
Computational methods for nano-mechanical

sensors

S. Adhikari1

1Chair of Aerospace Engineering, College of Engineering, Swansea University, Singleton Park, Swansea
SA2 8PP, UK

3rd International Conference on Innovations in Automation and
Mechatronics Engineering - ICIAME2016, Gujarat, India

Adhikari (Swansea) Computational methods for nano sensors February 5, 2016 1



Swansea University

Adhikari (Swansea) Computational methods for nano sensors February 5, 2016 2



Swansea University

Adhikari (Swansea) Computational methods for nano sensors February 5, 2016 3



My research interests

Development of fundamental computational methods for structural
dynamics and uncertainty quantification
A. Dynamics of complex systems
B. Inverse problems for linear and non-linear dynamics
C. Uncertainty quantification in computational mechanics

Applications of computational mechanics to emerging multidisciplinary
research areas
D. Vibration energy harvesting / dynamics of wind turbines
E. Computational nanomechanics

Adhikari (Swansea) Computational methods for nano sensors February 5, 2016 4



Outline

1 Introduction

2 One-dimensional sensors - classical approach

Static deformation approximation
Dynamic mode approximation

3 Overview of nonlocal continuum mechanics

4 One-dimensional sensors - nonlocal approach
Attached biomolecules as point mass
Attached biomolecules as distributed mass

5 Two-dimensional sensors - classical approach

6 Two-dimensional sensors - nonlocal approach

7 Conclusions

Adhikari (Swansea) Computational methods for nano sensors February 5, 2016 5



Introduction

Nanoscale systems

Nanoscale systems have length-scale in the order of O(10−9)m.

Nanoscale systems, such as those fabricated from simple and complex
nanorods, nanobeams and nanoplates have attracted keen interest
among scientists and engineers.

Examples of one-dimensional nanoscale objects include (nanorod and
nanobeam) carbon nanotubes (Ijima, 1993), zinc oxide (ZnO) nanowires
and boron nitride (BN) nanotubes, while two-dimensional nanoscale
objects include graphene sheets and BN nanosheets.

These nanostructures are found to have exciting mechanical, chemical,
electrical, optical and electronic properties.

Nanostructures are being used in the field of nanoelectronics,
nanodevices, nanosensors, nano-oscillators, nano-actuators,
nanobearings, and micromechanical resonators, transporter of drugs,
hydrogen storage, electrical batteries, solar cells, nanocomposites and
nanooptomechanical systems (NOMS).

Understanding the dynamics of nanostructures is crucial for the
development of future generation applications in these areas.
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Introduction

Nanoscale systems

(a) DNA

(b) Zinc Oxide ( ZnO) nanowire

(c) Boron Nitride nanotube  (BNNT )
(d) Protein
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Introduction

General approaches for studying nanostructures
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Introduction

Nano mechanical sensors

Progress in nanotechnologies has brought about a number of highly
sensitive label-free biosensors.

These include electronic biosensors based on nanowires and nanotubes,
optical biosensors based on nanoparticles and mechanical biosensors
based on resonant micro- and nanomechanical suspended structures.

In these devices, molecular receptors such as antibodies or short DNA
molecules are immobilized on the surface of the micro-nanostructures.
The operation principle is that molecular recognition between the
targeted molecules present in a sample solution and the
sensor-anchored receptors gives rise to a change of the optical, electrical
or mechanical properties depending on the class of sensor used.

These sensors can be arranged in dense arrays by using established
micro- and nanofabrication tools.
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Introduction

Cantilever nano-sensor

Array of cantilever nano sensors (from http://www.bio-nano-consulting.com)
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Introduction

Cantilever nano-sensor

Carbon nanotube with attached molecules
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Introduction

The mechanics behind nano-sensors
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Introduction

Mass sensing - an inverse problem

This talk will focus on the detection of mass based on shift in frequency.

Mass sensing is an inverse problem.

The “answer” in general in non-unique. An added mass at a certain point
on the sensor will produce an unique frequency shift. However, for a
given frequency shift, there can be many possible combinations of mass
values and locations.

Therefore, predicting the frequency shift - the so called “forward problem”
is not enough for sensor development.

Advanced modelling and computation methods are available for the
forward problem. However, they may not be always readily suitable for the
inverse problem if the formulation is “complex” to start with.

Often, a carefully formulated simplified computational approach could be
more suitable for the inverse problem and consequently for reliable
sensing.
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Introduction

The need for “instant” calculation

Sensing calculations must be performed very quickly - almost in real time with
very little computational power (fast and cheap devices).
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One-dimensional sensors - classical approach Static deformation approximation

Single-walled carbon nanotube based sensors

Cantilevered nanotube resonator with an attached mass at the tip of nanotube
length: (a) Original configuration; (b) Mathematical idealization. Unit

deflection under the mass is considered for the calculation of kinetic energy of
the nanotube.
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One-dimensional sensors - classical approach Static deformation approximation

Single-walled carbon nanotube based sensors - bridged case

Bridged nanotube resonator with an attached mass at the center of nanotube
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One-dimensional sensors - classical approach Static deformation approximation

Resonant frequencies of SWCNT with attached mass

In order to obtain simple analytical expressions of the mass of attached
biochemical entities, we model a single walled CNT using a uniform
beam based on classical Euler-Bernoulli beam theory:

EI
∂4y(x , t)

∂x4
+ ρA

∂2y(x , t)

∂t2
= 0 (1)

where E the Youngs modulus, I the second moment of the
cross-sectional area A, and ρ is the density of the material. Suppose the
length of the SWCNT is L.

