoulli beam

element having three degrees of freedom at each node.
• For E1 and ν12: two opposite edges parallel to direction-2 of the

entire hexagonal lattice structure are considered. Along one of
these two edges, uniform stress parallel to direction-1 is applied
while the opposite edge is restrained against translation in
direction-1. Remaining two edges (parallel to direction-1) are
kept free.

• For E2 and ν21: two opposite edges parallel to direction-1 of the
entire hexagonal lattice structure are considered. Along one of
these two edges, uniform stress parallel to direction-2 is applied
while the opposite edge is restrained against translation in
direction-2. Remaining two edges (parallel to direction-2) are
kept free.

• For G12: uniform shear stress is applied along one edge keeping
the opposite edge restrained against translation in direction-1
and 2, while the remaining two edges are kept free.
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Finite element modelling and verification
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Irregular lattice structures

(c) Cedar wood (d) Manufactured honeycomb core

(e) Graphene image (f) Fabricated CNT surface
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Irregular lattice structures
• A significant limitation of the aforementioned unit cell approach is

that it cannot account for the spatial irregularity, which is
practically inevitable.

• Spatial irregularity may occur due to manufacturing uncertainty,
structural defects, variation in temperature, pre-stressing and
micro-structural variabilities.

• To include the effect of irregularity, voronoi honeycombs have
been considered in several studies.

• The effect of different forms of irregularity on elastic properties
and structural responses of hexagonal lattices are generally
based on direct finite element (FE) simulation.

• In the FE approach, a small change in geometry of a single cell
may require completely new geometry and meshing of the entire
structure. In general this makes the entire process time
consuming and tedious.

• The problem becomes worse for uncertainty quantification of the
responses, where the expensive finite element model is needed
to be simulated for a large number of samples while using a
Monte Carlo based approach.
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Examples of some viscoelastic materials

(g) Viscoelastic foam (h) Viscoelastic membrane

(i) Viscoelastic sheet (j) Viscoelastic sheet
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Fundamental equation for the viscoelastic behaviour
• When a linear viscoelastic model is employed, the stress at

some point of a structure can be expressed as a convolution
integral over a kernel function as

σ(t) =

∫ t

−∞
g(t − τ)

∂ε(τ)

∂τ
τ (6)

• t ∈ R+ is the time, σ(t) is stress and ε(t) is strain.
• The kernel function g(t) also known as ‘hereditary function’,

‘relaxation function’ or ‘after-effect function’ in the context of
different subjects.

• In practice, the kernel function is often defined in the frequency
domain (or Laplace domain). Taking the Laplace transform of
Equation (6), we have

σ̄(s) = sḠ(s)ε̄(s) (7)

Here σ̄(s), ε̄(s) and Ḡ(s) are Laplace transforms of σ(t), ε(t) and
g(t) respectively and s ∈ C is the (complex) Laplace domain
parameter.
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Mathematical representation of the kernel function
• The kernel function in Equation (7) is a complex function in the

frequency domain. For notational convenience we denote

Ḡ(s) = Ḡ(iω) = G(ω) (8)

where ω ∈ R+ is the frequency.
• The complex modulus G(ω) can be expressed in terms of its real

and imaginary parts or in terms of its amplitude and phase as
follows

G(ω) = G′(ω) + iG′′(ω) = |G(ω)|eiφ(ω) (9)

The real and imaginary parts of the complex modulus, that is,
G′(ω) and G′′(ω) are also known as the storage and loss moduli
respectively.

• One of the main restriction on the form of the kernel function
comes from the fact that the response of the structure must not
start before the application of the forces.

• This causality condition imposes a mathematical relationship
between real and imaginary parts of the complex modulus,
known as Kramers-Kronig relations
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Mathematical representation of the kernel function
• Kramers-Kronig relations specifies that the real and imaginary

parts should be related by a Hilbert transform pair, but can be
general otherwise. Mathematically this can be expressed as

G′(ω) = G∞ +
2
π

∫ ∞
0

uG′′(u)

ω2 − u2 du

G′′(ω) =
2ω
π

∫ ∞
0

G′(u)

u2 − ω2 du
(10)

where the unrelaxed modulus G∞ = G(ω →∞) ∈ R.
• Equivalent relationships linking the modulus and the phase of

G(ω) can expressed as

ln |G′(ω)| = ln |G∞|+
2
π

∫ ∞
0

uφ(u)

