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• Introduction – Project overview

• Uncertainty quantification of the EMB benchmark wing
ØUncertainty in the engine mass position
ØUncertainty in the engine mass
ØVariation in the fuel mass
ØUncertainty in the pylon stiffness

• Random tow variation
ØProblem formulation
ØChallenges
ØEnergy approach

• Conclusions

Outline
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Project overview



Present and past staff

SondiponAdhikari

Madelein Raunholm Midtoy (left after MSc, in 
Jan 2016 – got a 1st class degree)

Carl Scarth



Work Plan

1. Modelling of uncertain variability in the system (months 0-8): 
2. Stochastic modelling of the gust load (months 9-12): 
3. Global sensitivity analysis and reduced order modelling 

(months 13-18):
4. Robust response analysis (months 19-22): 
5. Optimal design approach for aeroelastic tailoring (months 23-

30): 
6. Application and validation using Embraer benchmark wing 

(months 31-36): 



Related external funding

• Swansea University funded an international PhD studentship in stochastic
dynamicsarea (£25,000 per year for three years): £75,000

• Wales Research Network (NRN 102) awarded a grant of £83,000 on “A
multiscale approach for uncertainty quantification in composite structures” (two-
years ResearchAssociate)

•Wales Research Network (NRN 125) awarded a grant of £59,500 on “Reduced
order modelling and error estimates for time varying stochastic systems” (three-
year EU PhD studentship)
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UQ in Computational Modeling



arising from the lack of 
scientific knowledge about 
the model which is a-priori 
unknown (damping, 
nonlinearity, joints)

uncertainty in the geometric 
parameters, boundary 
conditions, forces, strength 
of the materials involved

machine precession, error 
tolerance and the so called 
‘h’ and ‘p’ refinements in 
finite element analysis 

uncertain and unknown 
error percolate into the 
model when they are 
calibrated against 
experimental results

Model UncertaintyComputational uncertainty

Parametric UncertaintyExperimental error

Why Uncertainty: The Sources
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Broad approaches to UQ
UQ

Physics based UQ
[1] Kundu, A., Adhikari, S., Friswell, M. I., "Transient 
response analysis of randomly parametrized finite 
element systems based on approximate balanced 
reduction", Computer Methods in Applied Mechanics 
and Engineering, 285[3] (2015), pp. 542-570.
[2] Kundu, A. and Adhikari, S., "Dynamic analysis of 
stochastic structural systems using frequency 
adaptive spectral functions", Probabilistic Engineering 
Mechanics, 39[1] (2015), pp. 23-38.
[3] DiazDelaO , F. A., Kundu, A., Adhikari, S. and 
Friswell, M. I., "A hybrid spectral and metamodeling
approach for the stochastic finite element analysis of 
structural dynamic systems, Computer Methods in 
Applied Mechanics and Engineering, 270[3] (2014), 
pp. 201-209.
[4] Kundu, A., Adhikari, S., "Transient response of 
structural dynamic systems with parametric 
uncertainty", ASCE Journal of Engineering 
Mechanics, 140[2] (2014), pp. 315-331.
[5] Kundu, A., Adhikari, S. and Friswell, M. I., 
"Stochastic finite elements of discretely parametrized
random systems on domains with boundary 
uncertainty", International Journal for Numerical 
Methods in Engineering, 100[3] (2014), pp. 183-221.

Black-box UQ
[1[ Dey, S., Mukhopadhyay, T., Sahu, S. K., Li, G., Rabitz, 
H. and Adhikari, S., "Thermal uncertainty quantification in 
frequency responses of laminated composite plates", 
Composites Part B: Engineering, 80[6] (2015), pp. 186-
197.
[2] Dey, S., Mukhopadhyay, T., Adhikari, S. Khodaparast, 
H. H. and Kerfriden, P., "Rotational and ply-level 
uncertainty in response of composite conical shells", 
Composite Structures, 131[6] (2015), pp. 594-605.
[3] Dey, S., Mukhopadhyay, T., Adhikari, S. and 
Khodaparast, H. H., "Stochastic natural frequency of 
composite conical shells", Acta Mechanica, 226[8] (2015), 
pp. 2537-2553.
[4] Dey, S., Mukhopadhyay, T., and Adhikari, S., 
"Stochastic free vibration analyses of composite doubly 
curved shells - A Kriging model approach", Composites 
Part B: Engineering, 70[3] (2015), pp. 99-112.
[5] Dey, S., Mukhopadhyay, T., and Adhikari, S., 
"Stochastic free vibration analysis of angle-ply composite 
plates - A RS-HDMR approach", Composite Structures, 
122[4] (2015), pp. 526-536.
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UQ on EMB Benchmark wing
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Benchmark wing – v1