Depending on the boundary condition of the SWCNT and the location of
the attached mass, the resonant frequency of the combined system can
be derived. We only consider the fundamental resonant frequency, which
can be expresses as

fn =
1

2π

√

keq

meq
(2)

Here keq and meq are respectively equivalent stiffness and mass of
SWCNT with attached mass in the first mode of vibration.
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One-dimensional sensors - classical approach Static deformation approximation

Cantilevered SWCNT with mass at the tip

Suppose the value of the added mass is M. We give a virtual force at the
location of the mass so that the deflection under the mass becomes unity.
For this case Feq = 3EI/L3 so that

keq =
3EI

L3
(3)

The deflection shape along the length of the SWCNT for this case can be
obtained as

Y (x) =
x2 (3 L − x)

2L
3

(4)

Assuming harmonic motion, i.e., y(x , t) = Y (x)exp(iωt), where ω is the
frequency, the kinetic energy of the SWCNT can be obtained as

T =
ω2

2

∫ L

0

ρAY 2(x)dx +
ω2

2
MY 2(L)

= ρA
ω2

2

∫ L

0

Y 2(x)dx +
ω2

2
M 12 =

ω2

2

(
33

140
ρAL + M

) (5)
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One-dimensional sensors - classical approach Static deformation approximation

Cantilevered SWCNT with mass at the tip

Therefore

meq =
33

140
ρAL + M (6)

The resonant frequency can be obtained using equation (54) as

fn =
1

2π

√

keq

meq
=

1

2π

√

3EI/L3

33
140

ρAL + M

=
1

2π

√

140

11

√

EI

ρAL4

√

1

1 + M
ρAL

140
33

=
1

2π

α2β√
1 +∆M

(7)

where

α2 =

√

140

11
or α = 1.888 (8)

β =

√

EI

ρAL4
(9)

and ∆M =
M

ρAL
µ, µ =

140

33
(10)
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One-dimensional sensors - classical approach Static deformation approximation

Cantilevered SWCNT with mass at the tip

Clearly the resonant frequency for a cantilevered SWCNT with no added
tip mass is obtained by substituting ∆M = 0 in equation (7) as

f0n
=

1

2π
α2β (11)

Combining equations (7) and (11) one obtains the relationship between
the resonant frequencies as

fn =
f0n√

1 +∆M
(12)
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One-dimensional sensors - classical approach Static deformation approximation

General derivation of the sensor equations

The frequency-shift can be expressed using equation (41) as

∆f = f0n
− fn = f0n

− f0n√
1 +∆M

(13)

From this we obtain
∆f

f0n

= 1 − 1√
1 +∆M

(14)

Rearranging gives the expression

∆M =
1

(

1 − ∆f
f0n

)2
− 1 (15)

This equation completely relates the change is mass frequency-shift.
Expanding equation (80) is Taylor series one obtains

∆M =
∑

j

(j + 1)

(
∆f

f0n

)j

, j = 1, 2, 3, . . . (16)
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One-dimensional sensors - classical approach Static deformation approximation

General derivation of the sensor equations

Therefore, keeping upto first and third order terms one obtains the linear
and cubic approximations as

∆M ≈ 2

(
∆f

f0n

)

(17)

and ∆M ≈ 2

(
∆f

f0n

)

+ 3

(
∆f

f0n

)2

+ 4

(
∆f

f0n

)3

(18)

The actual value of the added mass can be obtained from (15) as

Mass detection from frequency shift

M =
ρAL

µ

(
α2β

)2

(α2β − 2π∆f )
2
− ρAL

µ
(19)

Using the linear approximation, the value of the added mass can be
obtained as

M =
ρAL

µ

2π∆f

α2β
(20)
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One-dimensional sensors - classical approach Static deformation approximation

Comparison of sensing results
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The general relationship between the normalized frequency-shift and normalized

added mass of the bio-particles in a SWCNT with effective density ρ, cross-section

area A and length L. Here β =

√

EI

ρAL4 s−1, the nondimensional constant α depends on

the boundary conditions and µ depends on the location of the mass. For a cantilevered

SWCNT with a tip mass α2
=

√

140/11, µ = 140/33 and for a bridged SWCNT with a

mass at the midpoint α2
=

√

6720/13, µ = 35/13.
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One-dimensional sensors - classical approach Static deformation approximation

Validation of sensor equations - FE model

The theory of linear elasticity is used for both the CNT and the bacteria. FE model:

number of degrees of freedom = 55401, number of mesh point = 2810, number of

elements (tetrahedral element) = 10974, number of boundary elements (triangular

element) = 3748, number of vertex elements = 22, number of edge elements = 432,

minimum element quality = 0.2382 and element volume ratio = 0.0021. Length of the

nanotube is 8 nm and length of bacteria is varied between 0.5 to 3.5 nm.
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One-dimensional sensors - classical approach Static deformation approximation

Validation of sensor equations - model data

Table: Geometrical and material properties for the single-walled carbon nanotube and
the bacterial mass.

SWCNT Bacteria (E Coli)

L = 8 nm E = 25.0MPa

E = 1.0TPa ρ = 1.16g/cc

ρ = 2.24g/cc –
D = 1.1nm –
ν = 0.30nm –
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One-dimensional sensors - classical approach Static deformation approximation

Validation of sensor equations - frequency values

Table: Comparison of frequencies (100 GHz) obtained from finite element simulation
with MD simulation for the bridged configuration. For the 8.0 nm SWCNT used in this
study, the maximum error is less than about 4%.

D(nm) L(nm) f1 f2 f3 f4 f5
MD 10.315 10.315 10.478 10.478 15.796

4.1 FE 10.769 10.769 16.859 22.224 22.224
%error -4.40 -4.40 -60.90 -112.10 -40.69
MD 6.616 6.616 9.143 9.143 11.763

1.1 5.6 FE 6.883 6.884 12.237 14.922 14.924
%error -4.04 -4.05 -33.84 -63.21 -26.87
MD 3.800 3.8 8.679 8.679 8.801

8.0 FE 3.900 3.9 8.659 9.034 9.034
%error -2.63 -2.63 -0.23 -4.09 -2.65
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One-dimensional sensors - classical approach Static deformation approximation

Validation of sensor equations - Cantilever nanotube
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simulation, exact analytical formula and the linear approximation for the cantilevered

nanotube. Proposed analytical expressions are in good agreement with the detailed

finite element results for longer bacterial length.