ω2 − u2 du

φ(ω) =
2ω
π

∫ ∞
0

ln |G(u)|
u2 − ω2 du

(11)

• Complex modulus derived using a physics based principle
automatically satisfy these conditions. However, there can be
many other function which would also satisfy these condition.
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Viscoelastic models

(k) Maxwell model (l) Voigt model

(m) Standard linear model (n) Generalised Maxwell model

Figure: Springs and dashpots based models viscoelastic materials.
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Viscoelastic models

The viscoelastic kernel function can be expressed for the four models
as
• Maxwell model:

g(t) = µe−(µ/η)tU(t) (12)

• Voigt model:
g(t) = ηδ(t) + µU(t) (13)

• Standard linear model:

g(t) = ER

[
1− (1− τσ

τε
)e−t/τε

]
U(t) (14)

• Generalised Maxwell model:

g(t) =

 n∑
j=1

µje−(µj/ηj )t

U(t) (15)

Models similar to this is also known as the Pony series model.
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Viscoelastic models

Viscoelastic
model

Complex modulus
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]
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1 + η 1+2(st0/π)2−e−st0

1+2(st0/π)2
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[
1 + η eω

2/4µ
{

1− erf
(

iω
2
√
µ

)}]
Complex modulus for some viscoelastic models in the frequency

domain
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The Biot Model
• We consider that each constitutive element of a hexagonal unit

within the lattice structure is modelled using viscoelastic
properties. For simplicity, we use Biot model with only one term.
Frequency dependent complex elastic modulus for an element is
expresses as

E(ω) = ES

(
1 + ε

iω

µ+ iω

)
(16)

where µ and ε are the relaxation parameter and a constant
defining the ‘strength’ of viscosity, respectively. Es is the intrinsic
Young’s modulus.

• The amplitude of this complex elastic modulus is given by

|E(ω)| = ES

√
µ2 + ω2 (1 + ε)2

µ2 + ω2 (17)

• The phase (φ) of this complex elastic modulus is given by

φ
(
E(ω)

)
= tan−1

(
εµω

µ2 + ω2(1 + ε)

)
(18)
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Mathematical idealisation of irregularity in lattice
structures
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Irregular honeycombs

• Random spatial irregularity in cell angle is considered in this
study.
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Irregular lattice structures

• The equivalent elastic properties for a regular lattice:

E1 = Es

(
t
l

)3 cos θ
( h

l + sin θ) sin2 θ
(19)

E2 = Es

(
t
l

)3 ( h
l + sin θ)

cos3 θ
(20)

ν12 =
cos2 θ

( h
l + sin θ) sin θ

(21)

ν21 =
( h

l + sin θ) sin θ
cos2 θ

(22)

G12 = Es

(
t
l

)3 ( h
l + sin θ

)( h
l

)2
(1 + 2 h

l ) cos θ
(23)

• Parameters of these expressions CANNOT be randomised to
obtain equivalent properties for an irregular lattice.
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Irregular lattice structures

• Direct numerical simulation to deal with irregularity in lattice
structures may not necessarily provide proper understanding of
the underlying physics of the system. An analytical approach
could be a simple, insightful, yet an efficient way to obtain
effective elastic properties of lattice structures.

• This work develops a structural mechanics based analytical
framework for predicting equivalent in-plane elastic properties of
irregular lattices having spatially random variations in cell angles.

• Closed-form analytical expressions will be derived for equivalent
in-plane elastic properties.

• An approach based on the frequency-domain representation of
the viscoelastic property of the constituent elements in the cells
is used.
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The philosophy of the analytical approach for
irregular lattices

(a)
Typical representation of an irregular lattice (b) Representative unit
cell element (RUCE) (c) Illustration to define degree of irregularity (d)
Unit cell considered for regular hexagonal lattice by Gibson and
Ashby (1999).
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The idealisation of RUCE and the bottom-up
homogenisation approach

Adhikari (Swansea) Disordered viscoelastic lattice metamaterials June 16, 2017 28



Unit cell geometry

(a) Classical unit cell for regular lattices (b) Representative unit cell
element (RUCE) geometry for irregular lattices
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RUCE and free-body diagram for the derivation of E1
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Longitudinal Young’s modulus for an idealized RUCE
• Stress σ1 is applied in direction-1 for deriving the expression of

longitudinal Young’s modulus for a single RUCE (E1U ). From the
condition of vertical equilibrium, it can be concluded that the
vertical forces acting on points A and B should be of equal
magnitude and opposite sign.