Mode	no Frequency	(radian/s) Frequency	(Hz)
1 17.73323 2.822331
2 21.24172 3.380725
3 36.46753 5.803988
4 43.43028 6.912143
5 54.2736 8.637911
6 83.9236 13.35686
7 100.7871 16.04077
8 119.4018 19.00338
9 146.0667 23.24724
10 173.8495 27.669

The frequency of the first ten modes for the initial model
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Mode shapes

Mode 1 Mode 2

Mode 3

Mode 4
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Mode shapes

Mode	 5

Mode	 6

Mode	 7
Mode	 8

Mode	 9 Mode	 10
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Uncertainty in the engine mass position

Engine	 position

Non- Structural masses on the wing structure
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Engine location variability

15

Initial engine position

(−	𝑥	, 𝑦)

(−	𝑥,−𝑦) (𝑥 ,−	𝑦)

(𝑥, 𝑦)

(x, -y)
(-x, -y)

(-x, y) (x, y)

• ±	0.5m from its original 
coordinate

• At steps of 0.1m
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Changes in the natural frequencies due to engine location 
variability 
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Changes in the natural frequencies due to engine location 
variability 
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Random engine positions

• The study explained in 
section (4.2.2) was 
extended to include 
more coordinates within 
a given limit. 

• The engine position was 
randomly changed 
within the limits +-0.5m 
from the original (x,y) 
position. 

• The coordinates were 
chosen using the excel 
RAND function where 
500 (x,y) coordinates 
were randomly 
selected, within the x 
and y limits. 4.43
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Randomness in the natural frequencies 

mode	1 mode	2

mode	3

mode	4
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Randomness in the natural frequencies 

mode	5 mode	6

mode	7
mode	8
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Frequency bounds due to random engine positions

Frequency bounds (Hz)
mode min max

1 2.500773265 2.971083786
2 2.689028245 3.986899084
3 4.581720923 6.551350079
4 6.768835967 6.920839845
5 7.944959284 8.882580244
6 8.501260652 13.73100129
7 14.71434644 16.08875428
8 16.09331312 19.18565409
9 22.07522894 23.3612546

10 22.55190219 27.75692596
Minimum and maximum frequencies 
measured in the 500 coordinates
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Variability of the engine mass
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Variability of the engine mass

Mode

Original	
weight

10%	decrease	in	
weight

Weight	
Increase

(%)

1 2.8223 2.854 1.123197
2 3.3807 3.5497 4.998965
3 5.804 5.9358 2.270848
4 6.9121 6.9183 0.089698
5 8.6379 8.6727 0.402876
6 13.357 13.5504 1.44793
7 16.041 16.0628 0.135902
8 19.003 19.2674 1.391359
9 23.247 23.2732 0.112703
10 27.669 28.0202 1.269291

Mode

Original	
weight

10%	increase	in	
weight

Weight	
Decrease

(%)
1 2.8223 2.7911 -1.10548
2 3.3807 3.2358 -4.28609
3 5.804 5.6911 -1.94521
4 6.9121 6.9063 -0.08391
5 8.6379 8.6085 -0.34036
6 13.357 13.1602 -1.47338
7 16.041 16.02 -0.13091
8 19.003 18.771 -1.22086
9 23.247 23.2251 -0.09421
10 27.669 27.387 -1.01919

Change in frequency (%) when the 
engine mass is decreased 10% from 
its original weight

Change in frequency (%) when the 
engine mass is increased 10% from its 
original weight 
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Variability in the fuel mass distribution

Fuel	tank kg Fuel	tank kg

1 76.842 14 238.682
2 85.298 15 195.059
3 94.205 16 218.283
4 103.556 17 242.381
5 113.348 18 267.252
6 123.58 19 297.123
7 144.329 20 332.041
8 156.26 21 368.069
9 168.694 22 405.327
10 182.291 23 443.698
11 196.424 24 483.203
12 211.092 25 1960
13 226.274

The location 
of the 25 fuel 
tanks

Fuel tank’s masses 
under fully loaded 
conditions. 
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Natural frequencies due to variability in the fuel mass 
distribution 
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Mode shapes due to variability in the fuel mass distribution 