Adhikari (Swansea) Computational methods for nano sensors February 5, 2016 27



One-dimensional sensors - classical approach Static deformation approximation

Validation of sensor equations - Bridged nanotube
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The variation of identified mass with bacterial length using the finite element

simulation, exact analytical formula and the linear approximation for the bridged

nanotube. Proposed analytical expressions are in good agreement with the detailed

finite element results for longer bacterial length.
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One-dimensional sensors - classical approach Static deformation approximation

Validation of sensor equations
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The general relationship between the normalized frequency-shift and normalized

added mass of the bio-particles in a SWCNT with effective density ρ, cross-section

area A and length L. Relationship between the frequency-shift and added mass of

bio-particles obtained from finite element simulation are also presented here to

visualize the effectiveness of analytical formulas.
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One-dimensional sensors - classical approach Dynamic mode approximation

Dynamic theory of CNT

For the cantilevered CNT, the resonance frequencies can be obtained
from

fj =
λ2

j

2π

√

EI

ρAL4
(21)

where λj can be obtained by solving the following transcendental
equation

cosλ coshλ+ 1 = 0 (22)

The vibration mode shape can be expressed as

Yj (ξ) =
(
coshλjξ − cosλjξ

)

−
(

sinhλj − sinλj

coshλj + cosλj

)
(
sinhλjξ − sinλjξ

)
(23)

where

ξ =
x

L
(24)

is the normalized coordinate along the length of the CNT. For sensing
applications we are interested in the first mode of vibration for which
λ1 = 1.8751.
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One-dimensional sensors - classical approach Dynamic mode approximation

Cantilevered nanotube resonator with attached masses (DeOxy

Thymidine)

(a) DeOxy Thymidine at the edge of a SWCNT (b) DeOxy Thymidine distributed over the
length of a SWCNT

(c) Mathematical idealization of (a): point mass
at the tip

(d) Mathematical idealization of (b): distributed
mass along the length
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One-dimensional sensors - classical approach Dynamic mode approximation

Exact dynamic solution

Suppose there is an attached nano/bio object of mass M at the end of the
cantilevered resonator in 1(a). The boundary conditions with an
additional mass of M at x = L can be expressed as

y(0, t) = 0, y ′(0, t) = 0, y ′′(L, t) = 0,

and EIy ′′′(L, t)− Mÿ(L, t) = 0 (25)

Here (•)′ denotes derivative with respective to x and ˙(•) denotes
derivative with respective to t. Assuming harmonic solution
y(x , t) = Y (x)eiωt and using the boundary conditions, it can be shown
that the resonance frequencies are still obtained from Eq. (21) but λj

should be obtained by solving

(cosλ sinhλ− sinλ coshλ)∆M λ+ (cosλ coshλ+ 1) = 0 (26)

Here

∆M =
M

ρAL
(27)

is the ratio of the added mass and the mass of the CNT. If the added
mass is zero, then one can see that Eq. (27) reduces to Eq. (22).
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One-dimensional sensors - classical approach Dynamic mode approximation

Calibration Constants - energy approach

These equations are obtained by considering the differential equation
and the boundary conditions in an exact manner.

They are complex enough so that a simple relationship between the
change in the mass and the shift in frequency is not available.

Moreover, these equations are valid for point mass only. Many biological
objects are relatively large in dimension and therefore the assumption
that the mass is concentrated at one point may not be valid.

In the fundamental mode of vibration, the natural frequency of a SWCNT
oscillator can be expressed as

fn =
1

2π

√

keq

meq
(28)

Here keq and meq are respectively equivalent stiffness and mass of
SWCNT in the first mode of vibration.

The equivalent mass meq changes depending on whether a nano-object
is attached to the CNT. This in turn changes the natural frequency.
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One-dimensional sensors - classical approach Dynamic mode approximation

Calibration Constants - energy approach

Suppose Yj is the assumed displacement function for the first mode of
vibration.

Suppose the added mass occupies a length γL and its mass per unit
length is m. Therefore, M = m × γL. From the kinetic energy of the
SWCNT with the added mass and assuming harmonic motion, the overall
equivalent mass meq can be expressed as

meq = ρAL

∫ 1

0

Y 2
j (ξ)dξ

︸ ︷︷ ︸

I1

+M

∫

Γ

Y 2
j (ξ)dξ

︸ ︷︷ ︸

I2

(29)

where Γ is the domain of the additional mass. From the potential energy,
the equivalent stiffness keq can be obtained as

keq =
EI

L3

∫ 1

0

Y
′′2

j (ξ)dξ

︸ ︷︷ ︸

I3

(30)
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One-dimensional sensors - classical approach Dynamic mode approximation

Calibration Constants - energy approach

From these expressions we have

keq

meq
=

EI/L3 I3

ρALI1 + MI2
=

(
EI

ρAL4

)
I3

I1 + I2∆M
(31)

where the mass ratio ∆M is defined in Eq. (27). Using the expression of
the natural frequency we have

fn =
1

2π

√

keq

meq
=

β

2π

ck√
1 + cm∆M

(32)

where β =
√

EI
ρAL4

The stiffness and mass calibration constants are

ck =

√

I3

I1
and cm =

I2

I1
(33)

Equation (32), together with the calibration constants gives an explicit
relationship between the change in the mass and frequency.
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One-dimensional sensors - classical approach Dynamic mode approximation

Calibration Constants - point mass

We fist consider the cantilevered CNT with an added point mass. For the
cantilevered CNT, we use the mode shape in (23) as the assumed
deflection shape Yj . The value of λj appearing in this equation is 1.8751.
Using these the integral I1 can be obtained as

I1 =

∫ 1

0

Y 2
j (ξ)dξ = 1.0 (34)

For the point mass at the end of the cantilevered SWNT we have

m(ξ) = Mδ(ξ − 1) (35)

Using these, the integral I2 can be obtained as

I2 =

∫ 1

0

δ(ξ − 1)Y 2
j (ξ)dξ = Y 2

j (1) = 4.0 (36)

Differentiating Yj(ξ) in Eq. (23) with respect to ξ twice, we obtain

I3 =

∫ 1

0

Y
′′2

j (ξ)dξ = 12.3624 (37)
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One-dimensional sensors - classical approach Dynamic mode approximation

Calibration Constants - distributed mass

Using these integrals, the stiffness and mass calibration factors can be
obtained as

ck =

√

I3

I1
= 3.5160 and cm =

I2

I1
= 4.0 (38)

Now we consider the case when the mass is distributed over a length γL
from the edge of the cantilevered CNT. Since the total mass is M, the
mass per unit length is M/γL. Noting that the added mass is between
(1 − γ)L to L, the integral I2 can be expressed as

I2 =
1

γ

∫ 1

ξ=1−γ

Y 2
j (ξ)dξ; 0 ≤ γ ≤ 1 (39)

This integral can be calculated for different values of γ.
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One-dimensional sensors - classical approach Dynamic mode approximation

Calibration Constants - non-dimensional values

Table: The stiffness (ck ) and mass (cm) calibration constants for CNT based bio-nano
sensor. The value of γ indicates the length of the mass as a fraction of the length of
the CNT.