• The horizontal forces acting on points A and B can be expressed
as P = σ1Ly b, where Ly represents the length CD and b is the
height of honeycomb sheet (dimension perpendicular to the 1-2
plane).

• The moments M1 and M2 can be expressed as

M1 =
1
2

(Pl1 sinα− Cl1 cosα) (24)

M2 =
1
2

(Pl2 sinβ − Cl2 cosβ) (25)

• Considering the rotational equilibrium of the free-body diagram
presented in, the expression for C can be obtained as

C = P
(

l1 sinα− l2 sinβ
l1 cosα− l2 cosβ

)
(26)
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Longitudinal Young’s modulus for an idealized RUCE

• The horizontal deflection of point A with respect to point O (δh
AO)

consists of the deflection due to force P and the force C

δh
AO =

(
Pl31 sinα

12EsI
−

Cl31 cosα
12EsI

)
sinα (27)

where the first and second terms in the bracket represents the
deflection of point A with respect to point O in the direction
perpendicular to AO due to forces P and C respectively.

• The superscript h is used to represent horizontal direction of the
applied stress. Here, Es represents the intrinsic material property
of the material, by which the honeycomb cell walls (/connecting
members) are made of.

• The notation I represents the second moment of area of the cell
walls, i.e. I = bt3/12, where t denotes the thickness of
honeycomb cell wall.
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Longitudinal Young’s modulus for an idealized RUCE

• The horizontal deflection of point B with respect to point O can
be expressed as

δh
BO =

(
Pl32 sinβ
12EsI

−
Cl31 cosβ

12EsI

)
sinβ (28)

• The distance of the point vertically below joint O and on the line
AB is given by

δO =
l2 sinβl1 cosα− l1 sinαl2 cosβ

l1 cosα− l2 cosβ
(29)

Considering a linear strain field along the line AB, the effective
horizontal deformation of the RUCE is given by

δh
1 = δh

AO
δO

l1 sinα
+ δh

BO
δO

l2 sinβ

=
σ1Ly l21 l22 (l1 + l2) (cosα sinβ − sinα cosβ)2

Est3 (l1 cosα− l2 cosβ)2

(30)
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Longitudinal Young’s modulus for an idealized RUCE

• The strain in direction-1 can be obtained from 25 as

εh1 =
σ1Ly l21 l22 (l1 + l2) (cosα sinβ − sinα cosβ)2

Est3 (l1 cosα− l2 cosβ)3 (31)

From 26, elastic modulus of a single RUCE in direction-1 is
expressed as

E1U =
Est3 (l1 cosα− l2 cosβ)3

Ly l21 l22 (l1 + l2) (cosα sinβ − sinα cosβ)2 (32)
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Longitudinal Young’s modulus for a Non-idealized
RUCE

Figure: Idealization scheme of RUCE and the irregular lattice structure

• The expression of E1U is for a non-idealized RUCE having a
dimension of Ly in direction-2. However, for assembling the local
properties of RUCEs conveniently to the global level, it is
essential to obtain the equivalent material property of an
idealized RUCE (E I

1U ) that has a virtual dimension of Lj
(dimension of the j th strip in direction-2).
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Longitudinal Young’s modulus for a Non-idealized
RUCE

• Considering a linear strain field, E I
1U can be obtained based on

the deformation compatibility condition along direction-1, i. e. the
deformation of the idealized RUCE and non-idealized RUCE in
direction-1 should be equal

PBij

ANIE1U
=

PBij

AIE I
1U

(33)

Here ANI = Ly b and AI = Ljb. The above equation can be
reduced to

E I
1U = E1U

Ly

Lj
(34)
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Transverse Young’s modulus of the entire irregular
lattice

• The deformation compatibility of j th strip ensures that the total
deformation of the strip in direction-1 due to stress σ1 (∆1j ) is the
summation of individual deformations in direction-1 of each
idealized RUCE (∆1ij ), while deformation of the idealized RUCEs
of that strip in direction-2 are same. Thus for the j th strip

∆1j =
m∑

i=1

∆1ij (35)