26

Full fuel conditions (mode 8) Empty fuel conditions (mode 8)

Full fuel conditions (mode 4) Empty fuel conditions (mode 4)
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Natural frequencies due to variability in the fuel mass 
distribution 

Changes in the frequency from the original frequency 
when the fuel tank is 50% full. 
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Mode shapes due to variability in the fuel mass distribution 

A

B

Mode Shapes for mode 8 ( A= 50% fuel in all tanks)  (B=All 
tanks have been emptied)
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Variability in the pylon stiffness
• The wing structure is equipped with 21 pylon panels and 36 pylon frames 
• Initial pylon stiffness was changed gradually from 1 to 20% of the original 

stiffness by changing the area of the pylon links 
• The pylon is attached to the engine casing at one side and to the wing on 

the other side. 

Pylon	links	and	pylon	panels	
(FEM	model)

Pylon links and pylon frames
(FEMmodel)
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Natural frequencies due to the variability in the stiffness of 
the pylon

Change in the frequency (from original model- %) when 
increasing the cross sectional area
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Natural frequencies due to the variability in the stiffness of the 
pylon

Change in frequency (from original model- %) when 
decreasing the cross sectional area
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Mode shapes due to variability in the fuel mass distribution 

Mode shape (mode 3) when the pylon stiffness is increased by 20%

Mode shape (mode 2) when the pylon 
stiffness is increased by 20%

Mode 2 (3.5145 Hz)

Mode 3 (5.9082 Hz)
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Main observations
1. Randomness in the position of the engine has a significant 

effect on the natural frequencies. A variability of ±	0.5m from 
its original coordinate can result into approximately ±30%	
variability in the first 10 natural frequencies.

2. Variability in the engine mass has a moderate effect on the 
natural frequencies:  ±10% variation leads to ±5% variation
in the frequencies

3. Changes in fuel tank mass have a significant effect on the 
natural frequencies – empting the fuel tanks can change the 
frequencies up to 35%

4. Uncertainty in the pylon stiffness has little impact on the 
natural frequencies. A change of ±	20% in the cross 
sectional area leads to a maximum of ±5% change in the 
natural frequencies (mainly in the second mode). 
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Random tow variations in composites
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Random tow variations - examples
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Random field model
• A random field is a function is space whose values are statistically correlated –

defined by an auto correlation function
• The autocorrelation funciton is ofted expressed by a correlation length such as 

C(x1,x2) =e−|x1−x2|/b. 
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Samples of the random field
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Composite Plate Model
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Composite mechanics

• Stress and strain relationship: 
𝜎/
𝜎0
𝜏/0

=
𝑄455 𝑄456 𝑄457
𝑄456 𝑄466 𝑄467
𝑄457 𝑄467 𝑄477

𝜀/
𝜀0
𝛾/0

𝑄455 = 𝑄55𝑐; + 𝑄66𝑠; + 2(𝑄56 + 2𝑄77)𝑠6𝑐6

𝑄456 = 𝑄55 + 𝑄66 − 4𝑄77 𝑠6𝑐6 + 𝑄56(𝑐; + 𝑠;)

𝑄466 = 𝑄55𝑠; + 𝑄66𝑐; + 2(𝑄56 + 2𝑄77)	𝑠6𝑐6

𝑄457 = 𝑄55 + 𝑄56 − 2𝑄77 𝑐@𝑠 − 𝑄66 − 𝑄56 − 2𝑄77 𝑐𝑠@

𝑄467 = 𝑄55 + 𝑄56 − 2𝑄77 𝑐𝑠@ − 𝑄66 − 𝑄56 − 2𝑄77 𝑐@𝑠

𝑄477 = 𝑄55 + 𝑄66 − 2𝑄56 − 2𝑄77 𝑠6𝑐6 + 𝑄77(𝑠; + 𝑐;)

𝑐 = 𝑐𝑜𝑠	𝜃 and 𝑠 =
𝑠𝑖𝑛	𝜃 and 𝜽= 𝜽(x,y) 
is a random field 

𝐷GH = I 𝑄4GH J𝑧
6𝑑𝑧 =

1
3
N 𝑄4GH JO
P

JQ5

5 6⁄

S5 6⁄
𝑧J@ − 𝑧JS5@ T Become	also	random	fields
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Solution of stochastic partial differential equations

• Stochastic field material properties leads to stochastic 
partial differential equations

• Conventional FE packages does not solve this type of 
equations

• Needs simplified approaches and engineering 
approximations