Cantilevered CNT Bridged CNT
Mass
size

ck cm ck cm

Point
mass
(γ → 0)

3.5160152 4.0 22.373285 2.522208547

γ = 0.1 3.474732666 2.486573805
γ = 0.2 3.000820053 2.383894805
γ = 0.3 2.579653837 2.226110255
γ = 0.4 2.212267400 2.030797235
γ = 0.5 1.898480438 1.818142650
γ = 0.6 1.636330135 1.607531183
γ = 0.7 1.421839146 1.414412512
γ = 0.8 1.249156270 1.248100151
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One-dimensional sensors - classical approach Dynamic mode approximation

Sensor equation based on calibration constants

The resonant frequency of a SWCNT with no added mass is obtained by
substituting ∆M = 0 in Eq. (32) as

f0n
=

1

2π
ckβ (40)

Combining equations (32) and (40) one obtains the relationship between
the resonant frequencies as

fn =
f0n√

1 + cm∆M
(41)

The frequency-shift can be expressed using Eq. (41) as

∆f = f0n
− fn = f0n

− f0n√
1 + cm∆M

(42)

From this we obtain
∆f

f0n

= 1 − 1√
1 + cm∆M

(43)
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One-dimensional sensors - classical approach Dynamic mode approximation

Sensor equation based on calibration constants

Rearranging gives the expression

Relative mass detection

∆M =
1

cm

(

1 − ∆f
f0n

)2
− 1

cm
(44)

This equation completely relates the change in mass with the
frequency-shift using the mass calibration constant. The actual value of
the added mass can be obtained from (44) as

Absolute mass detection

M =
ρAL

cm

(
c2

kβ
2
)

(ckβ − 2π∆f )
2
− ρAL

cm
(45)

This is the general equation which completely relates the added mass
and the frequency shift using the calibration constants.
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One-dimensional sensors - classical approach Dynamic mode approximation

Validation based on molecular mechanics simulation

In the calculation, GAUSSIAN 09 computer software and the universal
force field (UFF) developed by Rappe et al. are employed.

The universal force field is a harmonic force field, in which the general
expression of total energy is a sum of energies due to valence or bonded
interactions and non-bonded interactions

E =
∑

ER +
∑

Eθ +
∑

Eφ +
∑

Eω +
∑

EVDW +
∑

Eel (46)

The valence interactions consist of bond stretching (ER) and angular
distortions.

The angular distortions are bond angle bending (Eθ), dihedral angle
torsion (Eφ) and inversion terms (Eω). The non-bonded interactions
consist of van der Waals (EVDW ) and electrostatic (Eel ) terms.

We used UFF model, wherein the force field parameters are estimated
using general rules based only on the element, its hybridization and its
connectivity.
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One-dimensional sensors - classical approach Dynamic mode approximation

Comparison with MD simulations

Table: Natural frequencies of a (5,5) carbon nanotube in THz - Cantilever boundary condition. First four natural frequencies obtained from the present
approach is compared with the MD simulation [Duan et al, 2007 - J. App. Phy] for different values of the aspect ratio.

Aspect
Ra-
tio

Present analysis MD simulation

1st 2nd 3rd 4th 1st 2nd 3rd 4th
5.26 0.220 1.113 2.546 4.075 0.212 1.043 2.340 3.682
5.62 0.195 1.005 2.325 3.759 0.188 0.943 2.141 3.406
5.99 0.174 0.912 2.132 3.478 0.167 0.857 1.967 3.158
6.35 0.156 0.830 1.961 3.226 0.150 0.782 1.813 2.936
6.71 0.141 0.759 1.810 3.000 0.136 0.716 1.676 2.736
7.07 0.128 0.696 1.675 2.797 0.123 0.657 1.553 2.555
7.44 0.116 0.641 1.554 2.614 0.112 0.605 1.443 2.392
7.80 0.106 0.592 1.446 2.447 0.102 0.559 1.344 2.243
8.16 0.098 0.548 1.348 2.296 0.094 0.518 1.255 2.108
8.52 0.089 0.492 1.231 2.102 0.086 0.481 1.174 1.984
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One-dimensional sensors - classical approach Dynamic mode approximation

Zigzag (5,0) SWCNT of length 8.52 nm with added DeOxy Thymidine (a

nucleotide that is found in DNA)
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Molecular mechanics
Exact solution
Calibration constant based approach

(a) Point mass on a cantilevered CNT.
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Molecular mechanics
Calibration constant (variable with γ)
Calibration constant (point mass)

(b) Distributed mass on a cantilevered CNT.
The length of the mass varies between 0.05L
to 0.72L from the edge of the CNT.

Figure: Identified attached masses from the frequency-shift of a cantilevered CNT. The proposed calibration constant based approach is validated
using data from the molecular mechanics simulations. The importance of using the calibration constant varying with the length of the mass can be seen in
(b). The point mass assumption often used in cantilevered sensors, can result in significant error when the mass is distributed in nature.