• The 30 can be rewritten as

ε1jBj =
m∑

i=1

ε1ijBij (36)

where ε1j and Bj represent total strain and dimension in
direction-1 for the j th strip. Here Bij =

(
l1ij cosαij − l2ij cosβij

)
and

Bj =
∑m

i=1 Bij .
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Transverse Young’s modulus of the entire irregular
lattice

• Equation (31) leads to

σ1Bj

Ê1j
=

m∑
i=1

σ1Bij

E I
1Uij

(37)

From 32, equivalent Young’s modulus of j th strip (Ê1j ) can be
expressed as

Ê1j =
Bj

m∑
i=1

Bij

E I
1Uij

(38)

where E I
1Uij is the equivalent longitudinal elastic modulus in

direction-1 of a single idealized RUCE positioned at (i ,j) that can
be obtained from equation (29).

• In the next step, closed-form expression for equivalent
longitudinal Young’s modulus of the entire irregular lattice (E1eq)
is obtained using the equivalent longitudinal Young’s modulus for
a single strip (Ê1j ).
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Transverse Young’s modulus of the entire irregular
lattice

• Employing the force equilibrium conditions and deformation
compatibility condition we have

σ1Lb =
n∑

j=1

σ1jLjb (39)

where Lj is the dimension of j th strip in direction-2 and L =
n∑

j=1
Lj .

The notation b represents the dimension of the lattice in the
perpendicular direction to 1-2 plane.

• As strains in direction-1 for each of the n strips are the same to
satisfy the deformation compatibility condition, equation (34)
leads to

E1eqL =
n∑

j=1

Ê1jLj (40)
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Transverse Young’s modulus of the entire irregular
lattice

• Using 33 and 35, the equivalent Young’s modulus in direction-1
of the entire irregular honeycomb structure (E1eq) can be
expressed as

E1eq =
1
L

n∑
j=1

BjLj
m∑

i=1

Bij

E I
1Uij

(41)

• From equations (27), (29) and (36), the expression for the
longitudinal elastic modulus of the entire irregular lattice can be
written as

E1eq =
Est3

L

n∑
j=1

m∑
i=1

(
l1ij cosαij − l2ij cosβij

)
m∑

i=1

l21ij l
2
2ij

(
l1ij + l2ij

) (
cosαij sinβij − sinαij cosβij

)2(
l1ij cosαij − l2ij cosβij

)2

(42)
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RUCE and free-body diagram for the derivation of E2
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RUCE and free-body diagram for the derivation of
G12
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Equivalent E1,E2

Equivalent E1

E1v (ω) =
t3

L

n∑
j=1

m∑
i=1

(
l1ij cosαij − l2ij cosβij

)
m∑

i=1

l21ij l
2
2ij

(
l1ij + l2ij

) (
cosαij sinβij − sinαij cosβij

)2

Esij

(
1 + εij

iω

µij + iω

)
(
(
l1ij cosαij − l2ij cosβij

)2
)

(43)

Equivalent Young’s moduli E2

E2v (ω) =
Lt3

n∑
j=1

m∑
i=1

(
l1ij cosαij − l2ij cosβij

)
m∑

i=1
Esij

(
1 + εij

iω

µij + iω

)(
l23ij cos2 γij

(
l3ij +

l1ij l2ij
l1ij +l2ij

)
+

l21ij l
2
2ij(l1ij +l2ij) cos2 αij cos2 βij

(l1ij cosαij−l2ij cos βij)
2

)−1

(44)
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Equivalent shear Modulus G12

Equivalent G12

G12v (ω) =
Lt3

n∑
j=1

m∑
i=1

(
l1ij cosαij − l2ij cosβij

)
m∑

i=1
Esij

(
1 + εij

iω

µij + iω

)(
l23ij sin2 γij

(
l3ij +

l1ij l2ij
l1ij +l2ij

))−1

(45)
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Poisson’s ratios ν12, ν21

Equivalent ν12

ν12eq = −1
L

n∑
j=1

m∑
i=1

(
l1ij cosαij − l2ij cosβij

)
m∑

i=1

(
cosαij sinβij − sinαij cosβij

)
cosαij cosβij

(46)