Adhikari (Swansea) Computational methods for nano sensors February 5, 2016 43



One-dimensional sensors - classical approach Dynamic mode approximation

Error in mass detection

Point mass Distributed mass
Relative
frequency
shift

% error Relative
frequency
shift

Normalized
length

% error

0.0929 13.9879 0.0929 0 13.9879
0.1790 28.1027 0.1530 0.0500 11.8626
0.2165 11.1765 0.1991 0.1000 13.7038
0.2956 34.2823 0.2148 0.1500 1.7865
0.3016 10.9296 0.2462 0.2000 7.0172
0.3367 12.4422 0.2542 0.2500 1.3278
0.3477 2.1427 0.2687 0.3000 1.9943

0.2773 0.3500 1.2631
0.2821 0.4000 0.1653
0.2948 0.4500 4.5150
0.2929 0.5000 1.3776
0.2983 0.5500 3.2275
0.2989 0.6167 5.5240
0.2981 0.6667 4.6735
0.3039 0.7167 7.9455
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One-dimensional sensors - classical approach Dynamic mode approximation

Bridged nanotube resonator with attached masses (DeOxy Thymidine)

(a) DeOxy Thymidine at the centre of a
SWCNT

(b) DeOxy Thymidine distributed about the
centre of a SWCN

(c) Mathematical idealization of (a): point mass
at the centre

(d) Mathematical idealization of (b): distributed
mass about the centre
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One-dimensional sensors - classical approach Dynamic mode approximation

Zigzag (5,0) SWCNT of length 8.52 nm with added DeOxy Thymidine (a

nucleotide that is found in DNA)
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Molecular mechanics
Exact solution
Calibration constant based approach

(a) Point mass on a bridged CNT.
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Molecular mechanics
Calibration constant (variable with γ)
Calibration constant (point mass)

(b) Distributed mass on a bridged CNT. The
length of the mass varies between 0.1L to 0.6L
about the centre of the CNT.

Figure: Identified attached masses from the frequency-shift of a bridged CNT. The proposed calibration constant based approach is validated using
data from the molecular mechanics simulations. Again, the importance of using the calibration constant varying with the length of the mass can be seen in
(b). However, the difference between the point mass and distributed mass assumption is not as significant as the cantilevered case.
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One-dimensional sensors - classical approach Dynamic mode approximation

Error in mass detection

Point mass Distributed mass
Relative
frequency
shift
(∆f/f0n

)

% error Relative
frequency
shift
(∆f/f0n

)

Normalized
length
(γ)

% error

0.0521 5.1632 0.0521 0 5.1636
0.0901 12.7402 0.1555 0.1000 14.2792
0.1342 6.4153 0.2055 0.2000 3.5290
0.1827 4.2630 0.2538 0.3000 8.1455
0.2094 0.5273 0.2859 0.4000 11.5109
0.2237 7.6267 0.3053 0.5000 13.4830

0.3284 0.6000 23.3768
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Overview of nonlocal continuum mechanics

Simulation methods
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Overview of nonlocal continuum mechanics

Continuum mechanics at the nanoscale

Experiments at the nanoscale are generally difficult at this point of time.

On the other hand, atomistic computation methods such as molecular
dynamic (MD) simulations are computationally prohibitive for
nanostructures with large numbers of atoms.

Continuum mechanics can be an important tool for modelling,
understanding and predicting physical behaviour of nanostructures.

Although continuum models based on classical elasticity are able to
predict the general behaviour of nanostructures, they often lack the
accountability of effects arising from the small-scale.

To address this, size-dependent continuum based methods are gaining in
popularity in the modelling of small sized structures as they offer much
faster solutions than molecular dynamic simulations for various nano
engineering problems.

Currently research efforts are undergoing to bring in the size-effects
within the formulation by modifying the traditional classical mechanics.
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Overview of nonlocal continuum mechanics

Nonlocal continuum mechanics

One popularly used size-dependant theory is the nonlocal elasticity
theory pioneered by Eringen [1983], and has been applied to
nanotechnology.

Nonlocal continuum mechanics is being increasingly used for efficient
analysis of nanostructures viz. nanorods, nanobeams, nanoplates,
nanorings, carbon nanotubes, graphenes, nanoswitches and
microtubules. Nonlocal elasticity accounts for the small-scale effects at
the atomistic level.

In the nonlocal elasticity theory, according to Eringen [1983], the
small-scale effects are captured by assuming that the stress at a point as
a function of the strains at all points in the domain.

Nonlocal theory considerslong-range inter-atomic interactions and yields
results dependent on the size of a body.

Some of the drawbacks of the classical continuum theory could be
efficiently avoided and size-dependent phenomena can be explained by
the nonlocal elasticity theory.
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Overview of nonlocal continuum mechanics

Nonlocal continuum mechanics

The basic equations for a nonlocal isotropic linear homogenous elastic
body can be expresses as

σij,j = 0,

σij(x) =

∫

V

φ(|x − x′|, α)tijdV(x′), ∀x ∈ V

tij = Hijklǫkl ,

ǫij = 1/2(ui,j + uj,i

(47)

The terms σij , tij , ǫkl and Hijkl are the nonlocal stress, classical stress,
classical strain and fourth-order elasticity tensors respectively. The
volume integral is over the region V occupied by the body. Equation (47)
couples the stress due to nonlocal elasticity and the stress due to
classical elasticity.

The kernel function φ(|x − x′|, α) is the nonlocal modulus. The nonlocal
modulus acts as an attenuation function incorporating into constitutive
equations the nonlocal effects at the reference point x produced by local
strain at the source x′.
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Overview of nonlocal continuum mechanics

Nonlocal continuum mechanics

The term |x − x′| represents the distance in the Euclidean form and α is a
material constant that depends on the internal (e.g. lattice parameter,
granular size, distance between the C-C bonds) and external
characteristics lengths (e.g. crack length, wave length).

Material constant α is defined as α = (e0a)l. Here e0 is a constant for
calibrating the model with experimental results and other validated
models. The parameter e0 is estimated such that the relations of the
nonlocal elasticity model could provide satisfactory approximation to the
atomic dispersion curves of the plane waves with those obtained from the
atomistic lattice dynamics.

The terms a and l are the internal (e.g. lattice parameter, granular size,
distance between C-C bonds) and external characteristics lengths (e.g.
crack length, wave length) of the nanostructure. Equation (47) effectively
shows that in nonlocal theory, the stress at a point is a function of the
strains at all points in the domain. The classical elasticity can be viewed
as a special cade when the kernel function becomes a Dirac delta
function.
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Overview of nonlocal continuum mechanics

Nonlocal continuum mechanics

The direct use of equation (47) in boundary value problems results in
integro-partial differential equations and they are generally difficult to
solve analytically.

For this reason, a differential form of nonlocal elasticity equation is often
beneficial. According to Eringen this can be achieved for a special case
of the kernel function given by

φ(|x − x ′|, α) = (2πℓ2α2)K0(
√

x • x/ℓα) (48)

Here K0 is the modified Bessel function. The equation of motion in terms
of nonlocal elasticity can be expressed as

σij,j + fi = ρüi (49)

where fi , ρ and ui are the components of the body forces, mass density,
and the displacement vector, respectively.
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Overview of nonlocal continuum mechanics

Nonlocal continuum mechanics

The terms i, j takes up the symbols x , y , and z. The operator (•̈) denotes
double derivative with respect to time. Assuming the kernel function φ as
the Green’s function, Eringen proposed a differential form of the nonlocal
constitutive relation as

σij,j + L(fi − ρüi) = 0 (50)

where
L(•) = [1 − (e0a)2∇2](•) (51)

and ∇2 is the Laplacian.

Using this equation the nonlocal constitutive stress-strain relation can be
simplified as

(1 − α2l2∇2)σij = tij (52)

One can use this relationship and derive the equation of motion using
conventional variational principle. In the next subsections we consider the
dynamics of nonlocal road, beam and plate using this approach.
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Overview of nonlocal continuum mechanics

Nonlocal continuum mechanics

Values of different nonlocal parameters used in literature.
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Overview of nonlocal continuum mechanics

Our recent book

Our recent book has more detailed discussions on the nonlocal theory:

Karlic̆ić, D. Murmu, T., Adhikari, S. and McCarthy, M., Non-local

Structural Mechanics, Wiley-ISTE, 2015 (Hardback 354 pp., ISBN:
1848215223).
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One-dimensional sensors - nonlocal approach

Nonlocal Resonance Frequency of CNT with Attached Biomolecule

We consider the frequency of carbon nanotubes (CNT) with attached
mass, for example, deoxythymidine molecule
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One-dimensional sensors - nonlocal approach Attached biomolecules as point mass

Nonlocal Resonance Frequency of CNT with Attached biomolecule

For the bending vibration of a nonlocal damped beam, the equation of
motion of free vibration can be expressed by

EI
∂4V (x , t)

∂x4
+ m

(

1 − (e0a)2 ∂2

∂x2

){
∂2V (x , t)

∂t2

}

= 0 (53)

In the fundamental mode of vibration, the natural frequency of a nonlocal
SWCNT oscillator can be expressed as

fn =
1

2π

√

keq

meq
(54)

Here keq and meq are respectively equivalent stiffness and mass of
SWCNT in the first mode of vibration.
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One-dimensional sensors - nonlocal approach Attached biomolecules as point mass

Nonlocal resonance frequency with attached point biomolecule

Following the energy approach, the natural frequency can be expressed
as

fn =
1

2π

√

keq

meq
=

β

2π

ck
√

1 + cnlθ2 + cm∆M
(55)

where

β =

√

EI

ρAL4
, θ =

e0a

L
and ∆M =

M

ρAL
(56)

The stiffness, mass and nonlocal calibration constants are

ck =

√

140

11
, cm =

140

33
and cnl =

56

11
(57)

Equation (55), together with the calibration constants gives an explicit
relationship between the change in the mass and frequency.
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One-dimensional sensors - nonlocal approach Attached biomolecules as point mass

Nonlocal resonance frequency with attached distributed biomolecules

We consider the frequency of carbon nanotubes (CNT) with attached
distributed mass, for example, a collections of deoxythymidine molecules
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One-dimensional sensors - nonlocal approach Attached biomolecules as distributed mass

Nonlocal resonance frequency with attached distributed biomolecules

Following the energy approach, the natural frequency can be expressed
as

fn =
1

2π

√

keq

meq
=

β

2π

ck
√

1 + cnlθ2 + cm(γ)∆M
(58)

where

β =

√

EI

ρAL4
, θ =

e0a

L
,∆M =

M

ρAL
, ck =

√

140

11
and cnl =

56

11
(59)

The length-dependent mass calibration constant is

cm(γ) =
140 − 210γ + 105γ2 + 35γ3 − 42γ4 + 5γ6

33
(60)

Equation (58), together with the calibration constants gives an explicit
relationship between the change in the mass and frequency.
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One-dimensional sensors - nonlocal approach Attached biomolecules as distributed mass

Nonlocal sensor equations

The resonant frequency of a SWCNT with no added mass is obtained by
substituting ∆M = 0 in Eq. (58) as

f0n
=

1

2π
ckβ (61)

Combining equations (58) and (61) one obtains the relationship between
the resonant frequencies as

fn =
f0n

√

1 + cnlθ2 + cm(γ)∆M
(62)

The frequency-shift can be expressed using Eq. (62) as

∆f = f0n
− fn = f0n

− f0n
√

1 + cnlθ2 + cm(γ)∆M
(63)

From this we obtain

∆f

f0n

= 1 − 1
√

1 + cnlθ2 + cm(γ)∆M
(64)

Adhikari (Swansea) Computational methods for nano sensors February 5, 2016 62



One-dimensional sensors - nonlocal approach Attached biomolecules as distributed mass

Nonlocal sensor equations

Rearranging gives the expression

Relative mass detection

∆M =
1

cm(γ)
(

1 − ∆f
f0n

)2
− cnl

cm(γ)
θ2 − 1

cm(γ)
(65)

This equation completely relates the change in mass with the
frequency-shift using the mass calibration constant. The actual value of
the added mass can be obtained from (65) as

Absolute mass detection

M =
ρAL

cm(γ)

(
c2

kβ
2
)

(ckβ − 2π∆f )
2
− cnl

cm(γ)
θ2ρAL − ρAL

cm(γ)
(66)

This is the general equation which completely relates the added mass
and the frequency shift using the calibration constants.
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One-dimensional sensors - nonlocal approach Attached biomolecules as distributed mass

Zigzag (5,0) SWCNT of length 8.52 nm with added DeOxy Thymidine (a

nucleotide that is found in DNA)

(a) Point mass on a cantilevered CNT. (b) Distributed mass on a cantilevered CNT.
The length of the mass varies between 0.05L
to 0.72L from the edge of the CNT.