Equivalent ν21

ν21eq = − L

n∑
j=1

m∑
i=1

(
l1ij cosαij − l2ij cosβij

)
m∑

i=1

l21ij l
2
2ij

(
l1ij + l2ij

)
cosαij cosβij

(
cosαij sinβij − sinαij cosβij

)
(
l1ij cosαij − l2ij cosβij

)2
(

l23ij cos2 γij

(
l3ij +

l1ij l2ij
l1ij +l2ij

)
+

l21ij l
2
2ij(l1ij +l2ij) cos2 αij cos2 βij

(l1ij cosαij−l2ij cos βij)
2

)
(47)
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Only spatial variation of the material properties

• According to the notations used for a regular lattice by Gibson
and Ashby (1999), the notations for lattices without any structural
irregularity can be expressed as: L = n(h + l sin θ);
l1ij = l2ij = l3ij = l ; αij = θ; βij = 180◦ − θ; γij = 90◦, for all i and j .

• Using these transformations in case of the spatial variation of
only material properties, the closed-form formulae for compound
variation of material and geometric properties (equations 38–40)
can be reduced to:

E1v = κ1

(
t
l

)3 cos θ
( h

l + sin θ) sin2 θ
(48)

E2v = κ2

(
t
l

)3 ( h
l + sin θ)

cos3 θ
(49)

and G12v = κ2

(
t
l

)3 ( h
l + sin θ

)( h
l

)2
(1 + 2 h

l ) cos θ
(50)
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Only spatial variation of the material properties
• The multiplication factors κ1 and κ2 arising due to the

consideration of spatially random variation of intrinsic material
properties can be expressed as

κ1 =
m
n

n∑
j=1

1
m∑

i=1

1

Esij

(
1 + εij

iω

µij + iω

) (51)

and κ2 =
n
m

1
n∑

j=1

1
m∑

i=1
Esij

(
1 + εij

iω

µij + iω

) (52)

• In the special case when ω → 0 and there is no spatial variabilities in the
material properties of the lattice, all viscoelastic material properties
become identical (i.e. Esij = Es, µij = µ and εij = ε for i = 1, 2, 3, ...,m
and j = 1, 2, 3, ..., n) and subsequently the amplitude of κ1 and κ2

becomes exactly 1. This confirms that the expressions in 46 and 47 give
the necessary generalisations of the classical expressions of Gibson
and Ashby (1999) through 43–45.
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Only geometric irregularities

• In case of only spatially random variation of structural geometry
but constant viscoelastic material properties (i.e. Esij = Es,
µij = µ and εij = ε for i = 1,2,3, ...,m and j = 1,2,3, ...,n) the
38–40 lead to

E1v = ES

(
1 + ε

iω

µ+ iω

)
ζ1 (53)

E2v = ES

(
1 + ε

iω

µ+ iω

)
ζ2 (54)

G12v = ES

(
1 + ε

iω

µ+ iω

)
ζ3 (55)
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Only geometric irregularities
• The random coefficients ζi (i = 1, 2, 3) are

ζ1 =
t3

L

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cosβij)

m∑
i=1

l2
1ij l

2
2ij (l1ij + l2ij) (cosαij sinβij − sinαij cosβij)

2

(l1ij cosαij − l2ij cosβij)
2

(56)

ζ2 =
Lt3

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cosβij)

m∑
i=1

(
l2
3ij cos2 γij

(
l3ij +

l1ij l2ij
l1ij +l2ij

)
+

l21ij l
2
2ij(l1ij +l2ij) cos2 αij cos2 βij

(l1ij cosαij−l2ij cos βij)
2

)−1

(57)

ζ3 =
Lt3

n∑
j=1

m∑
i=1

(l1ij cosαij − l2ij cosβij)

m∑
i=1

(
l2
3ij sin2 γij

(
l3ij +

l1ij l2ij
l1ij +l2ij

))−1

(58)

Adhikari (Swansea) Disordered viscoelastic lattice metamaterials June 16, 2017 49



Regular hexagonal lattices

• The geometric notations for regular lattices can be expressed as:
L = n(h + l sin θ); l1ij = l2ij = l3ij = l ; αij = θ; βij = 180◦ − θ; γij = 90◦, for
all i and j . Using these transformations, the expressions of in-plane
elastic moduli for regular hexagonal lattices (without the viscoelastic
effect) can be obtained.