Figure: Normalized mass vs. relative frequency shift for the SWCNT with point mass. The band covers the complete range of nonlocal the parameter
0 ≤ e2 ≤ 2nm. It can be seen that the molecular mechanics simulation results reasonably fall within this band (except at ∆f/fn0=0.35 ).
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One-dimensional sensors - nonlocal approach Attached biomolecules as distributed mass

Results for optimal values of the nonlocal parameter
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(a) Point mass on a cantilevered CNT: e0a =
0.65nm.
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Molecular mechanics
Local theory
Nonlocal theory
Point mass assumption

(b) Distributed mass on a cantilevered CNT.
e0a = 0.5nm.

Figure: Normalized mass vs. relative frequency shift for the SWCNT with point mass with optimal values of the nonlocal parameter e0a.
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One-dimensional sensors - nonlocal approach Attached biomolecules as distributed mass

Error in mass detection: point mass
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One-dimensional sensors - nonlocal approach Attached biomolecules as distributed mass

Error in mass detection: distributed mass

Adhikari (Swansea) Computational methods for nano sensors February 5, 2016 67



Two-dimensional sensors - classical approach

Single-layer graphene sheet (SLGS) based sensors

Fixed edge

Cantilevered Single-layer graphene sheet (SLGS) with adenosine molecules
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Two-dimensional sensors - classical approach

Resonant frequencies of SLGS with attached mass

We model SLGS dynamics as a thin plate in transverse vibration:

D

(
∂4u

∂x4
+ 2

∂2u

∂x2

∂2u

∂y2
+

∂4u

∂y4

)

+ ρ
∂2u

∂t2
= 0,

0 ≤ x ≤ a; 0 ≤ y ≤ b.

(67)

Here u ≡ u(x , y , t) is the transverse deflection, x , y are coordinates, t is
the time, ρ is the mass density per area and the bending rigidity is
defined by

D =
Eh3

12(1 − ν2)
(68)

E is the Young’s modulus, h is the thickness and ν is the Poisson’s ratio.
We consider rectangular graphene sheets with cantilevered (clamped at
one edge) boundary condition.
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Two-dimensional sensors - classical approach

Resonant frequencies of SLGS

The vibration mode-shape for the first mode of vibration of the planar
SLGS is given by

w(x , y) = 1 − cos (πx/2a) (69)

The natural frequency of the system can be alternatively obtained using
the energy principle. Assuming the harmonic motion, the kinetic energy
of the vibrating plate can be expressed by

T = ω2

∫

A

w2(x , y)ρdA (70)

Here ω denotes the frequency of oscillation and A denotes the area of the
plate. Using the expression of w(x , y) in Eq. (69) we have

T =
1

2
ω2ρ

∫ a

0

∫ b

0

(1 − cos (πx/2a))2
dx dy

=
1

2
ω2(abρ)

3π − 8

2π

(71)
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Two-dimensional sensors - classical approach

Resonant frequencies of SLGS

The potential energy can be obtained as

U =
D

2

∫

A

{(
∂2w

∂x2
+

∂2w

∂y2

)2

−2(1 − ν)

[

∂2w

∂x2

∂2w

∂y2
−
(

d2w

dx2
y

)2
]}

dA

(72)

Using the expression of w(x , y) in (69) we have

U =
D

2
ρ

∫ a

0

∫ b

0

(
∂2w

∂x2

)2

dx dy =
1

2

π4D

a3
b(1/32) (73)

Considering the energy balance, that is Tmax = Umax, from Eqs. (83) and
(73) the resonance frequency can be obtained as

ω2
0 =

(
π4D

a4ρ

)
1/32

(3π − 8)/2π
(74)
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Two-dimensional sensors - classical approach

Resonant frequencies of SLGS with attached mass

��

��

a

b

(a) Masses at the cantilever tip in a line (b) Masses in a line along the width

(c) Masses in a line along the length (d) Masses in a line with an arbitrary
angle
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Two-dimensional sensors - classical approach

Resonant frequencies of SLGS with attached mass

Using the energy approach, the resonance frequency can be expressed
in a general form as

ω2
a,b,c,d =

1
2
π4D
a3 b(1/32)

1
2

{
abρ 3π−8

2π
+ αa,b,c,dM

} =

(
π4D

a4ρ

)
1/32

(3π − 8)/2π + µαb,c,d

(75)

Here the ratio of the added mass

µ =
M

Mg
(76)

αa,b,c,d are factors which depend on the mass distribution:.

αa = 1, αb = (1 − cos(πγ/2))2 (77)

αc =
3πη + [sin((γ + η)π) − sin(γπ)]− 8[sin((γ + η)π/2)− sin(γπ/2)]

2πη
(78)

αd =
3πη cos(θ) + [sin((γ + η cos(θ))π) − sin(γπ)] − 8[sin((γ + η cos(θ))π/2) − sin(γπ/2)]

2πη cos(θ)
(79)
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Two-dimensional sensors - classical approach

Sensor equation

The relative added mass of the bio-fragment can be obtained from the
frequency shift as

Relative mass detection for 2D sensors

µ =
1

cn

(

1 − ∆f
f0

)2
− 1

cn
(80)

Mass arrangement Calibration constant cn

Case (a): Masses are at
the cantilever tip in a line

2π/(3π − 8)

Case (b): Masses are in a
line along the width

2π(1 − cos(πγ/2))2/(3π − 8)

Case (c): Masses are in a
line along the length

(3πη + [sin((γ + η)π) − sin(γπ)] − 8[sin((γ +
η)π/2)− sin(γπ/2)])/η(3π − 8)

Case (d): Masses are in a
line with an arbitrary angle
θ

(3πη cos(θ) + [sin((γ + η cos(θ))π) −
sin(γπ)] − 8[sin((γ + η cos(θ))π/2) −
sin(γπ/2)])/η cos(θ)(3π − 8)
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Two-dimensional sensors - classical approach

Validation with MM simulation (UFF): Case a

Fixed edge

(a) SLGS with adenosine molecules at the
cantilever tip in a line
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Molecular mechanics
Analytical formulation

(b) Identified mass from the frequency shift

Figure: Identified attached masses from the frequency-shift of a cantilevered SLGS resonator for case (a). The SLGS mass is 7.57zg and the mass
of each adenosine molecule is 0.44zg. The proposed approach is validated using data from the molecular mechanics simulations. Up to 12 adenosine
molecules are attached to the graphene sheet.
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Two-dimensional sensors - classical approach

Validation with MM simulation: Case b

Fixed edge

(a) SLGS with adenosine molecules in a line
along the width
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Molecular mechanics
Analytical formulation

(b) Identified mass from the frequency shift,
γ = 0.85

Figure: Identified attached masses from the frequency-shift of a cantilevered SLGS resonator for case (b). The proposed approach is validated
using data from the molecular mechanics simulations. Up to 10 adenosine molecules are attached to the graphene sheet.
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Two-dimensional sensors - classical approach

Validation with MM simulation: Case d

Fixed edge

(a) SLGS with adenosine molecules in a line
with an arbitrary angle
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Molecular mechanics
Analytical formulation

(b) Identified mass from the frequency shift,
γ = 0.25, η = 0.7 and θ = π/6

Figure: Identified attached masses from the frequency-shift of a cantilevered SLGS resonator for case (d). The proposed approach is validated
using data from the molecular mechanics simulations. Up to 10 adenosine molecules are attached to the graphene sheet.
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Two-dimensional sensors - nonlocal approach

Nonlocal plate theory for SLGS

(a) Schematic diagram of single-layer graphene sheets, (b) Nonlocal
continuum plate as a model for graphene sheets, (c) Resonating graphene
sheets sensors with attached bio fragment molecules such as adenosine.
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Two-dimensional sensors - nonlocal approach

Nonlocal plate theory for SLGS

We model SLGS dynamics as a thin nonlocal plate in transverse vibration

D∇4u + m
(
1 − (e0a)2∇2

)
{
∂2u

∂t2

}

,

0 ≤ x ≤ c; 0 ≤ y ≤ b.

(81)

Here u ≡ u(x , y , t) is the transverse deflection, ∇2 =
(

∂2

∂x2 + ∂2

∂x2

)

is the

differential operator, x , y are coordinates, t is the time, ρ is the mass
density per area and the bending rigidity is defined by

D =
Eh3

12(1 − ν2)
(82)

Introducing the non dimensional length scale parameter

µ =
e0a

c
(83)

the resonance frequency can be obtained as

ω2
0 =

(
π4D

c4ρ

)
1/32

(3π − 8)/2π + µ2π2/8
(84)
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Two-dimensional sensors - nonlocal approach

Nonlocal SLGS with attached masses

(a) Masses at the cantilever tip in a line (b) masses in a line along the width,
(c) masses in a line along the length, (d) masses in a line with an arbitrary

angle.
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Two-dimensional sensors - nonlocal approach

Nonlocal resonant frequencies of SLGS with attached mass

Using the energy approach, the resonance frequency can be expressed
in a general form as

ω2
a,b,c,d =

1
2
π4D
c3 b(1/32)

1
2

{

cbρ
(

3π−8
2π + µ2π2

8

)

+ αa,b,c,dM
}

=

(
π4D

c4ρ

)
1/32

(3π − 8)/2π + µ2π2/8 + βαb,c,d

(85)

Here the ratio of the added mass

β =
M

Mg
(86)

and αb,c,d are factors which depend on the mass distribution as defined
before.
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Two-dimensional sensors - nonlocal approach

Free vibration response of nonlocal SLGS with attached masses

Free vibration response at the tip of the graphene sheet due to the unit initial
displacement obtained from molecular mechanics simulation. Here T0 is the time

period of oscillation without any added mass. The shaded area represents the motion
of all the mass loading cases considered for case (a).
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Two-dimensional sensors - nonlocal approach

Validation with MM simulation (UFF): Case a

Fixed edge

(a) SLGS with adenosine molecules at the
cantilever tip in a line

(b) Identified mass from the frequency shift

Figure: Identified attached masses from the frequency-shift of a cantilevered SLGS resonator for case (a). The SLGS mass is 7.57zg and the mass
of each adenosine molecule is 0.44zg. The proposed approach is validated using data from the molecular mechanics simulations. Up to 12 adenosine
molecules are attached to the graphene sheet.
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Two-dimensional sensors - nonlocal approach

Validation with MM simulation: Case b

Fixed edge

(a) SLGS with adenosine molecules in a line
along the width

(b) Identified mass from the frequency shift,
γ = 0.85

Figure: Identified attached masses from the frequency-shift of a cantilevered SLGS resonator for case (b). The proposed approach is validated
using data from the molecular mechanics simulations. Up to 10 adenosine molecules are attached to the graphene sheet.
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Two-dimensional sensors - nonlocal approach

Validation with MM simulation: Case d

Fixed edge

(a) SLGS with adenosine molecules in a line
with an arbitrary angle

(b) Identified mass from the frequency shift,
γ = 0.25, η = 0.7 and θ = π/6

Figure: Identified attached masses from the frequency-shift of a cantilevered SLGS resonator for case (d). The proposed approach is validated
using data from the molecular mechanics simulations. Up to 10 adenosine molecules are attached to the graphene sheet.

Adhikari (Swansea) Computational methods for nano sensors February 5, 2016 85



Conclusions

Conclusions

Principles of fundamental mechanics and dynamics can have
unprecedented role in the development of nano-mechanical bio sensors.
Nano-sensor market is predicted to be over 20 Billion$ by 2020.

Mass sensing is an inverse problem - NOT a conventional “forward
problem”.

Due to the need for “instant calculation”, physically insightful simplified
(but approximate) approach is more suitable compared to very detailed
(but accurate) molecular dynamic simulations.

Energy based simplified dynamic approach turned out to sufficient to
identify mass of the attached bio-objects from “measured”
frequency-shifts in nano-scale sensors.

Closed-form sensor equations have been derived and independently
validated using molecular mechanics simulations. Calibration constants
necessary for this approach have been given explicitly for point mass as
well as distributed masses.

Nonlocal model with optimally selected length-scale parameter improves
the mass detection capability for nano-sensors.
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