• The in-plane Young’s moduli and shear modulus (viscosity dependent
in-plane elastic properties) can be expressed as

E1v = Es

(
1 + ε

iω

µ+ iω

)(
t
l

)3 cos θ
( h

l + sin θ) sin2 θ
(59)

E2v = Es

(
1 + ε

iω

µ+ iω

)(
t
l

)3 ( h
l + sin θ)
cos3 θ

(60)

G12v = Es

(
1 + ε

iω

µ+ iω

)(
t
l

)3 ( h
l + sin θ

)( h
l

)2
(1 + 2 h

l ) cos θ
(61)

• The amplitude of the elastic moduli obtained based on the above
expressions converge to the closed-form equation provided by Gibson
and Ashby (1999) in the limiting case of ω → 0.
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Regular uniform hexagonal lattices

• In the case of regular uniform lattices with θ = 30◦, we have

E1v = E2v = 2.3ES

(
1 + ε

iω

µ+ iω

)(
t
l

)3

(62)

• Similarly, in the case of shear modulus for regular uniform lattices
(θ = 30◦)

G12v = 0.57ES

(
1 + ε

iω

µ+ iω

)(
t
l

)3

(63)

• Regular viscoelastic lattices satisfy the reciprocal theorem

E2vν12v = E1vν21v = ES

(
1 + ε

iω

µ+ iω

)(
t
l

)3 1
sin θ cos θ

(64)
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Random field model for material and geometric
properties

• Correlated structural and material attributes can be modelled
random fields H (x, θ).

• The traditional way of dealing with random field is to discretise
the random field into finite number of random variables. The
available schemes for discretising random fields can be broadly
divided into three groups: (1) point discretisation (e.g., midpoint
method, shape function method, integration point method,
optimal linear estimate method); (2) average discretisation
method (e.g., spatial average, weighted integral method), and (3)
series expansion method (e.g., orthogonal series expansion).

• An advantageous alternative for discretising H (x, θ) is to
represent it in a generalised Fourier type of series as, often
termed as Karhunen-Loève (KL) expansion.
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Karhunen-Loève (KL) expansion
• Suppose, H (x, θ) is a random field with covariance function

ΓH(x1,x2) defined in the probability space (Θ,F ,P). The KL
expansion for H (x, θ) takes the following form

H (x, θ) = H̄ (x) +
∞∑
i=1

√
λiξi (θ)ψi (x) (65)

where {ξi (θ)} is a set of uncorrelated random variables.
• {λi} and {ψi (x)} are the eigenvalues and eigenfunctions of the

covariance kernel ΓH(x1,x2), satisfying the integral equation∫
<N

ΓH(x1,x2)ψi (x1) dx1 = λiψi (x2) (66)

• In practise, the infinite series of 60 must be truncated, yielding a
truncated KL approximation

H̃ (x, θ) ∼= H̄ (x) +
M∑

i=1

√
λiξi (θ)ψi (x) (67)
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Karhunen-Loève (KL) expansion
• Gaussian and lognormal random fields have been considered.

The covariance function is represented as:

ΓαZ = σ2
αZ

e(−|y1−y2|/by )+(−|z1−z2|/bz ) (68)

where by and bz are the correlation parameters at y and z
directions (that corresponds to direction - 1 and direction - 2
respectively). These quantities control the rate at which the
covariance decays.

• In a two dimensional physical space the eigensolutions of the
covariance function are obtained by solving the integral equation
analytically

λiψi (y2, z2) =

∫ a1

−a1

∫ a2

−a2

Γ(y1, z1; y2, z2)ψi (y1, z1)dy1dz1 (69)

where −a1 6 y 6 a1 and −a2 6 z 6 a2.
• Assume the eigen-solutions are separable in y and z directions,

i.e.
ψi (y2, z2) = ψ

(y)
i (y2)ψ

(z)
i (z2) (70)

λi (y2, z2) = λ
(y)
i (y2)λ

(z)
i (z2) (71)
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Karhunen-Loève (KL) expansion
• The solution of the integral equation reduces to the product of the

solutions of two equations of the form

λ
(y)
i ψ

(y)
i (y1) =

∫ a1

−a1

e(−|y1−y2|/by )ψ
(y)
i (y2)dy2 (72)

• The solution of this equation, which is the eigensolution (eigenvalues
and eigenfunctions) of an exponential covariance kernel for a
one-dimensional random field is obtained as

ψi(ζ) =
cos(ωiζ)√
a + sin(2ωi a)

2ωi

λi =
2σ2

αz b
ω2

i + b2
for i odd

ψi(ζ) =
sin(ω∗i ζ)√
a− sin(2ω∗i a)

2ωi∗

λ∗i =
2σ2

αz b
ω∗2i + b2

for i even
(73)

where b = 1/by or 1/bz and a = a1 or a2. ζ can be either y or z and ωi

presents the period of the random field.
• The final eigenfunctions are given by

ψk (y , z) = ψ
(y)
i (y)ψ(z)

i (z) (74)
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Samples of the random fields

Spatial variability of the intrinsic elastic modulus (Es) with ∆m = 0.002
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The degree of geometric irregularity
• To define the degree of irregularity, it is assumed that each

connecting node of the lattice moves randomly within a certain
radius (rd ) around the respective node corresponding to the
regular deterministic configuration. For physically realistic
variabilities, it is considered that a given node do not cross a
neighbouring node, that is

rd < min
(

h
2
,

l
2
, l cos θ

)
(75)

• In each realization of the Monte Carlo simulation, all the nodes of
the lattice move simultaneously to new random locations within
the specified circular bounds. Thus, the degree of irregularity (r )
is defined as a non-dimensional ratio of the area of the circle and
the area of one regular hexagonal unit as

r =
πr2

d × 100
2l cos θ(h + l sin θ)

(76)

• The degree of irregularity (r ) has been expressed as percentage
values for presenting the results.
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Samples of the random fields

Movement of the top vertices of a tessellating hexagonal unit cell with
respect to the corresponding deterministic locations (r = 6)
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Random geometric configurations

Structural configurations for a single random realisation of an irregular hexagonal lattice considering deterministic cell angle θ = 30◦ and
h/l = 1: (a) r = 0 (b) r = 2 (c) r = 4 (d) r = 6
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Samples of random geometric configurations

Figure: Simulation bound of the structural configuration of an irregular
hexagonal lattice for multiple random realisations considering θ = 30◦,
h/l = 1 and r = 6. The regular configuration is presented using red colour.
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Samples of random geometric configurations

• In randomly inhomogeneous correlated system, spatial variability
of the stochastic structural attributes are accounted, wherein
each sample of the Monte Carlo simulation includes the spatially
random distribution of structural and materials attributes with a
rule of correlation.

• The spatial variability in structural and material properties (Es, µ
and ε) are physically attributed by degree of structural irregularity
(r ) and degree of material property variation (∆m) respectively.

• As the two Young’s moduli and shear modulus for low density
lattices are proportional to Esρ

3 (Zhu et al., 2001), the
non-dimensional results for in-plane elastic moduli E1, E2, and
G12, unless otherwise mentioned, are presented as:

Ē1 =
E1eq

Esρ3 , Ē2 =
E2eq

Esρ3

Ḡ12 =
G12eq

Esρ3

• ρ is the relative density of the lattice (defined as a ratio of the
planar area of solid to the total planar area of the lattice).
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Spatially correlated irregular elastic lattices: E1

(a) θ = 30◦; h
l = 1 (b) θ = 30◦; h

l = 1.5

(c) θ = 45◦; h
l = 1 (d) θ = 45◦; h

l = 1.5

Figure: Effective Young’s modulus (E1) of irregular lattices
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Spatially correlated irregular elastic lattices: E2

(a) θ = 30◦; h
l = 1 (b) θ = 30◦; h

l = 1.5

(c) θ = 45◦; h
l = 1 (d) θ = 45◦; h

l = 1.5

Figure: Effective Young’s modulus (E2) of irregular lattices with different
structural configurations considering correlated attributes
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Spatially correlated irregular elastic lattices: G12

(a) θ = 30◦; h
l = 1 (b) θ = 30◦; h

l = 1.5

(c) θ = 45◦; h
l = 1 (d) θ = 45◦; h

l = 1.5

Figure: Effective shear modulus (G12) of irregular lattices with different
structural configurations considering correlated attributes
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Viscoelastic properties of regular lattices: E1,E2,G12

(a) Effect of viscoelasticity on the magnitude and phase angle of E1 for regular hexagonal lattices (b) Effect of viscoelasticity on the
magnitude and phase angle of E2 for regular hexagonal lattices (c) Effect of viscoelasticity on the magnitude and phase angle of G12 for

regular hexagonal lattices
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Viscoelastic properties of regular lattices

(a) Effect of variation of µ on the viscoelastic modulus of regular hexagonal lattices (considering a constant value of ε = 2) (b) Effect of
variation of ε on the viscoelastic modulus of regular hexagonal lattices (considering a constant value of µ = ωmax/5). Here Z represents

the viscoelastic moduli (i.e. E1, E2 and G12) and Z0 is the corresponding elastic modulus value for ω = 0.
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Spatially correlated irregular viscoelastic lattices: E1
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Spatially correlated irregular viscoelastic lattices: E2
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Spatially correlated irregular elastic lattices: G12
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Probability density function: random geometry
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Probability density function: random material
property

Probability density function plots for the amplitude of the elastic moduli considering randomly inhomogeneous form of stochasticity for
different values of ∆m (i.e. coefficient of variation for spatially random correlated material properties, such as Es , µ and ε). Results are

presented as a ratio of the values corresponding to irregular configurations and respective deterministic values (for a frequency of 800 Hz).
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Combined material and geometric uncertianty

Probabilistic descriptions for the amplitudes of three effective viscoelastic properties corresponding to a frequency of 800 Hz considering
individual and compound effect of stochasticity in material and structural attributes with ∆cov = 0.006
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Conclusions

• The effect of viscoelasticity on irregular hexagonal lattices is
investigated in frequency domain considering two different forms of
irregularity in structural and material parameters (spatially uncorrelated
and correlated).

• Spatially correlated structural and material attributes are considered to
account for the effect of randomly inhomogeneous form of irregularity
based on Karhunen-Loève expansion.

• The two Young’s moduli and shear modulus are dependent on the
viscoelastic parameters. Two in-plane Poisson’s ratios depend only on
structural geometry of the lattice structure.

• The classical closed-form expressions for equivalent in-plane and out of
plane elastic properties of regular hexagonal lattice structures have
been generalised to consider geometric and material irregularity and
viscoelasticity.

• Using the principle of basic structural mechanics on a newly defined unit
cell with a homogenisation technique, closed-form expressions have
been obtained for E1, E2, ν12, ν21 and G12.

• The new results reduce to classical formulae of Gibson and Ashby for
the special case of no irregularities and no viscoelastic effect.
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Closed-form expressions: Elastic Moduli

E1v (ω) =
t3

L

n∑
j=1

m∑
i=1

(
l1ij cosαij − l2ij cos βij

)
m∑

i=1

l21ij l
2
2ij

(
l1ij + l2ij

) (
cosαij sin βij − sinαij cos βij

)2

Esij

1 + εij
iω

µij + iω

 (
(

l1ij cosαij − l2ij cos βij
)2

)

(77)

E2v (ω) =
Lt3

n∑
j=1

m∑
i=1

(
l1ij cosαij − l2ij cos βij

)
m∑

i=1
Esij

1 + εij
iω

µij + iω


l23ij cos2 γij

(
l3ij +

l1ij l2ij
l1ij +l2ij

)
+

l21ij l
2
2ij

(
l1ij +l2ij

)
cos2 αij cos2 βij(

l1ij cosαij−l2ij cos βij
)2


−1

(78)

G12v (ω) =
Lt3

n∑
j=1

m∑
i=1

(
l1ij cosαij − l2ij cos βij

)
m∑

i=1
Esij

1 + εij
iω

µij + iω

(l23ij sin2 γij

(
l3ij +

l1ij l2ij
l1ij +l2ij

))−1

(79)
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Closed-form expressions: Poisson’s ratios

ν12eq = −
1

L

n∑
j=1

m∑
i=1

(
l1ij cosαij − l2ij cos βij

)
m∑

i=1

(
cosαij sin βij − sinαij cos βij

)
cosαij cos βij

(80)

ν21eq = −
L

n∑
j=1

m∑
i=1

(
l1ij cosαij − l2ij cos βij

)
m∑

i=1

l21ij l
2
2ij

(
l1ij + l2ij

)
cosαij cos βij

(
cosαij sin βij − sinαij cos βij

)
(

l1ij cosαij − l2ij cos βij
)2

l23ij cos2 γij

(
l3ij +

l1ij l2ij
l1ij +l2ij

)
+

l21ij l
2
2ij

(
l1ij +l2ij

)
cos2 αij cos2 βij(

l1ij cosαij−l2ij cos βij
)2


(81)
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